Search results for: petroleum hydrocarbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 732

Search results for: petroleum hydrocarbon

12 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling

Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky

Abstract:

Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.

Keywords: nano-particles, formation damage, permeability, fines migration

Procedia PDF Downloads 590
11 Study of Secondary Metabolites of Sargassum Algae: Anticorrosive and Antibacterial Activities

Authors: Prescilla Lambert, Christophe Roos, Mounim Lebrini

Abstract:

For several years, the Caribbean islands and West Africa have had to deal with the massive arrival of the brown seaweed Sargassum. Overall, this macroalgae, which constitutes a habitat for a great diversity of marine organisms, is also an additional stress factor for the marine environment (e.g., coral reefs). In addition, the accumulation followed by the significant decomposition of the Sargassum spp. biomass on the coast leads to the release of toxic gases (H₂S and NH₃), which calls into question the functioning of the economic, health and tourist life of the island and the other interested territories. Originally, these algae are formed by the eutrophication of the oceans accentuated by global warming. Unfortunately, scientists predict a significant recurrence of these Sargassum strandings for years to come. It is therefore more than necessary to find solutions by putting in place a sustainable management plan for this phenomenon. Martinique, a small island in the Caribbean arc, is one of the many areas impacted by Sargassum seaweed strandings. Since 2011, there has been a constant increase in the degradation of the materials present in this region, largely due to toxic/corrosive gases released by the algae decomposition. In order to protect the structures and the vulnerable building materials while limiting the use of synthetic/petroleum based molecules as much as possible, research is being conducted on molecules of natural origin. Thus, thanks to the chemical composition, which comprise molecules with interesting properties, algae such as Sargassum could potentially help to solve many issues. Therefore, this study focuses on the green extraction and characterization of molecules from the species Sargassum fluitans and Sargassum natans present in Martinique. The secondary metabolites found in these extracts showed variability in yield rates due to local climatic conditions. The tests carried out shed light on the anticorrosive and antibacterial potential of the algae. These extracts can thus be described as natural inhibitors. The effect of variation in inhibitor concentrations was tested in electrochemistry using electrochemical impedance spectroscopy and polarization curves. The analysis of electrochemical results obtained by direct immersion in the extracts and self-assembled molecular layers (SAMs) for Sargassum fluitans III, Sargassum natans I and VIII species was conclusive in acid and alkaline environments. The excellent results obtained reveal an inhibitory efficacy of 88% at 50mg/L for the crude extract of Sargassum fluitans III and efficacies greater than 97% for the chemical families of Sargassum fluitans III. Similarly, microbiological tests also suggest a bactericidal character. Results for Sargassum fluitans III crude extract show a minimum inhibitory concentration (MIC) of 0.005 mg/mL on Gram-negative bacteria and a MIC greater than 0.6 mg/mL on Gram-positive bacteria. These results make it possible to consider the management of local and international issues while valuing a biomass rich in biodegradable molecules. The next step in this study will therefore be the evaluation of the toxicity of Sargassum spp..

Keywords: Sargassum, secondary metabolites, anticorrosive, antibacterial, natural inhibitors

Procedia PDF Downloads 40
10 Fold and Thrust Belts Seismic Imaging and Interpretation

Authors: Sunjay

Abstract:

Plate tectonics is of very great significance as it represents the spatial relationships of volcanic rock suites at plate margins, the distribution in space and time of the conditions of different metamorphic facies, the scheme of deformation in mountain belts, or orogens, and the association of different types of economic deposit. Orogenic belts are characterized by extensive thrust faulting, movements along large strike-slip fault zones, and extensional deformation that occur deep within continental interiors. Within oceanic areas there also are regions of crustal extension and accretion in the backarc basins that are located on the landward sides of many destructive plate margins.Collisional orogens develop where a continent or island arc collides with a continental margin as a result of subduction. collisional and noncollisional orogens can be explained by differences in the strength and rheology of the continental lithosphere and by processes that influence these properties during orogenesis.Seismic Imaging Difficulties-In triangle zones, several factors reduce the effectiveness of seismic methods. The topography in the central part of the triangle zone is usually rugged and is associated with near-surface velocity inversions which degrade the quality of the seismic image. These characteristics lead to low signal-to-noise ratio, inadequate penetration of energy through overburden, poor geophone coupling with the surface and wave scattering. Depth Seismic Imaging Techniques-Seismic processing relates to the process of altering the seismic data to suppress noise, enhancing the desired signal (higher signal-to-noise ratio) and migrating seismic events to their appropriate location in space and depth. Processing steps generally include analysis of velocities, static corrections, moveout corrections, stacking and migration. Exploration seismology Bow-tie effect -Shadow Zones-areas with no reflections (dead areas). These are called shadow zones and are common in the vicinity of faults and other discontinuous areas in the subsurface. Shadow zones result when energy from a reflector is focused on receivers that produce other traces. As a result, reflectors are not shown in their true positions. Subsurface Discontinuities-Diffractions occur at discontinuities in the subsurface such as faults and velocity discontinuities (as at “bright spot” terminations). Bow-tie effect caused by the two deep-seated synclines. Seismic imaging of thrust faults and structural damage-deepwater thrust belts, Imaging deformation in submarine thrust belts using seismic attributes,Imaging thrust and fault zones using 3D seismic image processing techniques, Balanced structural cross sections seismic interpretation pitfalls checking, The seismic pitfalls can originate due to any or all of the limitations of data acquisition, processing, interpretation of the subsurface geology,Pitfalls and limitations in seismic attribute interpretation of tectonic features, Seismic attributes are routinely used to accelerate and quantify the interpretation of tectonic features in 3D seismic data. Coherence (or variance) cubes delineate the edges of megablocks and faulted strata, curvature delineates folds and flexures, while spectral components delineate lateral changes in thickness and lithology. Carbon capture and geological storage leakage surveillance because fault behave as a seal or a conduit for hydrocarbon transportation to a trap,etc.

Keywords: tectonics, seismic imaging, fold and thrust belts, seismic interpretation

Procedia PDF Downloads 34
9 Capsaicin Derivatives Enhanced Activity of α1β2γ2S-Aminobutyric Acid Type a Receptor Expressed in Xenopus laevis Oocytes

Authors: Jia H. Wong, Jingli Zhang, Habsah Mohamad, Iswatun H. Abdullah Ripain, Muhammad Bilal, Amelia J. Lloyd, Abdul A. Mohamed Yusoff, Jafri M. Abdullah

Abstract:

Epilepsy is one of the most common neurological diseases affecting more than 50 million of people worldwide. Epilepsy is a state of recurrent, spontaneous seizures with multiple syndromes and symptoms of different causes of brain dysfunction, prognosis, and treatments; characterized by transient, occasional and stereotyped interruptions of behavior whereby the excitatory-inhibitory activities within the central nervous system (CNS) are thrown out of balance due to various kinds of interferences. The goal of antiepileptic treatment is to enable patients to be free from seizures or to achieve control of seizures through surgical treatment and/or pharmacotherapy. Pharmacotherapy through AED plays an important role especially in countries with epilepsy treatment gap due to costs and availability of health facilities, skills and resources, yet there are about one-third of the people with epilepsy have drug-resistant seizures. Hence, this poses considerable challenges to the healthcare system and the effort in providing cost-effective treatment as well as the search for alternatives to treatment and management of epilepsy. Enhancement of γ-aminobutyric acid (GABA)-mediated inhibitory neurotransmission is one of the key mechanisms of actions of antiepileptic drugs. GABA type > a receptors (GABAAR) are ligand-gated ion channels that mediate rapid inhibitory neurotransmission upon the binding of GABA with a heteropentameric structure forming a central pore that is permeable to the influx of chloride ions in its activated state. The major isoform of GABAA receptors consists of two α1, two β2, and one γ2 subunit. It is the most abundantly expressed combinations in the brain and the most commonly researched through Xenopus laevis oocytes. With the advancing studies on ethnomedicine and traditional treatments using medicinal plants, increasing evidence reveal that spice and herb plants with medicinal properties play an important role in the treatment of ailments within communities across different cultures. Capsaicin is the primary natural capsaicinoid in hot peppers of plant genus Capsicum, consist of an aromatic ring, an amide linkage and a hydrophobic side chain. The study showed that capsaicins conferred neuroprotection in status epilepticus mouse models through anti-ictogenic, hypothermic, antioxidative, anti-inflammatory, and anti-apoptotic actions in a dose-dependent manner. In this study, five capsaicin derivatives were tested for their ability to increase the GABA-induced chloride current on α1β2γ2S of GABAAR expressed on Xenopus laevis oocytes using the method of two-microelectrode voltage clamp. Two of the capsaicin derivatives, IS5 (N-(4-hydroxy-3-methoxybenzyl)-3-methylbutyramide) and IS10 (N-(4-hydroxy-3-methoxybenzyl)-decanamide) at a concentration of 30µM were able to significantly increase the GABA-induced chloride current with p=0.002 and p=0.026 respectively. This study were able to show the enhancement effect of two capsaicin derivatives with moderate length of hydrocarbon chain on this receptor subtype, revealing the promising inhibitory activity of capsaicin derivatives through enhancement of GABA-induced chloride current and further investigations should be carried out to verify its antiepileptic effects in animal models.

