Search results for: fractional Ornstein-Uhlenbeck process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14983

Search results for: fractional Ornstein-Uhlenbeck process

14923 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 419
14922 Design of Wide-Range Variable Fractional-Delay FIR Digital Filters

Authors: Jong-Jy Shyu, Soo-Chang Pei, Yun-Da Huang

Abstract:

In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods.

Keywords: digital filter, FIR filter, variable fractional-delay (VFD) filter, least-squares approximation

Procedia PDF Downloads 467
14921 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 65
14920 Approximation of the Time Series by Fractal Brownian Motion

Authors: Valeria Bondarenko

Abstract:

In this paper, we propose two problems related to fractal Brownian motion. First problem is simultaneous estimation of two parameters, Hurst exponent and the volatility, that describe this random process. Numerical tests for the simulated fBm provided an efficient method. Second problem is approximation of the increments of the observed time series by a power function by increments from the fractional Brownian motion. Approximation and estimation are shown on the example of real data, daily deposit interest rates.

Keywords: fractional Brownian motion, Gausssian processes, approximation, time series, estimation of properties of the model

Procedia PDF Downloads 344
14919 Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays

Authors: Swati Tyagi, Syed Abbas

Abstract:

Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results.

Keywords: bidirectional associative memory neural network, existence and uniqueness, fractional-order, Lyapunov function, Mittag-Leffler stability

Procedia PDF Downloads 338
14918 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 102
14917 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System

Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib

Abstract:

This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.

Keywords: DFIG, fractional regulator, multilevel inverters, PV

Procedia PDF Downloads 382
14916 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications

Authors: Anwar H. Jarndal, Ahmed S. Elwakil

Abstract:

In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.

Keywords: fractional-order modeling, GaNHEMT, si-substrate, open de-embedding structure

Procedia PDF Downloads 330
14915 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube

Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza

Abstract:

Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.

Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation

Procedia PDF Downloads 165
14914 Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing

Authors: Birs Isabela, Muresan Cristina, Folea Silviu, Prodan Ovidiu

Abstract:

The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.

Keywords: fractional order control, piezoelectric actuators, smart beam, vibration suppression

Procedia PDF Downloads 291
14913 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions

Authors: Yacine Arioua

Abstract:

In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.

Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness

Procedia PDF Downloads 237
14912 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension

Authors: Muhammad Fiaz

Abstract:

The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.

Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis

Procedia PDF Downloads 29
14911 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control

Procedia PDF Downloads 371
14910 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 461
14909 A New Fuzzy Fractional Order Model of Transmission of Covid-19 With Quarantine Class

Authors: Asma Hanif, A. I. K. Butt, Shabir Ahmad, Rahim Ud Din, Mustafa Inc

Abstract:

This paper is devoted to a study of the fuzzy fractional mathematical model reviewing the transmission dynamics of the infectious disease Covid-19. The proposed dynamical model consists of susceptible, exposed, symptomatic, asymptomatic, quarantine, hospitalized and recovered compartments. In this study, we deal with the fuzzy fractional model defined in Caputo’s sense. We show the positivity of state variables that all the state variables that represent different compartments of the model are positive. Using Gronwall inequality, we show that the solution of the model is bounded. Using the notion of the next-generation matrix, we find the basic reproduction number of the model. We demonstrate the local and global stability of the equilibrium point by using the concept of Castillo-Chavez and Lyapunov theory with the Lasalle invariant principle, respectively. We present the results that reveal the existence and uniqueness of the solution of the considered model through the fixed point theorem of Schauder and Banach. Using the fuzzy hybrid Laplace method, we acquire the approximate solution of the proposed model. The results are graphically presented via MATLAB-17.

Keywords: Caputo fractional derivative, existence and uniqueness, gronwall inequality, Lyapunov theory

Procedia PDF Downloads 77
14908 A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem

Authors: Sujeet Kumar Singh, Shiv Prasad Yadav

Abstract:

This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example.

Keywords: triangular intuitionistic fuzzy number, linear programming problem, multi objective linear programming problem, fuzzy mathematical programming, membership function

Procedia PDF Downloads 534
14907 A Mathematical Model Approach Regarding the Children’s Height Development with Fractional Calculus

Authors: Nisa Özge Önal, Kamil Karaçuha, Göksu Hazar Erdinç, Banu Bahar Karaçuha, Ertuğrul Karaçuha

Abstract:

The study aims to use a mathematical approach with the fractional calculus which is developed to have the ability to continuously analyze the factors related to the children’s height development. Until now, tracking the development of the child is getting more important and meaningful. Knowing and determining the factors related to the physical development of the child any desired time would provide better, reliable and accurate results for childcare. In this frame, 7 groups for height percentile curve (3th, 10th, 25th, 50th, 75th, 90th, and 97th) of Turkey are used. By using discrete height data of 0-18 years old children and the least squares method, a continuous curve is developed valid for any time interval. By doing so, in any desired instant, it is possible to find the percentage and location of the child in Percentage Chart. Here, with the help of the fractional calculus theory, a mathematical model is developed. The outcomes of the proposed approach are quite promising compared to the linear and the polynomial method. The approach also yields to predict the expected values of children in the sense of height.

Keywords: children growth percentile, children physical development, fractional calculus, linear and polynomial model

Procedia PDF Downloads 122
14906 Effect of Impurities in the Chlorination Process of TiO2

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With the increasing interest on Ti alloys, the extraction process of Ti from its typical ore, TiO2, has long been and will be important issue. As an intermediate product for the production of pigment or titanium metal sponge, tetrachloride (TiCl4) is produced by fluidized bed using high TiO2 feedstock. The purity of TiCl4 after chlorination is subjected to the quality of the titanium feedstock. Since the impurities in the TiCl4 product are reported to final products, the purification process of the crude TiCl4 is required. The purification process includes fractional distillation and chemical treatment, which depends on the nature of the impurities present and the required quality of the final product. In this study, thermodynamic analysis on the impurity effect in the chlorination process, which is the first step of extraction of Ti from TiO2, has been conducted. All thermodynamic calculations were performed using the FactSage thermodynamical software.

Keywords: rutile, titanium, chlorination process, impurities, thermodynamic calculation, FactSage

Procedia PDF Downloads 281
14905 Stability Analysis of Tumor-Immune Fractional Order Model

Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu

Abstract:

A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.

Keywords: cancer model, fractional calculus, numerical simulations, stability analysis

Procedia PDF Downloads 288
14904 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 333
14903 Globally Attractive Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez Camus, Carlos Lizama

Abstract:

In this work is proved the existence of at least one globally attractive mild solution to the Cauchy problem, for fractional evolution equation of neutral type, involving the fractional derivate in Caputo sense. An almost sectorial operator on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Hausdorff measure of noncompactness and fixed point theorems, specifically Darbo-type. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the analytic integral resolvent operator, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, each mild solution is globally attractive, a property that is desired in asymptotic behavior for that solution.

Keywords: attractive mild solutions, integral Volterra equations, neutral type equations, non-local in time equations

Procedia PDF Downloads 129
14902 Optimization of Coefficients of Fractional Order Proportional-Integrator-Derivative Controller on Permanent Magnet Synchronous Motors Using Particle Swarm Optimization

Authors: Ali Motalebi Saraji, Reza Zarei Lamuki

Abstract:

Speed control and behavior improvement of permanent magnet synchronous motors (PMSM) that have reliable performance, low loss, and high power density, especially in industrial drives, are of great importance for researchers. Because of its importance in this paper, coefficients optimization of proportional-integrator-derivative fractional order controller is presented using Particle Swarm Optimization (PSO) algorithm in order to improve the behavior of PMSM in its speed control loop. This improvement is simulated in MATLAB software for the proposed optimized proportional-integrator-derivative fractional order controller with a Genetic algorithm and compared with a full order controller with a classic optimization method. Simulation results show the performance improvement of the proposed controller with respect to two other controllers in terms of rising time, overshoot, and settling time.

Keywords: speed control loop of permanent magnet synchronous motor, fractional and full order proportional-integrator-derivative controller, coefficients optimization, particle swarm optimization, improvement of behavior

Procedia PDF Downloads 111
14901 A New Approach for Solving Fractional Coupled Pdes

Authors: Prashant Pandey

Abstract:

In the present article, an effective Laguerre collocation method is used to obtain the approximate solution of a system of coupled fractional-order non-linear reaction-advection-diffusion equation with prescribed initial and boundary conditions. In the proposed scheme, Laguerre polynomials are used together with an operational matrix and collocation method to obtain approximate solutions of the coupled system, so that our proposed model is converted into a system of algebraic equations which can be solved employing the Newton method. The solution profiles of the coupled system are presented graphically for different particular cases. The salient feature of the present article is finding the stability analysis of the proposed method and also the demonstration of the lower variation of solute concentrations with respect to the column length in the fractional-order system compared to the integer-order system. To show the higher efficiency, reliability, and accuracy of the proposed scheme, a comparison between the numerical results of Burger’s coupled system and its existing analytical result is reported. There are high compatibility and consistency between the approximate solution and its exact solution to a higher order of accuracy. The exhibition of error analysis for each case through tables and graphs confirms the super-linearly convergence rate of the proposed method.

Keywords: fractional coupled PDE, stability and convergence analysis, diffusion equation, Laguerre polynomials, spectral method

Procedia PDF Downloads 114
14900 Fractional Integration in the West African Economic and Monetary Union

Authors: Hector Carcel Luis Alberiko Gil-Alana

Abstract:

This paper examines the time series behavior of three variables (GDP, Price level of Consumption and Population) in the eight countries that belong to the West African Economic and Monetary Union (WAEMU), which are Benin, Burkina Faso, Côte d’Ivoire, Guinea-Bissau, Mali, Niger, Senegal and Togo. The reason for carrying out this study lies in the considerable heterogeneity that can be perceived in the data from these countries. We conduct a long memory and fractional integration modeling framework and we also identify potential breaks in the data. The aim of the study is to perceive up to which degree the eight West African countries that belong to the same monetary union follow the same economic patterns of stability. Testing for mean reversion, we only found strong evidence of it in the case of Senegal for the Price level of Consumption, and in the cases of Benin, Burkina Faso and Senegal for GDP.

Keywords: West Africa, Monetary Union, fractional integration, economic patterns

Procedia PDF Downloads 397
14899 Targeting Mineral Resources of the Upper Benue trough, Northeastern Nigeria Using Linear Spectral Unmixing

Authors: Bello Yusuf Idi

Abstract:

The Gongola arm of the Upper Banue Trough, Northeastern Nigeria is predominantly covered by the outcrops of Limestone-bearing rocks in form of Sandstone with intercalation of carbonate clay, shale, basaltic, felsphatic and migmatide rocks at subpixel dimension. In this work, subpixel classification algorithm was used to classify the data acquired from landsat 7 Enhance Thematic Mapper (ETM+) satellite system with the aim of producing fractional distribution image for three most economically important solid minerals of the area: Limestone, Basalt and Migmatide. Linear Spectral Unmixing (LSU) algorithm was used to produce fractional distribution image of abundance of the three mineral resources within a 100Km2 portion of the area. The results show that the minerals occur at different proportion all over the area. The fractional map could therefore serve as a guide to the ongoing reconnaissance for the economic potentiality of the formation.

Keywords: linear spectral un-mixing, upper benue trough, gongola arm, geological engineering

Procedia PDF Downloads 346
14898 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 405
14897 Digital Watermarking Using Fractional Transform and (k,n) Halftone Visual Cryptography (HVC)

Authors: R. Rama Kishore, Sunesh Malik

Abstract:

Development in the usage of internet for different purposes in recent times creates great threat for the copy right protection of the digital images. Digital watermarking is the best way to rescue from the said problem. This paper presents detailed review of the different watermarking techniques, latest trends in the field and categorized like spatial and transform domain, blind and non-blind methods, visible and non visible techniques etc. It also discusses the different optimization techniques used in the field of watermarking in order to improve the robustness and imperceptibility of the method. Different measures are discussed to evaluate the performance of the watermarking algorithm. At the end, this paper proposes a watermarking algorithm using (k.n) shares of halftone visual cryptography (HVC) instead of (2, 2) share cryptography. (k,n) shares visual cryptography improves the security of the watermark. As halftone is a method of reprographic, it helps in improving the visual quality of watermark image. The proposed method uses fractional transformation to improve the robustness of the copyright protection of the method.

Keywords: digital watermarking, fractional transform, halftone, visual cryptography

Procedia PDF Downloads 321
14896 The Modelling of Real Time Series Data

Authors: Valeria Bondarenko

Abstract:

We proposed algorithms for: estimation of parameters fBm (volatility and Hurst exponent) and for the approximation of random time series by functional of fBm. We proved the consistency of the estimators, which constitute the above algorithms, and proved the optimal forecast of approximated time series. The adequacy of estimation algorithms, approximation, and forecasting is proved by numerical experiment. During the process of creating software, the system has been created, which is displayed by the hierarchical structure. The comparative analysis of proposed algorithms with the other methods gives evidence of the advantage of approximation method. The results can be used to develop methods for the analysis and modeling of time series describing the economic, physical, biological and other processes.

Keywords: mathematical model, random process, Wiener process, fractional Brownian motion

Procedia PDF Downloads 323
14895 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 228
14894 An Efficient Design of Static Synchronous Series Compensator Based Fractional Order PID Controller Using Invasive Weed Optimization Algorithm

Authors: Abdelghani Choucha, Lakhdar Chaib, Salem Arif

Abstract:

This paper treated the problem of power system stability with the aid of Static Synchronous Series Compensator (SSSC) installed in the transmission line of single machine infinite bus (SMIB) power system. A fractional order PID (FOPID) controller has been applied as a robust controller for optimal SSSC design to control the power system characteristics. Additionally, the SSSC based FOPID parameters are smoothly tuned using Invasive Weed Optimization algorithm (IWO). To verify the strength of the proposed controller, SSSC based FOPID controller is validated in a wide range of operating condition and compared with the conventional scheme SSSC-POD controller. The main purpose of the proposed process is greatly enhanced the dynamic states of the tested system. Simulation results clearly prove the superiority and performance of the proposed controller design.

Keywords: SSSC-FOPID, SSSC-POD, SMIB power system, invasive weed optimization algorithm

Procedia PDF Downloads 165