Search results for: blast wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1424

Search results for: blast wall

1394 Numerical Investigation of the Effect of Blast Pressure on Discrete Model in Shock Tube

Authors: Aldin Justin Sundararaj, Austin Lord Tennyson, Divya Jose, A. N. Subash

Abstract:

Blast waves are generated due to the explosions of high energy materials. An explosion yielding a blast wave has the potential to cause severe damage to buildings and its personnel. In order to understand the physics of effects of blast pressure on buildings, studies in the shock tube on generic configurations are carried out at various pressures on discrete models. The strength of shock wave is systematically varied by using different driver gases and diaphragm thickness. The basic material of the diaphragm is Aluminum. To simulate the effect of shock waves on discrete models a shock tube was used. Generic models selected for this study are suitably scaled cylinder, cone and cubical blocks. The experiments were carried out with 2mm diaphragm with burst pressure ranging from 28 to 31 bar. Numerical analysis was carried out over these discrete models. A 3D model of shock-tube with different discrete models inside the tube was used for CFD computation. It was found that cone has dissipated most of the shock pressure compared to cylinder and cubical block. The robustness and the accuracy of the numerical model were validation with the analytical and experimental data.

Keywords: shock wave, blast wave, discrete models, shock tube

Procedia PDF Downloads 289
1393 An Analytical Wall Function for 2-D Shock Wave/Turbulent Boundary Layer Interactions

Authors: X. