Search results for: optical communication systems
14221 Characterization of Optical Communication Channels as Non-Deterministic Model
Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford
Abstract:
Increasingly telecommunications sectors are adopting optical technologies, due to its ability to transmit large amounts of data over long distances. However, as in all systems of data transmission, optical communication channels suffer from undesirable and non-deterministic effects, being essential to know the same. Thus, this research allows the assessment of these effects, as well as their characterization and beneficial uses of these effects.Keywords: optical communication, optical fiber, non-deterministic effects, telecommunication
Procedia PDF Downloads 78814220 Enhancement of coupler-based delay line filters modulation techniques using optical wireless channel and amplifiers at 100 Gbit/s
Authors: Divya Sisodiya, Deepika Sipal
Abstract:
Optical wireless communication (OWC) is a relatively new technology in optical communication systems that allows for high-speed wireless optical communication. This research focuses on developing a cost-effective OWC system using a hybrid configuration of optical amplifiers. In addition to using EDFA amplifiers, a comparison study was conducted to determine which modulation technique is more effective for communication. This research examines the performance of an OWC system based on ASK and PSK modulation techniques by varying OWC parameters under various atmospheric conditions such as rain, mist, haze, and snow. Finally, the simulation results are discussed and analyzed.Keywords: OWC, bit error rate, amplitude shift keying, phase shift keying, attenuation, amplifiers
Procedia PDF Downloads 13214219 Effects of Incident Angle and Distance on Visible Light Communication
Authors: Taegyoo Woo, Jong Kang Park, Jong Tae Kim
Abstract:
Visible Light Communication (VLC) provides wireless communication features in illumination systems. One of the key applications is to recognize the user location by indoor illuminators such as light emitting diodes. For localization of individual receivers in these systems, we usually assume that receivers and transmitters are placed in parallel. However, it is difficult to satisfy this assumption because the receivers move randomly in real case. It is necessary to analyze the case when transmitter is not placed perfectly parallel to receiver. It is also important to identify changes on optical gain by the tilted angles and distances of them against the illuminators. In this paper, we simulate optical gain for various cases where the tilt of the receiver and the distance change. Then, we identified changing patterns of optical gains according to tilted angles of a receiver and distance. These results can help many VLC applications understand the extent of the location errors with regard to optical gains of the receivers and identify the root cause.Keywords: visible light communication, incident angle, optical gain, light emitting diode
Procedia PDF Downloads 33514218 Study and Analysis of Optical Intersatellite Links
Authors: Boudene Maamar, Xu Mai
Abstract:
Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication
Procedia PDF Downloads 44714217 New Result for Optical OFDM in Code Division Multiple Access Systems Using Direct Detection
Authors: Cherifi Abdelhamid
Abstract:
In optical communication systems, OFDM has received increased attention as a means to overcome various limitations of optical transmission systems such as modal dispersion, relative intensity noise, chromatic dispersion, polarization mode dispersion and self-phase modulation. The multipath dispersion limits the maximum transmission data rates. In this paper we investigate OFDM system where multipath induced intersymbol interference (ISI) is reduced and we increase the number of users by combining OFDM system with OCDMA system using direct detection Incorporate OOC (orthogonal optical code) for minimize a bit error rate.Keywords: OFDM, OCDMA, OOC (orthogonal optical code), (ISI), prim codes (Pc)
Procedia PDF Downloads 65214216 Use Cases Analysis of Free Space Optical Communication System
Authors: Kassem Saab, Fritzen Bart, Yves-Marie Seveque
Abstract:
The deployment of Free Space Optical Communications (FSOC) systems requires the development of robust and reliable Optical Ground Stations (OGS) that can be easily installed and operated. To this end, the Engineering Department of Airbus Defence and Space is actively working on the development of innovative and compact OGS solutions that can be deployed in various environments and provide high-quality connectivity under different atmospheric conditions. This article presents an overview of our recent developments in this field, including an evaluation study of different use cases of the FSOC with respect to different atmospheric conditions. The goal is to provide OGS solutions that are both simple and highly effective, allowing for the deployment of high-speed communication networks in a wide range of scenarios.Keywords: end to end optical communication, laser propagation, optical ground station, turbulence
Procedia PDF Downloads 9414215 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite
Authors: Nadir Atayev, Mehman Hasanov
Abstract:
Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.Keywords: cubesat, free space optics, nano satellite, optical laser communication.
