Search results for: micro grids
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2026

Search results for: micro grids

1846 Modeling of an Insulin Mircopump

Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier

Abstract:

Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.

Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic

Procedia PDF Downloads 318
1845 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 297
1844 Preparation of Fe3Si/Ferrite Micro-and Nano-Powder Composite

Authors: Radovan Bures, Madgalena Streckova, Maria Faberova, Pavel Kurek

Abstract:

Composite material based on Fe3Si micro-particles and Mn-Zn nano-ferrite was prepared using powder metallurgy technology. The sol-gel followed by autocombustion process was used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano powder system was homogenized by the Resonant Acoustic Mixing using ResodynLabRAM Mixer. This non-invasive homogenization technique was used to preserve spherical morphology of Fe3Si powder particles. Uniaxial cold pressing in the closed die at pressure 600 MPa was applied to obtain a compact sample. Microwave sintering of green compact was realized at 800°C, 20 minutes, in air. Density of the powders and composite was measured by Hepycnometry. Impulse excitation method was used to measure elastic properties of sintered composite. Mechanical properties were evaluated by measurement of transverse rupture strength (TRS) and Vickers hardness (HV). Resistivity was measured by 4 point probe method. Ferrite phase distribution in volume of the composite was documented by metallographic analysis. It has been found that nano-ferrite particle distributed among micro- particles of Fe3Si powder alloy led to high relative density (~93%) and suitable mechanical properties (TRS >100 MPa, HV ~1GPa, E-modulus ~140 GPa) of the composite. High electric resistivity (R~6.7 ohm.cm) of prepared composite indicate their potential application as soft magnetic material at medium and high frequencies.

Keywords: micro- and nano-composite, soft magnetic materials, microwave sintering, mechanical and electric properties

Procedia PDF Downloads 335
1843 In vitro Effects of Salvia officinalis on Bovine Spermatozoa

Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč

Abstract:

In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.

Keywords: bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa

Procedia PDF Downloads 310
1842 Effectiveness of Micro-Credit Scheme of Community Women and Development (COWAD) in Enhancing Living Standards of Women in Oyo State, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

The study aimed at assessing the effectiveness of micro-credit scheme of (COWAD) in enhancing the living standard of women in selected local government areas of Oyo State. A survey research design was adopted for the study. A sample of 250 respondents was purposively selected for the study while a structured questionnaire tagged Effectiveness of Micro-Credit Scheme of Community Women and Development and Living Standards of Women Questionnaire (EMCSCWDQ) was designed to collect data for the study. Data collected was analyzed using frequency distribution, tables, percentages and chi-square statistics. Three hypotheses were tested for the study at 0.05 level of significance. Findings from the study indicated that loan provided by COWAD for women in selected local government areas towards improving their economic conditions has improved the living conditions of the women, promoted their general welfare, and reduced their poverty level. Findings also showed that some beneficiaries were not able to pay back, therefore reducing the effectiveness for future beneficiaries. Based on the findings, it was recommended that the providers of various micro-credit schemes of the state should design a convenient pattern of payment which will provide enough time for the beneficiaries of the loan to sell their goods or work for proper and timely payment. Also, the problem of collateral should be reviewed as the majority of women involved are poor. Other recommendations include replication of COWAD facilities in other NGOs as well as sustainability of the facility.

Keywords: micro-credit scheme, welfare, women, development, poverty

Procedia PDF Downloads 133
1841 Coarse Grid Computational Fluid Dynamics Fire Simulations

Authors: Wolfram Jahn, Jose Manuel Munita

Abstract:

