Search results for: rational approximation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 978

Search results for: rational approximation

978 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 253
977 Approximation Property Pass to Free Product

Authors: Kankeyanathan Kannan

Abstract:

On approximation properties of group C* algebras is everywhere; it is powerful, important, backbone of countless breakthroughs. For a discrete group G, let A(G) denote its Fourier algebra, and let M₀A(G) denote the space of completely bounded Fourier multipliers on G. An approximate identity on G is a sequence (Φn) of finitely supported functions such that (Φn) uniformly converge to constant function 1 In this paper we prove that approximation property pass to free product.

Keywords: approximation property, weakly amenable, strong invariant approximation property, invariant approximation property

Procedia PDF Downloads 675
976 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.

Keywords: integral differential equations, jump–diffusion model, American options, rational approximation

Procedia PDF Downloads 123
975 Approximation of Intersection Curves of Two Parametric Surfaces

Authors: Misbah Irshad, Faiza Sarfraz

Abstract:

The problem of approximating surface to surface intersection is considered to be very important in computer aided geometric design and computer aided manufacturing. Although it is a complex problem to handle, its continuous need in the industry makes it an active topic in research. A technique for approximating intersection curves of two parametric surfaces is proposed, which extracts boundary points and turning points from a sequence of intersection points and interpolate them with the help of rational cubic spline functions. The proposed approach is demonstrated with the help of examples and analyzed by calculating error.

Keywords: approximation, parametric surface, spline function, surface intersection

Procedia PDF Downloads 270
974 Circular Approximation by Trigonometric Bézier Curves

Authors: Maria Hussin, Malik Zawwar Hussain, Mubashrah Saddiqa

Abstract:

We present a trigonometric scheme to approximate a circular arc with its two end points and two end tangents/unit tangents. A rational cubic trigonometric Bézier curve is constructed whose end control points are defined by the end points of the circular arc. Weight functions and the remaining control points of the cubic trigonometric Bézier curve are estimated by variational approach to reproduce a circular arc. The radius error is calculated and found less than the existing techniques.

Keywords: control points, rational trigonometric Bézier curves, radius error, shape measure, weight functions

Procedia PDF Downloads 477
973 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers

Authors: R. M. Kashim

Abstract:

The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.

Keywords: conceptual knowledge, primary school teachers, procedural knowledge, rational numbers

Procedia PDF Downloads 329
972 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers

Authors: R. M. Kashim

Abstract:

The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.

Keywords: conceptual, procedural knowledge, rational number, pupils

Procedia PDF Downloads 453
971 Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem

Authors: N. Guruprasad

Abstract:

This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions.

Keywords: computation, efficiency, modified cost, Russell’s approximation method, transportation, Vogel’s approximation method

Procedia PDF Downloads 549
970 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Numbers and Its Effects on Pupils Achievement of Rational Numbers

Authors: Raliatu Mohammed Kashim

Abstract:

The study investigated primary school teachers conceptual and procedural knowledge of rational numbers to determine how it effects on pupil’s achievement on rational number. Specifically, primary school teachers’ level of conceptual and procedural knowledge about rational number and its effects on their pupils understanding of rational number in primary school was explored. The study was carried out in Bauchi state of Nigeria, Using a multistage design. The first stage was a descriptive design. The second stage involves a pre-test post-test only quasi experiment design. The population of the study comprises of six mathematics teachers holding the Nigerian Certificate in Education (NCE) teaching primary six and their two hundred and ten pupils in intact class. Two instrument namely Conceptual and Procedural knowledge Test (CPKT) and Rational number Achievement Test (RAT) were used for data collection. Data collected was analyzed using ANCOVA and Scheffe’s Test. The result revealed a significant differences between pupils taught by teachers with high conceptual and procedural knowledge and those target by teachers with low conceptual and procedural knowledge.

Keywords: conceptual knowledge, procedural knowledge, rational numbers, multistage design

Procedia PDF Downloads 388
969 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types

Authors: Chaghoub Soraya, Zhang Xiaoyan

Abstract:

This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.

Keywords: approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median

Procedia PDF Downloads 204
968 Monotone Rational Trigonometric Interpolation

Authors: Uzma Bashir, Jamaludin Md. Ali

Abstract:

This study is concerned with the visualization of monotone data using a piece-wise C1 rational trigonometric interpolating scheme. Four positive shape parameters are incorporated in the structure of rational trigonometric spline. Conditions on two of these parameters are derived to attain the monotonicity of monotone data and other two are left-free. Figures are used widely to exhibit that the proposed scheme produces graphically smooth monotone curves.