Procedia PDF Downloads 8914214 Semiconductor Device of Tapered Waveguide for Broadband Optical Communications
Authors: Keita Iwai, Isao Tomita
Abstract:
To expand the optical spectrum for use in broadband optical communications, we study the properties of a semiconductor waveguide device with a tapered structure including its third-order optical nonlinearity. Spectral-broadened output by the tapered structure has the potential to create a compact, built-in device for optical communications. Here we deal with a compound semiconductor waveguide, the material of which is the same as that of laser diodes used in the communication systems, i.e., InₓGa₁₋ₓAsᵧP₁₋ᵧ, which has large optical nonlinearity. We confirm that our structure widens the output spectrum sufficiently by controlling its taper form factor while utilizing the large nonlinear refraction of InₓGa₁₋ₓAsᵧP₁₋ᵧ. We also examine the taper effect for nonlinear optical loss.Keywords: InₓGa₁₋ₓAsᵧP₁₋ᵧ, waveguide, nonlinear refraction, spectral spreading, taper device
Procedia PDF Downloads 15214213 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 11314212 Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR
Authors: G. R. Kavitha, T. S. Indumathi
Abstract:
With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies.Keywords: component, optical network, reconfigurable optical add-drop multiplexer, optical signal-to-noise ratio
Procedia PDF Downloads 48814211 Deflection Effect on Mirror for Space Applications
Authors: Maamar Fatouma
Abstract:
Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria
Procedia PDF Downloads 8914210 Optical Repeater Assisted Visible Light Device-to-Device Communications
Authors: Samrat Vikramaditya Tiwari, Atul Sewaiwar, Yeon-Ho Chung
Abstract:
Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m.Keywords: visible light communication, light emitting diode, device-to-device, optical repeater
Procedia PDF Downloads 47814209 Design and Simulation of an Inter-Satellite Optical Wireless Communication System Using Diversity Techniques
Authors: Sridhar Rapuru, D. Mallikarjunreddy, Rajanarendra Sai
Abstract:
In this reign of the internet, the access of any multimedia file to the users at any time with a superior quality is needed. To achieve this goal, it is very important to have a good network without any interruptions between the satellites along with various earth stations. For that purpose, a high speed inter-satellite optical wireless communication system (IsOWC) is designed with space and polarization diversity techniques. IsOWC offers a high bandwidth, small size, less power requirement and affordable when compared with the present microwave satellite systems. To improve the efficiency and to reduce the propagation delay, inter-satellite link is established between the satellites. High accurate tracking systems are required to establish the reliable connection between the satellites as they have their own orbits. The only disadvantage of this IsOWC system is laser beam width is narrower than the RF because of this highly accurate tracking system to meet this requirement. The satellite uses the 'ephemerides data' for rough pointing and tracking system for fine pointing to the other satellite. In this proposed IsOWC system, laser light is used as a wireless connectedness between the source and destination and free space acts as the channel to carry the message. The proposed system will be designed, simulated and analyzed for 6000km with an improvement of data rate over previously existing systems. The performance parameters of the system are Q-factor, eye opening, bit error rate, etc., The proposed system for Inter-satellite Optical Wireless Communication System Design Using Diversity Techniques finds huge scope of applications in future generation communication purposes.Keywords: inter-satellite optical wireless system, space and polarization diversity techniques, line of sight, bit error rate, Q-factor
Procedia PDF Downloads 27014208 All-Optical Function Based on Self-Similar Spectral Broadening for 2R Regeneration in High-Bit-Rate Optical Transmission Systems
Authors: Leila Graini
Abstract:
In this paper, we demonstrate basic all-optical functions for 2R regeneration (Re-amplification and Re-shaping) based on self-similar spectral broadening in low normal dispersion and highly nonlinear fiber (ND-HNLF) to regenerate the signal through optical filtering including the transfer function characteristics, and output extinction ratio. Our approach of all-optical 2R regeneration is based on those of Mamyshev. The numerical study reveals the self-similar spectral broadening very effective for 2R all-optical regeneration; the proposed design presents high stability compared to a conventional regenerator using SPM broadening with reduction of the intensity fluctuations and improvement of the extinction ratio.Keywords: all-optical function, 2R optical regeneration, self-similar broadening, Mamyshev regenerator
Procedia PDF Downloads 18614207 A Nanoelectromechanical Tunable Oscillator Base on a High-Q Optical Cavity