While computational fluid dynamics (CFD) simulations of fire scenarios are commonly used in the design of buildings, less attention has been given to the use of CFD simulations as an operational tool for the fire services. The reason of this lack of attention lies mainly in the fact that CFD simulations typically take large periods of time to complete, and their results would thus not be available in time to be of use during an emergency. Firefighters often face uncertain conditions when entering a building to attack a fire. They would greatly benefit from a technology based on predictive fire simulations, able to assist their decision-making process. The principal constraint to faster CFD simulations is the fine grid necessary to solve accurately the physical processes that govern a fire. This paper explores the possibility of overcoming this constraint and using coarse grid CFD simulations for fire scenarios, and proposes a methodology to use the simulation results in a meaningful way that can be used by the fire fighters during an emergency. Data from real scale compartment fire tests were used to compare CFD fire models with different grid arrangements, and empirical correlations were obtained to interpolate data points into the grids. The results show that the strongly predominant effect of the heat release rate of the fire on the fluid dynamics allows for the use of coarse grids with relatively low overall impact of simulation results. Simulations with an acceptable level of accuracy could be run in real time, thus making them useful as a forecasting tool for emergency response purposes.

Keywords: CFD, fire simulations, emergency response, forecast

Procedia PDF Downloads 286
1840 Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2

Authors: Lawrence I. Onyeji, Girish M. Kale, M. Bijan Kermani

Abstract:

Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.

Keywords: carbon dioxide corrosion, corrosion behaviour, micro-alloyed steel, microstructures

Procedia PDF Downloads 322
1839 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 119
1838 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses

Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.

Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment

Procedia PDF Downloads 350
1837 Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined

Authors: Mohamed Ben Amar, Henda Barhoumi, Hokia Siala, Foued Elhalouani

Abstract:

The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation.

Keywords: squeeze casting, process parameters, heat treatment, ductility, microstructure

Procedia PDF Downloads 397
1836 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province

Authors: Chengyuan Zhu, Zhu Wang

Abstract:

With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.

Keywords: rural construction, rural human settlements, micro-activation, organic renewal

Procedia PDF Downloads 199
1835 Frame Camera and Event Camera in Stereo Pair for High-Resolution Sensing

Authors: Khen Cohen, Daniel Yankelevich, David Mendlovic, Dan Raviv

Abstract:

We present a 3D stereo system for high-resolution sensing in both the spatial and the temporal domains by combining a frame-based camera and an event-based camera. We establish a method to merge both devices into one unite system and introduce a calibration process, followed by a correspondence technique and interpolation algorithm for 3D reconstruction. We further provide quantitative analysis about our system in terms of depth resolution and additional parameter analysis. We show experimentally how our system performs temporal super-resolution up to effectively 1ms and can detect fast-moving objects and human micro-movements that can be used for micro-expression analysis. We also demonstrate how our method can extract colored events for an event-based camera without any degradation in the spatial resolution, compared to a colored filter array.

Keywords: DVS-CIS stereo vision, micro-movements, temporal super-resolution, 3D reconstruction

Procedia PDF Downloads 273
1834 Theoretical Performance of a Sustainable Clean Energy On-Site Generation Device to Convert Consumers into Producers and Its Possible Impact on Electrical National Grids

Authors: Eudes Vera

Abstract:

In this paper, a theoretical evaluation is carried out of the performance of a forthcoming fuel-less clean energy generation device, the Air Motor. The underlying physical principles that support this technology are succinctly described. Examples of the machine and theoretical values of input and output powers are also given. In addition, its main features like portability, on-site energy generation and delivery, miniaturization of generation plants, efficiency, and scaling down of the whole electric infrastructure are discussed. The main component of the Air Motor, the Thermal Air Turbine, generates useful power by converting in mechanical energy part of the thermal energy contained in a fan-produced airflow while leaving intact its kinetic energy. Due to this fact an air motor can contain a long succession of identical air turbines and the total power generated out of a single airflow can be very large, as well as its mechanical efficiency. It is found using the corresponding formulae that the mechanical efficiency of this device can be much greater than 100%, while its thermal efficiency is always less than 100%. On account of its multiple advantages, the Air Motor seems to be the perfect device to convert energy consumers into energy producers worldwide. If so, it would appear that current national electrical grids would no longer be necessary, because it does not seem practical or economical to bring the energy from far-away distances while it can be generated and consumed locally at the consumer’s premises using just the thermal energy contained in the ambient air.

Keywords: electrical grid, clean energy, renewable energy, in situ generation and delivery, generation efficiency

Procedia PDF Downloads 154
1833 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 232
1832 Detection of Micro-Unmanned Ariel Vehicles Using a Multiple-Input Multiple-Output Digital Array Radar

Authors: Tareq AlNuaim, Mubashir Alam, Abdulrazaq Aldowesh

Abstract:

The usage of micro-Unmanned Ariel Vehicles (UAVs) has witnessed an enormous increase recently. Detection of such drones became a necessity nowadays to prevent any harmful activities. Typically, such targets have low velocity and low Radar Cross Section (RCS), making them indistinguishable from clutter and phase noise. Multiple-Input Multiple-Output (MIMO) Radars have many potentials; it increases the degrees of freedom on both transmit and receive ends. Such architecture allows for flexibility in operation, through utilizing the direct access to every element in the transmit/ receive array. MIMO systems allow for several array processing techniques, permitting the system to stare at targets for longer times, which improves the Doppler resolution. In this paper, a 2×2 MIMO radar prototype is developed using Software Defined Radio (SDR) technology, and its performance is evaluated against a slow-moving low radar cross section micro-UAV used by hobbyists. Radar cross section simulations were carried out using FEKO simulator, achieving an average of -14.42 dBsm at S-band. The developed prototype was experimentally evaluated achieving more than 300 meters of detection range for a DJI Mavic pro-drone

Keywords: digital beamforming, drone detection, micro-UAV, MIMO, phased array

Procedia PDF Downloads 108
1831 Distribution of Micro Silica Powder at a Ready Mixed Concrete

Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han

Abstract:

Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.

Keywords: micro silica, distribution, ready mixed concrete, foam

Procedia PDF Downloads 182
1830 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 227
1829 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, IT/OT convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: digitalization, IT/OT convergence, semantic interoperability, VPP, energy blockchain

Procedia PDF Downloads 133
1828 Micro-Hydrokinetic for Remote Rural Electrification

Authors: S. P. Koko, K. Kusakana, H. J. Vermaak

Abstract:

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)

Procedia PDF Downloads 398
1827 Laser Micro-Welding of an Isomorphous System with Different Geometries: An Investigation on the Mechanical Properties and Microstructure of the Joint

Authors: Mahdi Amne Elahi, Marcus Koch, Peter Plapper

Abstract:

Due to the demand of miniaturizing in automotive industry, the application of laser welding is quite promising. The current study focused on laser micro-welding of CuSn6 bronze and nickel wire for a miniature electromechanical hybrid component. Due to the advantages of laser welding, the welding can be tailored specifically for the requirements of the part. Scanning electron and optical microscopy were implemented to study the microstructure and tensile-shear test was selected to represent the mechanical properties. Different welding sides, beam oscillations, and speeds have been investigated to optimize the tensile-shear load and microstructure. The results show that the mechanical properties and microstructure of the joint is highly under the influence of the mentioned parameters. Due to the lack of intermetallic compounds, the soundness of the joint is achievable by manipulating the geometry of the weld seam and minimize weld defects.

Keywords: bronze, laser micro-welding, microstructure, nickel, tensile shear test

Procedia PDF Downloads 126
1826 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 171
1825 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 347
1824 Role of Financial Institutions in Promoting Micro Service Enterprises with Special Reference to Hairdressing Salons

Authors: Gururaj Bhajantri

Abstract:

Financial sector is the backbone of any economy and it plays a crucial role in the mobilisation and allocation of resources. One of the main objectives of financial sector is inclusive growth. The constituents of the financial sector are banks, and financial Institutions, which mobilise the resources from the surplus sector and channelize the same to the different needful sectors in the economy. Micro Small and the Medium Enterprises sector in India cover a wide range of economic activities. These enterprises are divided on the basis of investment on equipment. The micro enterprises are divided into manufacturing and services sector. Micro Service enterprises have investment limit up to ten lakhs on equipment. Hairdresser is one who not only cuts and shaves but also provides different types of hair cut, hairstyles, trimming, hair-dye, massage, manicure, pedicure, nail services, colouring, facial, makeup application, waxing, tanning and other beauty treatments etc., hairdressing salons provide these services with the help of equipment. They need investment on equipment not more than ten lakhs. Hence, they can be considered as Micro service enterprises. Hairdressing salons require more than Rs 2.50,000 to start a moderate salon. Moreover, hairdressers are unable to access the organised finance. Still these individuals access finance from money lenders with high rate of interest to lead life. The socio economic conditions of hairdressers are not known properly. Hence, the present study brings a light on the role of financial institutions in promoting hairdressing salons. The study also focuses the socio-economic background of individuals in hairdressings salons, problems faced by them. The present study is based on primary and secondary data. Primary data collected among hairdressing salons in Davangere city. Samples selected with the help of simple random sampling techniques. Collected data analysed and interpreted with the help of simple statistical tools.

Keywords: micro service enterprises, financial institutions, hairdressing salons, financial sector

Procedia PDF Downloads 176
1823 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic

Procedia PDF Downloads 74
1822 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry

Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters

Abstract:

Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.

Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling

Procedia PDF Downloads 385
1821 The Research on Association between Social Media and Audit Opinion

Authors: Meiqun Yin, Jidong Zhang, Fan Liu

Abstract:

The paper investigates the impact of social media on audit opinion. The numbers of posting and reposting negative reports from SINA Micro-blog are collected to measure the influence of social media. The research collected the samples from Chinese public firms from 2012 to 2014. It is found that the numbers of posting and reposting negative reports in SINA Micro-Blog would significantly relate to the qualified opinion while controlling firm size. Another finding is that the numbers of posting and reposting negative reports would be much more significantly impact on audit opinion if the firm received a qualified opinion in the previous period. It is also found that the involvement of more independent directors has no relationship with the influence of social media on audit opinion.

Keywords: association, social media, audit opinion, SINA Micro-Blog

Procedia PDF Downloads 230
1820 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite

Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona

Abstract:

The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.

Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity

Procedia PDF Downloads 96
1819 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: sub-micro particles, nano-composites, interfacial shear strength, polyamide 6

Procedia PDF Downloads 213
1818 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: fatigue, fracture surface, laser beam micro-drilling, titanium alloy

Procedia PDF Downloads 128
1817 A Study on Soil Micro-Arthropods Assemblage in Selected Plantations in The Nilgiris, Tamilnadu

Authors: J. Dharmaraj, C. Gunasekaran

Abstract:

Invertebrates are the reliable ecological indicators of disturbance of the forest ecosystems and they respond to environment changes more quickly than other fauna. Among these the terrestrial invertebrates are vital to functioning ecosystems, contributing to processes such as decomposition, nutrient cycling and soil fertility. The natural ecosystems of the forests have been subject to various types of disturbances, which lead to decline of flora and fauna. The comparative diversity of micro-arthropods in natural forest, wattle plantation and eucalyptus plantations were studied in Nilgiris. The study area was divided in to five major sites (Emerald (Site-I), Thalaikundha (Site-II), Kodapmund (Site-III), Aravankad (Site-IV), Kattabettu (Site-V). The research was conducted during period from March 2014 to August 2014. The leaf and soil samples were collected and isolated by using Berlese funnel extraction methods. Specimens were isolated and identified according to their morphology (Balogh 1972). In the present study results clearly showed the variation in soil pH, NPK (Major Nutrients) and organic carbon among the study sites. The chemical components of the leaf litters of the plantation decreased the diversity of micro-arthropods and decomposition rate leads to low amount of carbon and other nutrients present in the soil. Moreover eucalyptus and wattle plantations decreases the availability of the ground water source to other plantations and micro-arthropods and hences affects the soil fertility. Hence, the present study suggests to minimize the growth of wattle and eucalyptus tree plantations in the natural areas which may help to reduce the decline of forests.

Keywords: micro-arthropods, assemblage, berlese funnel, morphology, NPK, nilgiris

Procedia PDF Downloads 276