Search results for: nonlinear regression (NLR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: nonlinear regression (NLR)

4100 Continuous Adaptive Robust Control for Non-Linear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.

Keywords: adaptive control, estimation, Fredholm integral, uncertain system

Procedia PDF Downloads 456
4099 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression

Authors: Wanatchapong Kongkaew

Abstract:

This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.

Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness

Procedia PDF Downloads 279
4098 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover

Procedia PDF Downloads 390
4097 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: bootstrap, edgeworth approximation, IID, quantile

Procedia PDF Downloads 127
4096 Comparative Study Performance of the Induction Motor between SMC and NLC Modes Control

Authors: A. Oukaci, R. Toufouti, D. Dib, l. Atarsia

Abstract:

This article presents a multitude of alternative techniques to control the vector control, namely the nonlinear control and sliding mode control. Moreover, the implementation of their control law applied to the high-performance to the induction motor with the objective to improve the tracking control, ensure stability robustness to parameter variations and disturbance rejection. Tests are performed numerical simulations in the Matlab/Simulink interface, the results demonstrate the efficiency and dynamic performance of the proposed strategy.

Keywords: Induction Motor (IM), Non-linear Control (NLC), Sliding Mode Control (SMC), nonlinear sliding surface

Procedia PDF Downloads 541
4095 Unveiling Special Policy Regime, Judgment, and Taylor Rules in Tunisia

Authors: Yosra Baaziz, Moez Labidi

Abstract:

Given limited research on monetary policy rules in revolutionary countries, this paper challenges the suitability of the Taylor rule in characterizing the monetary policy behavior of the Tunisian Central Bank (BCT), especially in turbulent times. More specifically, we investigate the possibility that the Taylor rule should be formulated as a threshold process and examine the validity of such nonlinear Taylor rule as a robust rule for conducting monetary policy in Tunisia. Using quarterly data from 1998:Q4 to 2013:Q4 to analyze the movement of nominal short-term interest rate of the BCT, we find that the nonlinear Taylor rule improves its performance with the advent of special events providing thus a better description of the Tunisian interest rate setting. In particular, our results show that the adoption of an appropriate nonlinear approach leads to a reduction in the errors of 150 basis points in 1999 and 2009, and 60 basis points in 2011, relative to the linear approach.

Keywords: policy rule, central bank, exchange rate, taylor rule, nonlinearity

Procedia PDF Downloads 272
4094 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 336
4093 A Nonlinear Stochastic Differential Equation Model for Financial Bubbles and Crashes with Finite-Time Singularities

Authors: Haowen Xi

Abstract:

We propose and solve exactly a class of non-linear generalization of the Black-Scholes process of stochastic differential equations describing price bubble and crashes dynamics. As a result of nonlinear positive feedback, the faster-than-exponential price positive growth (bubble forming) and negative price growth (crash forming) are found to be the power-law finite-time singularity in which bubbles and crashes price formation ending at finite critical time tc. While most literature on the market bubble and crash process focuses on the nonlinear positive feedback mechanism aspect, very few studies concern the noise level on the same process. The present work adds to the market bubble and crashes literature by studying the external sources noise influence on the critical time tc of the bubble forming and crashes forming. Two main results will be discussed: (1) the analytical expression of expected value of the critical time is found and unexpected critical slowing down due to the coupling external noise is predicted; (2) numerical simulations of the nonlinear stochastic equation is presented, and the probability distribution of Prob(tc) is found to be the inverse gamma function.

Keywords: bubble, crash, finite-time-singular, numerical simulation, price dynamics, stochastic differential equations

Procedia PDF Downloads 103
4092 Nonlinear Internal Waves in Rotating Ocean

Authors: L. A. Ostrovsky, Yu. A. Stepanyants

Abstract:

Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described.

Keywords: Earth rotation, internal waves, nonlinear waves, solitons

Procedia PDF Downloads 616
4091 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties

Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd

Abstract:

Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.

Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence

Procedia PDF Downloads 414
4090 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV

Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol

Abstract:

In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.

Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing

Procedia PDF Downloads 410
4089 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Heisenberg Ferromagnet equations, soliton equations, equivalence, Lax representation

Procedia PDF Downloads 430
4088 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 116
4087 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 221
4086 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.