Authors: Jianguo Huang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu
Abstract:
We developed a miniaturized tunable optomechanical oscillator based on the nanoelectromechanical systems (NEMS) technology, and its frequencies can be electrostatically tuned by as much as 10%. By taking both advantages of optical and electrical spring, the oscillator achieves a high tuning sensitivity without resorting to mechanical tension. In particular, the proposed high-Q optical cavity design greatly enhances the system sensitivity, making it extremely sensitive to the small motional signal.Keywords: nanoelectromechanical systems (NEMS), nanotechnology, optical force, oscillator
Procedia PDF Downloads 49814206 Optical Fiber Data Throughput in a Quantum Communication System
Authors: Arash Kosari, Ali Araghi
Abstract:
A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.Keywords: absorption, data throughput, depolarization, optical fiber
Procedia PDF Downloads 28614205 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems
Authors: Muhammad Safi, Abdul Manan
Abstract:
In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs
Procedia PDF Downloads 8114204 Effect of Transmission Distance on the Performance of Hybrid Configuration Using Non Return to Zero (NRZ) Pulse Format
Authors: Mais Wa'ad
Abstract:
The effect of transmission distance on the performance of hybrid configuration H 10-40 Gb/s with Non-Return to Zero (NRZ) pulse format, 100 GHz channel spacing, and Multiplexer/De-Multiplexer Band width (MUX/DEMUX BW) of 60 GHz has been investigated in this study. The laser Continuous Wave (CW) power launched into the modulator is set to 4 dBm. Eight neighboring DWDM channels are selected around 1550.12 nm carrying different data rates in hybrid optical communication systems travel through the same optical fiber and use the same passive and active optical modules. The simulation has been done using Optiwave Inc Optisys software. Usually, increasing distance will lead to decrease in performance; however this is not always the case, as the simulation conducted in this work, shows different system performance for each channel. This is due to differences in interaction between dispersion and non-linearity, and the differences in residual dispersion for each channel.Keywords: dispersion and non-linearity interaction, optical hybrid configuration, multiplexer/de multiplexer bandwidth, non-return to zero, optical transmission distance, optisys
Procedia PDF Downloads 55914203 Wireless Optic Last Mile Multi-Gbit/s Communication System
Authors: Manea Viorel, Puscoci Sorin, Stoichescu Dan Alexandru
Abstract:
Free Space Optics (FSO) is an optical telecommunication system that uses laser beam to transmit data at high bit rates via terrestrial atmosphere. This article describes a method to obtain higher bit rates, under unfavorable weather conditions using multiple optical beams, which carry information with low optical power. Optical link quality assessment is given by the attenuation on different weather conditions. The goal of this paper is to compare two transmission techniques: mono and multi beam, both affected by atmospheric attenuation, using OOK and L-PPM modulation. Link availability is evaluated using eye-diagram that provides information about the overall bit error rate of the system.Keywords: free space optics, wireless optic, laser communication, spatial diversity
Procedia PDF Downloads 50514202 A Rapid Code Acquisition Scheme in OOC-Based CDMA Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
We propose a code acquisition scheme called improved multiple-shift (IMS) for optical code division multiple access systems, where the optical orthogonal code is used instead of the pseudo noise code. Although the IMS algorithm has a similar process to that of the conventional MS algorithm, it has a better code acquisition performance than the conventional MS algorithm. We analyze the code acquisition performance of the IMS algorithm and compare the code acquisition performances of the MS and the IMS algorithms in single-user and multi-user environments.Keywords: code acquisition, optical CDMA, optical orthogonal code, serial algorithm
Procedia PDF Downloads 54014201 Flexible Communication Platform for Crisis Management
Authors: Jiří Barta, Tomáš Ludík, Jiří Urbánek
Abstract:
The topics of disaster and emergency management are highly debated among experts. Fast communication will help to deal with emergencies. Problem is with the network connection and data exchange. The paper suggests a solution, which allows possibilities and perspectives of new flexible communication platform to the protection of communication systems for crisis management. This platform is used for everyday communication and communication in crisis situations too.Keywords: crisis management, information systems, interoperability, crisis communication, security environment, communication platform
Procedia PDF Downloads 47514200 Connected Objects with Optical Rectenna for Wireless Information Systems
Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli
Abstract:
Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.Keywords: antenna, IoT, optical rectenna, solar cell
Procedia PDF Downloads 17814199 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System
Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi
Abstract:
Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.Keywords: channel estimation, OFDM, pilot-assist, VLC
Procedia PDF Downloads 18014198 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment
Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen
Abstract:
Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram
Procedia PDF Downloads 51014197 Characterization of Optical Systems for Intraocular Projection
Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera
Abstract:
Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.Keywords: focusing, projection, blindness, cornea , achromatic, pinhole
Procedia PDF Downloads 13214196 Outdoor Visible Light Communication Channel Modeling under Fog and Smoke Conditions
Authors: Véronique Georlette, Sebastien Bette, Sylvain Brohez, Nicolas Point, Veronique Moeyaert
Abstract:
Visible light communication (VLC) is a communication technology that is part of the optical wireless communication (OWC) family. It uses the visible and infrared spectrums to send data. For now, this technology has widely been studied for indoor use-cases, but it is sufficiently mature nowadays to consider the outdoor environment potentials. The main outdoor challenges are the meteorological conditions and the presence of smoke due to fire or pollutants in urban areas. This paper proposes a methodology to assess the robustness of an outdoor VLC system given the outdoor conditions. This methodology is put into practice in two realistic scenarios, a VLC bus stop, and a VLC streetlight. The methodology consists of computing the power margin available in the system, given all the characteristics of the VLC system and its surroundings. This is done thanks to an outdoor VLC communication channel simulator developed in Python. This simulator is able to quantify the effects of fog and smoke thanks to models taken from environmental and fire engineering scientific literature as well as the optical power reaching the receiver. These two phenomena impact the communication by increasing the total attenuation of the medium. The main conclusion drawn in this paper is that the levels of attenuation due to fog and smoke are in the same order of magnitude. The attenuation of fog being the highest under the visibility of 1 km. This gives a promising prospect for the deployment of outdoor VLC uses-cases in the near future.Keywords: channel modeling, fog modeling, meteorological conditions, optical wireless communication, smoke modeling, visible light communication
Procedia PDF Downloads 15014195 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 6314194 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption
Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov
Abstract:
Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.Keywords: encryption, phase distortion, quantum communication, quantum noise
Procedia PDF Downloads 55314193 Decoding the Structure of Multi-Agent System Communication: A Comparative Analysis of Protocols and Paradigms
Authors: Gulshad Azatova, Aleksandr Kapitonov, Natig Aminov
Abstract:
Multiagent systems have gained significant attention in various fields, such as robotics, autonomous vehicles, and distributed computing, where multiple agents cooperate and communicate to achieve complex tasks. Efficient communication among agents is a crucial aspect of these systems, as it directly impacts their overall performance and scalability. This scholarly work provides an exploration of essential communication elements and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of these protocols across various scenarios. The research also sheds light on emerging trends within communication protocols for multiagent systems, including the incorporation of machine learning methods and the adoption of blockchain-based solutions to ensure secure communication. These trends provide valuable insights into the evolving landscape of multiagent systems and their communication protocols.Keywords: communication, multi-agent systems, protocols, consensus
Procedia PDF Downloads 7414192 Soliton Solutions in (3+1)-Dimensions
Authors: Magdy G. Asaad
Abstract:
Solitons are among the most beneficial solutions for science and technology for their applicability in physical applications including plasma, energy transport along protein molecules, wave transport along poly-acetylene molecules, ocean waves, constructing optical communication systems, transmission of information through optical fibers and Josephson junctions. In this talk, we will apply the bilinear technique to generate a class of soliton solutions to the (3+1)-dimensional nonlinear soliton equation of Jimbo-Miwa type. Examples of the resulting soliton solutions are computed and a few solutions are plotted.Keywords: Pfaffian solutions, N-soliton solutions, soliton equations, Jimbo-Miwa
Procedia PDF Downloads 453