Keywords: α1β2γ2 GABAA receptors, α1β2γ2S, antiepileptic, capsaicin derivatives, two-microelectrode voltage clamp, Xenopus laevis oocytes

Procedia PDF Downloads 335
8 Using Low-Calorie Gas to Generate Heat and Electricity

Authors: Аndrey Marchenko, Oleg Linkov, Alexander Osetrov, Sergiy Kravchenko

Abstract:

The low-calorie of gases include biogas, coal gas, coke oven gas, associated petroleum gas, gases sewage, etc. These gases are usually released into the atmosphere or burned on flares, causing substantial damage to the environment. However, with the right approach, low-calorie gas fuel can become a valuable source of energy. Specified determines the relevance of areas related to the development of low-calorific gas utilization technologies. As an example, in the work considered one of way of utilization of coalmine gas, because Ukraine ranks fourth in the world in terms of coal mine gas emission (4.7% of total global emissions, or 1.2 billion m³ per year). Experts estimate that coal mine gas is actively released in the 70-80 percent of existing mines in Ukraine. The main component of coal mine gas is methane (25-60%) Methane in 21 times has a greater impact on the greenhouse effect than carbon dioxide disposal problem has become increasingly important in the context of the increasing need to address the problems of climate, ecology and environmental protection. So marked causes negative effect of both local and global nature. The efforts of the United Nations and the World Bank led to the adoption of the program 'Zero Routine Flaring by 2030' dedicated to the cessation of these gases burn in flares and disposing them with the ability to generate heat and electricity. This study proposes to use coal gas as a fuel for gas engines to generate heat and electricity. Analyzed the physical-chemical properties of low-calorie gas fuels were allowed to choose a suitable engine, as well as estimate the influence of the composition of the fuel at its techno-economic indicators. Most suitable for low-calorie gas is engine with pre-combustion chamber jet ignition. In Ukraine is accumulated extensive experience in exploitation and production of gas engines with capacity of 1100 kW type GD100 (10GDN 207/2 * 254) fueled by natural gas. By using system pre- combustion chamber jet ignition and quality control in the engines type GD100 introduces the concept of burning depleted burn fuel mixtures, which in turn leads to decrease in the concentration of harmful substances of exhaust gases. The main problems of coal mine gas as a fuel for ICE is low calorific value, the presence of components that adversely affect combustion processes and terms of operation of the ICE, the instability of the composition, weak ignition. In some cases, these problems can be solved by adaptation engine design using coal mine gas as fuel (changing compression ratio, fuel injection quantity increases, change ignition time, increase energy plugs, etc.). It is shown that the use of coal mine gas engines with prechamber has not led to significant changes in the indicator parameters (ηi = 0.43 - 0.45). However, this significantly increases the volumetric fuel consumption, which requires increased fuel injection quantity to ensure constant nominal engine power. Thus, the utilization of low-calorie gas fuels in stationary gas engine type-based GD100 will significantly reduce emissions of harmful substances into the atmosphere when the generate cheap electricity and heat.

Keywords: gas engine, low-calorie gas, methane, pre-combustion chamber, utilization

Procedia PDF Downloads 238
7 An Evaluation of a Prototype System for Harvesting Energy from Pressurized Pipeline Networks

Authors: Nicholas Aerne, John P. Parmigiani

Abstract:

There is an increasing desire for renewable and sustainable energy sources to replace fossil fuels. This desire is the result of several factors. First, is the role of fossil fuels in climate change. Scientific data clearly shows that global warming is occurring. It has also been concluded that it is highly likely human activity; specifically, the combustion of fossil fuels, is a major cause of this warming. Second, despite the current surplus of petroleum, fossil fuels are a finite resource and will eventually become scarce and alternatives, such as clean or renewable energy will be needed. Third, operations to obtain fossil fuels such as fracking, off-shore oil drilling, and strip mining are expensive and harmful to the environment. Given these environmental impacts, there is a need to replace fossil fuels with renewable energy sources as a primary energy source. Various sources of renewable energy exist. Many familiar sources obtain renewable energy from the sun and natural environments of the earth. Common examples include solar, hydropower, geothermal heat, ocean waves and tides, and wind energy. Often obtaining significant energy from these sources requires physically-large, sophisticated, and expensive equipment (e.g., wind turbines, dams, solar panels, etc.). Other sources of renewable energy are from the man-made environment. An example is municipal water distribution systems. The movement of water through the pipelines of these systems typically requires the reduction of hydraulic pressure through the use of pressure reducing valves. These valves are needed to reduce upstream supply-line pressures to levels suitable downstream users. The energy associated with this reduction of pressure is significant but is currently not harvested and is simply lost. While the integrity of municipal water supplies is of paramount importance, one can certainly envision means by which this lost energy source could be safely accessed. This paper provides a technical description and analysis of one such means by the technology company InPipe Energy to generate hydroelectricity by harvesting energy from municipal water distribution pressure reducing valve stations. Specifically, InPipe Energy proposes to install hydropower turbines in parallel with existing pressure reducing valves in municipal water distribution systems. InPipe Energy in partnership with Oregon State University has evaluated this approach and built a prototype system at the O. H. Hinsdale Wave Research Lab. The Oregon State University evaluation showed that the prototype system rapidly and safely initiates, maintains, and ceases power production as directed. The outgoing water pressure remained constant at the specified set point throughout all testing. The system replicates the functionality of the pressure reducing valve and ensures accurate control of down-stream pressure. At a typical water-distribution-system pressure drop of 60 psi the prototype, operating at an efficiency 64%, produced approximately 5 kW of electricity. Based on the results of this study, this proposed method appears to offer a viable means of producing significant amounts of clean renewable energy from existing pressure reducing valves.

Keywords: pressure reducing valve, renewable energy, sustainable energy, water supply

Procedia PDF Downloads 176
6 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 380
5 Environmentally Sustainable Transparent Wood: A Fully Green Approach from Bleaching to Impregnation for Energy-Efficient Engineered Wood Components

Authors: Francesca Gullo, Paola Palmero, Massimo Messori

Abstract:

Transparent wood is considered a promising structural material for the development of environmentally friendly, energy-efficient engineered components. To obtain transparent wood from natural wood materials two approaches can be used: i) bottom-up and ii) top-down. Through the second method, the color of natural wood samples is lightened through a chemical bleaching process that acts on chromophore groups of lignin, such as the benzene ring, quinonoid, vinyl, phenolics, and carbonyl groups. These chromophoric units form complex conjugate systems responsible for the brown color of wood. There are two strategies to remove color and increase the whiteness of wood: i) lignin removal and ii) lignin bleaching. In the lignin removal strategy, strong chemicals containing chlorine (chlorine, hypochlorite, and chlorine dioxide) and oxidizers (oxygen, ozone, and peroxide) are used to completely destroy and dissolve the lignin. In lignin bleaching methods, a moderate reductive (hydrosulfite) or oxidative (hydrogen peroxide) is commonly used to alter or remove the groups and chromophore systems of lignin, selectively discoloring the lignin while keeping the macrostructure intact. It is, therefore, essential to manipulate nanostructured wood by precisely controlling the nanopores in the cell walls by monitoring both chemical treatments and process conditions, for instance, the treatment time, the concentration of chemical solutions, the pH value, and the temperature. The elimination of wood light scattering is the second step in the fabrication of transparent wood materials, which can be achieved through two-step approaches: i) the polymer impregnation method and ii) the densification method. For the polymer impregnation method, the wood scaffold is treated with polymers having a corresponding refractive index (e.g., PMMA and epoxy resins) under vacuum to obtain the transparent composite material, which can finally be pressed to align the cellulose fibers and reduce interfacial defects in order to have a finished product with high transmittance (>90%) and excellent light-guiding. However, both the solution-based bleaching and the impregnation processes used to produce transparent wood generally consume large amounts of energy and chemicals, including some toxic or pollutant agents, and are difficult to scale up industrially. Here, we report a method to produce optically transparent wood by modifying the lignin structure with a chemical reaction at room temperature using small amounts of hydrogen peroxide in an alkaline environment. This method preserves the lignin, which results only deconjugated and acts as a binder, providing both a strong wood scaffold and suitable porosity for infiltration of biobased polymers while reducing chemical consumption, the toxicity of the reagents used, polluting waste, petroleum by-products, energy and processing time. The resulting transparent wood demonstrates high transmittance and low thermal conductivity. Through the combination of process efficiency and scalability, the obtained materials are promising candidates for application in the field of construction for modern energy-efficient buildings.

Keywords: bleached wood, energy-efficient components, hydrogen peroxide, transparent wood, wood composites

Procedia PDF Downloads 19
4 A Case Study of Brownfield Revitalization in Taiwan

Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo

Abstract:

In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.

Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management

Procedia PDF Downloads 145
3 Current Zonal Isolation Regulation and Standards: A Compare and Contrast Review in Plug and Abandonment

Authors: Z. A. Al Marhoon, H. S. Al Ramis, C. Teodoriu

Abstract:

Well-integrity is one of the major elements considered for drilling geothermal, oil, and gas wells. Well-integrity is minimizing the risk of unplanned fluid flow in the well bore throughout the well lifetime. Well integrity is maximized by applying technical concepts along with practical practices and strategic planning. These practices are usually governed by standardization and regulation entities. Practices during well construction can affect the integrity of the seal at the time of abandonment. On the other hand, achieving a perfect barrier system is impracticable due to the needed cost. This results in a needed balance between regulations requirements and practical applications. The guidelines are only effective when they are attainable in practical applications. Various governmental regulations and international standards have different guidelines on what constitutes high-quality isolation from unwanted flow. Each regulating or standardization body differ in requirements based on the abandonment objective. Some regulation account more for the environmental impact, water table contamination, and possible leaks. Other regulation might lean towards driving more economical benefits while achieving an acceptable isolation criteria. The research methodology used in this topic is derived from a literature review method combined with a compare and contrast analysis. The literature review on various zonal isolation regulations and standards has been conducted. A review includes guidelines from NORSOK (Norwegian governing entity), BSEE (USA offshore governing entity), API (American Petroleum Institute) combined with ISO (International Standardization Organization). The compare and contrast analysis is conducted by assessing the objective of each abandonment regulations and standardization. The current state of well barrier regulation is in balancing action. From one side of this balance, the environmental impact and complete zonal isolation is considered. The other side of the scale is practical application and associated cost. Some standards provide a fair amount of details concerning technical requirements and are often flexible with the needed associated cost. These guidelines cover environmental impact with laws that prevent major or disastrous environmental effects of improper sealing of wells. Usually these regulations are concerned with the near future of sealing rather than long-term. Consequently, applying these guidelines become more feasible from a cost point of view to the required plugging entities. On the other hand, other regulation have well integrity procedures and regulations that lean toward more restrictions environmentally with an increased associated cost requirements. The environmental impact is detailed and covered with its entirety, including medium to small environmental impact in barrier installing operations. Clear and precise attention to long-term leakage prevention is present in these regulations. The result of the compare and contrast analysis of the literature showed that there are various objectives that might tip the scale from one side of the balance (cost) to the other (sealing quality) especially in reference to zonal isolation. Furthermore, investing in initial well construction is a crucial part of ensuring safe final well abandonment. The safety and the cost saving at the end of the well life cycle is dependent upon a well-constructed isolation systems at the beginning of the life cycle. Long term studies on zonal isolation using various hydraulic or mechanical materials need to take place to further assess permanently abandoned wells to achieve the desired balance. Well drilling and isolation techniques will be more effective when they are operationally feasible and have reasonable associated cost to aid the local economy.