Keywords: trigonometric splines, monotone data, shape preserving, C1 monotone interpolant

Procedia PDF Downloads 271
967 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 377
966 Approximation of Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means of Fourier Series

Authors: Smita Sonker, Uaday Singh

Abstract:

Various investigators have determined the degree of approximation of functions belonging to the classes W(L r , ξ(t)), Lip(ξ(t), r), Lip(α, r), and Lipα using different summability methods with monotonocity conditions. Recently, Lal has determined the degree of approximation of the functions belonging to Lipα and W(L r , ξ(t)) classes by using Ces`aro-N¨orlund (C 1 .Np)- summability with non-increasing weights {pn}. In this paper, we shall determine the degree of approximation of 2π - periodic functions f belonging to the function classes Lipα and W(L r , ξ(t)) by C 1 .T - means of Fourier series of f. Our theorems generalize the results of Lal and we also improve these results in the light off. From our results, we also derive some corollaries.

Keywords: Lipschitz classes, product matrix operator, signals, trigonometric Fourier approximation

Procedia PDF Downloads 478
965 High-Pressure Calculations of the Elastic Properties of ZnSx Se 1−x Alloy in the Virtual-Crystal Approximation

Authors: N. Lebga, Kh. Bouamama, K. Kassali

Abstract:

We report first-principles calculation results on the structural and elastic properties of ZnS x Se1−x alloy for which we employed the virtual crystal approximation provided with the ABINIT program. The calculations done using density functional theory within the local density approximation and employing the virtual-crystal approximation, we made a comparative study between the numerical results obtained from ab-initio calculation using ABINIT or Wien2k within the Density Functional Theory framework with either Local Density Approximation or Generalized Gradient approximation and the pseudo-potential plane-wave method with the Hartwigzen Goedecker Hutter scheme potentials. It is found that the lattice parameter, the phase transition pressure, and the elastic constants (and their derivative with respect to the pressure) follow a quadratic law in x. The variation of the elastic constants is also numerically studied and the phase transformations are discussed in relation to the mechanical stability criteria.

Keywords: density functional theory, elastic properties, ZnS, ZnSe,

Procedia PDF Downloads 574
964 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 34
963 Approximation of Convex Set by Compactly Semidefinite Representable Set

Authors: Anusuya Ghosh, Vishnu Narayanan

Abstract:

The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.

Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation

Procedia PDF Downloads 388
962 Generating Arabic Fonts Using Rational Cubic Ball Functions

Authors: Fakharuddin Ibrahim, Jamaludin Md. Ali, Ahmad Ramli

Abstract:

In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G1 continuity. The conditions considered are known as the G1 Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity.

Keywords: data interpolation, rational ball curve, hermite condition, continuity

Procedia PDF Downloads 429
961 Approximation of Analytic Functions of Several Variables by Linear K-Positive Operators in the Closed Domain

Authors: Tulin Coskun

Abstract:

We investigate the approximation of analytic functions of several variables in polydisc by the sequences of linear k-positive operators in Gadjiev sence. The approximation of analytic functions of complex variable by linear k-positive operators was tackled, and k-positive operators and formulated theorems of Korovkin's type for these operators in the space of analytic functions on the unit disc were introduced in the past. Recently, very general results on convergence of the sequences of linear k-positive operators on a simply connected bounded domain within the space of analytic functions were proved. In this presentation, we extend some of these results to the approximation of analytic functions of several complex variables by sequences of linear k-positive operators.

Keywords: analytic functions, approximation of analytic functions, Linear k-positive operators, Korovkin type theorems

Procedia PDF Downloads 338
960 Degree of Approximation of Functions by Product Means

Authors: Hare Krishna Nigam

Abstract:

In this paper, for the first time, (E,q)(C,2) product summability method is introduced and two quite new results on degree of approximation of the function f belonging to Lip (alpha,r)class and W(L(r), xi(t)) class by (E,q)(C,2) product means of Fourier series, has been obtained.

Keywords: Degree of approximation, (E, q)(C, 2) means, Fourier series, Lebesgue integral, Lip (alpha, r)class, W(L(r), xi(t))class of functions

Procedia PDF Downloads 520
959 Approximation to the Hardy Operator on Topological Measure Spaces

Authors: Kairat T. Mynbaev, Elena N. Lomakina

Abstract:

We consider a Hardy-type operator generated by a family of open subsets of a Hausdorff topological space. The family is indexed with non-negative real numbers and is totally ordered. For this operator, we obtain two-sided bounds of its norm, a compactness criterion, and bounds for its approximation numbers. Previously, bounds for its approximation numbers have been established only in the one-dimensional case, while we do not impose any restrictions on the dimension of the Hausdorff space. The bounds for the norm and conditions for compactness earlier have been found using different methods by G. Sinnamon and K. Mynbaev. Our approach is different in that we use domain partitions for all problems under consideration.

Keywords: approximation numbers, boundedness and compactness, multidimensional Hardy operator, Hausdorff topological space

Procedia PDF Downloads 105
958 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric

Authors: Kejal Khatri, Vishnu Narayan Mishra

Abstract:

We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.

Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability

Procedia PDF Downloads 420
957 Cryptography Over Sextic Extension with Cubic Subfield

Authors: A. Chillali, M. Sahmoudi

Abstract:

In this paper we will give a method for encoding the elements of the ring of integers of sextic extension, namely L = Q(a,b) which is a rational quadratic over cubic field K =Q(a ) where a^{2} is a rational square free integer and b is a root of irreducible polynomiale of degree 3.

Keywords: coding, integral bases, sextic, quadratic

Procedia PDF Downloads 297
956 Improvement of the Numerical Integration's Quality in Meshless Methods

Authors: Ahlem Mougaida, Hedi Bel Hadj Salah

Abstract:

Several methods are suggested to improve the numerical integration in Galerkin weak form for Meshless methods. In fact, integrating without taking into account the characteristics of the shape functions reproduced by Meshless methods (rational functions, with compact support etc.), causes a large integration error that influences the PDE’s approximate solution. Comparisons between different methods of numerical integration for rational functions are discussed and compared. The algorithms are implemented in Matlab. Finally, numerical results were presented to prove the efficiency of our algorithms in improving results.

Keywords: adaptive methods, meshless, numerical integration, rational quadrature

Procedia PDF Downloads 364
955 The Principle of Methodological Rationality and Security of Organisations

Authors: Jan Franciszek Jacko

Abstract:

This investigation presents the principle of methodological rationality of decision making and discusses the impact of an organisation's members' methodologically rational or irrational decisions on its security. This study formulates and partially justifies some research hypotheses regarding the impact. The thinking experiment is used according to Max Weber's ideal types method. Two idealised situations("models") are compared: Model A, whereall decision-makers follow methodologically rational decision-making procedures. Model B, in which these agents follow methodologically irrational decision-making practices. Analysing and comparing the two models will allow the formulation of some research hypotheses regarding the impact of methodologically rational and irrational attitudes of members of an organisation on its security. In addition to the method, phenomenological analyses of rationality and irrationality are applied.

Keywords: methodological rationality, rational decisions, security of organisations, philosophy of economics

Procedia PDF Downloads 140
954 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation

Authors: Serge B. Provost, Yishan Zhang

Abstract:

A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.

Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation

Procedia PDF Downloads 162
953 Degree of Approximation of Functions Conjugate to Periodic Functions Belonging to Lipschitz Classes by Product Matrix Means

Authors: Smita Sonker

Abstract:

Various investigators have determined the degree of approximation of conjugate signals (functions) of functions belonging to different classes Lipα, Lip(α,p), Lip(ξ(t),p), W(Lr,ξ(t), (β ≥ 0)) by matrix summability means, lower triangular matrix operator, product means (i.e. (C,1)(E,1), (C,1)(E,q), (E,q)(C,1) (N,p,q)(E,1), and (E,q)(N,pn) of their conjugate trigonometric Fourier series. In this paper, we shall determine the degree of approximation of 2π-periodic function conjugate functions of f belonging to the function classes Lipα and W(Lr; ξ(t); (β ≥ 0)) by (C1.T) -means of their conjugate trigonometric Fourier series. On the other hand, we shall review above-mentioned work in the light of Lenski.

Keywords: signals, trigonometric fourier approximation, class W(L^r, \xi(t), conjugate fourier series

Procedia PDF Downloads 398
952 Orthogonal Basis Extreme Learning Algorithm and Function Approximation

Authors: Ying Li, Yan Li

Abstract:

A new algorithm for single hidden layer feedforward neural networks (SLFN), Orthogonal Basis Extreme Learning (OBEL) algorithm, is proposed and the algorithm derivation is given in the paper. The algorithm can decide both the NNs parameters and the neuron number of hidden layer(s) during training while providing extreme fast learning speed. It will provide a practical way to develop NNs. The simulation results of function approximation showed that the algorithm is effective and feasible with good accuracy and adaptability.

Keywords: neural network, orthogonal basis extreme learning, function approximation

Procedia PDF Downloads 536
951 Rational Bureaucracy and E-Government: A Philosophical Study of Universality of E-Government

Authors: Akbar Jamali

Abstract:

Hegel is the first great political philosopher who specifically contemplates on bureaucracy. For Hegel bureaucracy is the function of the state. Since state, essentially is a rational organization, its function; namely, bureaucracy must be rational. Since, what is rational is universal; Hegel had to explain how the bureaucracy could be understood as universal. Hegel discusses bureaucracy in his treatment of ‘executive power’. He analyses modern bureaucracy as a form of political organization, its constituent members, and its relation to the social environment. Therefore, the essence of bureaucracy in Hegel’s philosophy is the implementation of law and rules. Hegel argues that unlike the other social classes that are particular because they look for their own private interest, bureaucracy as a class is a ‘universal’ because their orientation is the interest of the state. State for Hegel is essentially rational and universal. It is the actualization of ‘objective Spirit’. Marx criticizes Hegel’s argument on the universality of state and bureaucracy. For Marx state is equal to bureaucracy, it constitutes a social class that based on the interest of bourgeois class that dominates the society and exploits proletarian class. Therefore, the main disagreement between these political philosophers is: whether the state (bureaucracy) is universal or particular. Growing e-government in modern state as an important aspect of development leads us to contemplate on the particularity and universality of e-government. In this article, we will argue that e-government essentially is universal. E-government, in itself, is impartial; therefore, it cannot be particular. The development of e-government eliminates many side effects of the private, personal or particular interest of the individuals who work as bureaucracy. Finally, we will argue that more a state is developed more it is universal. Therefore, development of e-government makes the state a more universal and affects the modern philosophical debate on the particularity or universality of bureaucracy and state.

Keywords: particularity, universality, rational bureaucracy, impartiality

Procedia PDF Downloads 251
950 Structural and Electronic Properties of the Rock-salt BaxSr1−xS Alloys

Authors: B. Bahloul, K. Babesse, A. Dkhira, Y. Bahloul, L. Amirouche

Abstract:

Structural and electronic properties of the rock-salt BaxSr1−xS are calculated using the first-principles calculations based on the density functional theory (DFT) within the generalized gradient approximation (GGA), the local density approximation (LDA) and the virtual-crystal approximation (VCA). The calculated lattice parameters at equilibrium volume for x=0 and x=1 are in good agreement with the literature data. The BaxSr1−xS alloys are found to be an indirect band gap semiconductor. Moreoever, for the composition (x) ranging between [0-1], we think that our results are well discussed and well predicted.

Keywords: semiconductor, Ab initio calculations, rocksalt, band structure, BaxSr1−xS

Procedia PDF Downloads 397
949 An Optimized RDP Algorithm for Curve Approximation

Authors: Jean-Pierre Lomaliza, Kwang-Seok Moon, Hanhoon Park

Abstract:

It is well-known that Ramer Douglas Peucker (RDP) algorithm greatly depends on the method of choosing starting points. Therefore, this paper focuses on finding such starting points that will optimize the results of RDP algorithm. Specifically, this paper proposes a curve approximation algorithm that finds flat points, called essential points, of an input curve, divides the curve into corner-like sub-curves using the essential points, and applies the RDP algorithm to the sub-curves. The number of essential points play a role on optimizing the approximation results by balancing the degree of shape information loss and the amount of data reduction. Through experiments with curves of various types and complexities of shape, we compared the performance of the proposed algorithm with three other methods, i.e., the RDP algorithm itself and its variants. As a result, the proposed algorithm outperformed the others in term of maintaining the original shapes of the input curve, which is important in various applications like pattern recognition.

Keywords: curve approximation, essential point, RDP algorithm

Procedia PDF Downloads 538