Keywords: clustering, data analysis, data mining, predictive models

Procedia PDF Downloads 434
4085 Nonlinear Analysis of Steel Fiber Reinforced Concrete Frames Considering Shear Behaviour of Members under Varying Axial Load

Authors: Habib Akbarzadeh Bengar, Mohammad Asadi Kiadehi, Ali Rameeh

Abstract:

The result of the past earthquakes has shown that insufficient amount of stirrups and brittle behavior of concrete lead to the shear and flexural failure in reinforced concrete (RC) members. In this paper, an analytical model proposed to predict the nonlinear behavior of RC and SFRC elements and frames. In this model, some important parameter such as shear effect, varying axial load, and longitudinal bar buckling are considered. The results of analytical model were verified with experimental tests. The results of verification have shown that the proposed analytical model can predict the nonlinear behavior of RC and SFRC members and also frames accurately. In addition, the results have shown that use of steel fibers increased bearing capacity and ductility of RC frame. Due to this enhancement in shear strength and ductility, insufficient amount of stirrups, which resulted in shear failure, can be offset with usage of the steel fibers. In addition to the steps taken, to analyze the effects of fibers percentages on the bearing capacity and ductility of frames parametric studies have been performed to investigate of these effects.

Keywords: nonlinear analysis, SFRC frame, shear failure, varying an axial load

Procedia PDF Downloads 191
4084 A Simplified Distribution for Nonlinear Seas

Authors: M. A. Tayfun, M. A. Alkhalidi

Abstract:

The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is re-examined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.

Keywords: ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness

Procedia PDF Downloads 408
4083 Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States

Authors: Yakubu Suleiman, S. A. Musa

Abstract:

Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions.

Keywords: coefficient, constant, inputs, regression

Procedia PDF Downloads 387
4082 Ketones Emission during Pad Printing Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja

Abstract:

The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.

Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing

Procedia PDF Downloads 390
4081 Automatic API Regression Analyzer and Executor

Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty

Abstract:

As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.

Keywords: automation impact regression, java doc, executor, analyzer, layers

Procedia PDF Downloads 461
4080 On the Topological Entropy of Nonlinear Dynamical Systems

Authors: Graziano Chesi

Abstract:

The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems.

Keywords: non-linear system, communication constraint, topological entropy

Procedia PDF Downloads 301
4079 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode

Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi

Abstract:

The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.

Keywords: active magnetic bearing, three pole AMB, hybrid control, Lyapunov function

Procedia PDF Downloads 312
4078 Impulsive Synchronization of Periodically Forced Complex Duffing's Oscillators

Authors: Shaban Aly, Ali Al-Qahtani, Houari B. Khenous

Abstract:

Synchronization is an important phenomenon commonly observed in nature. A system of periodically forced complex Duffings oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using impulsive synchronization techniques. We derive analytical expressions for impulsive control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

Keywords: complex nonlinear oscillators, impulsive synchronization, chaotic systems, global exponential synchronization

Procedia PDF Downloads 425
4077 Multiobjective Optimization of a Pharmaceutical Formulation Using Regression Method

Authors: J. Satya Eswari, Ch. Venkateswarlu

Abstract:

The formulation of a commercial pharmaceutical product involves several composition factors and response characteristics. When the formulation requires to satisfy multiple response characteristics which are conflicting, an optimal solution requires the need for an efficient multiobjective optimization technique. In this work, a regression is combined with a non-dominated sorting differential evolution (NSDE) involving Naïve & Slow and ε constraint techniques to derive different multiobjective optimization strategies, which are then evaluated by means of a trapidil pharmaceutical formulation. The analysis of the results show the effectiveness of the strategy that combines the regression model and NSDE with the integration of both Naïve & Slow and ε constraint techniques for Pareto optimization of trapidil formulation. With this strategy, the optimal formulation at pH=6.8 is obtained with the decision variables of micro crystalline cellulose, hydroxypropyl methylcellulose and compression pressure. The corresponding response characteristics of rate constant and release order are also noted down. The comparison of these results with the experimental data and with those of other multiple regression model based multiobjective evolutionary optimization strategies signify the better performance for optimal trapidil formulation.

Keywords: pharmaceutical formulation, multiple regression model, response surface method, radial basis function network, differential evolution, multiobjective optimization

Procedia PDF Downloads 383
4076 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate

Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur

Abstract:

Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.

Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration

Procedia PDF Downloads 107
4075 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 363
4074 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 600. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modelling mass transfer by multiple plunging jets.

Keywords: mass transfer, multiple plunging jets, multi-linear regression, earth sciences

Procedia PDF Downloads 431
4073 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management

Authors: Chokri Slim

Abstract:

The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.

Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines

Procedia PDF Downloads 122
4072 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 300
4071 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects

Authors: Sami Mestiri, Abdeljelil Farhat

Abstract:

The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.

Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC

Procedia PDF Downloads 510