Keywords: plug and abandon, P&A regulation, P&A standards, international guidelines, gap analysis

Procedia PDF Downloads 102
2 Kuwait Environmental Remediation Program: Fresh Groudwater Risk Assessement from Tarcrete Material across the Raudhatain and Sabriyah Oil Fields, North Kuwait

Authors: Nada Al-Qallaf, Aisha Al-Barood, Djamel Lekmine, Srinivasan Vedhapuri

Abstract:

Kuwait Oil Company (KOC) under the supervision of Kuwait National Focal Point (KNFP) is planning to remediate 26 million (M) m3 of oil-contaminated soil in oil fields of Kuwait as a direct and indirect fallout of the Gulf War during 1990-1991. This project is funded by the United Nations Compensation Commission (UNCC) under the Kuwait Environmental Remediation Program (KERP). Oil-contamination of the soil occurred due to the destruction of the oil wells and spilled crude oil across the land surface and created ‘oil lakes’ in low lying land. Aerial fall-out from oil spray and combustion products from oil fires combined with the sand and gravel on the ground surface to form a layer of hardened ‘Tarcrete’. The unique fresh groundwater lenses present in the Raudhatain and Sabriya subsurface areas had been impacted by the discharge and/or spills of dissolved petroleum constituents. These fresh groundwater aquifers were used for drinking water purposes until 1990, prior to invasion. This has significantly damages altered the landscape, ecology and habitat of the flora and fauna and in Kuwait Desert. Under KERP, KOC is fully responsible for the planning and execution of the remediation and restoration projects in KOC oil fields. After the initial recommendation of UNCC to construct engineered landfills for containment and disposal of heavily contaminated soils, two landfills were constructed, one in North Kuwait and another in South East Kuwait of capacity 1.7 million m3 and 0.5 million m3 respectively. KOC further developed the Total Remediation Strategy in conjunction with KNFP and has obtained UNCC approval. The TRS comprises of elements such as Risk Based Approach (RBA), Bioremediation of low Contaminated Soil levels, Remediation Treatment Technologies, Sludge Disposal via Beneficial Recycling or Re-use and Engineered landfills for Containment of untreatable materials. Risk Based Assessment as a key component to avoid any unnecessary remedial works, where it can be demonstrated that human health and the environment are sufficiently protected in the absence of active remediation. This study demonstrates on the risks of tarcrete materials spread over areas 20 Km2 on the fresh Ground water lenses/catchment located beneath the Sabriyah and Raudhatain oil fields in North Kuwait. KOC’s primary objective is to provide justification of using RBA, to support a case with the Kuwait regulators to leave the tarcrete material in place, rather than seek to undertake large-scale removal and remediation. The large-scale coverage of the tarcrete in the oil fields and perception that the residual contamination associated with this source is present in an environmentally sensitive area essentially in ground water resource. As part of this assessment, conceptual site model (CSM) and complete risk-based and fate and transport modelling was carried out which includes derivation of site-specific assessment criteria (SSAC) and quantification of risk to identified waters resource receptors posed by tarcrete impacted areas. The outcome of this assessment was determined that the residual tarcrete deposits across the site area shall not create risks to fresh groundwater resources and the remedial action to remove and remediate the surficial tarcrete deposits is not warranted.

Keywords: conceptual site model, fresh groundwater, oil-contaminated soil, tarcrete, risk based assessment

Procedia PDF Downloads 148
1 Inhibitory Effects of Crocin from Crocus sativus L. on Cell Proliferation of a Medulloblastoma Human Cell Line

Authors: Kyriaki Hatziagapiou, Eleni Kakouri, Konstantinos Bethanis, Alexandra Nikola, Eleni Koniari, Charalabos Kanakis, Elias Christoforides, George Lambrou, Petros Tarantilis

Abstract:

Medulloblastoma is a highly invasive tumour, as it tends to disseminate throughout the central nervous system early in its course. Despite the high 5-year-survival rate, a significant number of patients demonstrate serious long- or short-term sequelae (e.g., myelosuppression, endocrine dysfunction, cardiotoxicity, neurological deficits and cognitive impairment) and higher mortality rates, unrelated to the initial malignancy itself but rather to the aggressive treatment. A strong rationale exists for the use of Crocus sativus L (saffron) and its bioactive constituents (crocin, crocetin, safranal) as pharmaceutical agents, as they exert significant health-promoting properties. Crocins are water soluble carotenoids. Unlike other carotenoids, crocins are highly water-soluble compounds, with relatively low toxicity as they are not stored in adipose and liver tissues. Crocins have attracted wide attention as promising anti-cancer agents, due to their antioxidant, anti-inflammatory, and immunomodulatory effects, interference with transduction pathways implicated in tumorigenesis, angiogenesis, and metastasis (disruption of mitotic spindle assembly, inhibition of DNA topoisomerases, cell-cycle arrest, apoptosis or cell differentiation) and sensitization of cancer cells to radiotherapy and chemotherapy. The current research aimed to study the potential cytotoxic effect of crocins on TE671 medulloblastoma cell line, which may be useful in the optimization of existing and development of new therapeutic strategies. Crocins were extracted from stigmas of saffron in ultrasonic bath, using petroleum-ether, diethylether and methanol 70%v/v as solvents and the final extract was lyophilized. Identification of crocins according to high-performance liquid chromatography (HPLC) analysis was determined comparing the UV-vis spectra and the retention time (tR) of the peaks with literature data. For the biological assays crocin was diluted to nuclease and protease free water. TE671 cells were incubated with a range of concentrations of crocins (16, 8, 4, 2, 1, 0.5 and 0.25 mg/ml) for 24, 48, 72 and 96 hours. Analysis of cell viability after incubation with crocins was performed with Alamar Blue viability assay. The active ingredient of Alamar Blue, resazurin, is a blue, nontoxic, cell permeable compound virtually nonfluorescent. Upon entering cells, resazurin is reduced to a pink and fluorescent molecule, resorufin. Viable cells continuously convert resazurin to resorufin, generating a quantitative measure of viability. The colour of resorufin was quantified by measuring the absorbance of the solution at 600 nm with a spectrophotometer. HPLC analysis indicated that the most abundant crocins in our extract were trans-crocin-4 and trans-crocin-3. Crocins exerted significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72 and 96 hours versus cells not exposed); as their concentration and time of exposure increased, the reduction of resazurin to resofurin decreased, indicating reduction in cell viability. IC50 values for each time point were calculated ~3.738, 1.725, 0.878 and 0.7566 mg/ml at 24, 48, 72 and 96 hours, respectively. The results of our study could afford the basis of research regarding the use of natural carotenoids as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgements: The research was funded by Fellowships of Excellence for Postgraduate Studies IKY-Siemens Programme.

Keywords: crocetin, crocin, medulloblastoma, saffron

Procedia PDF Downloads 184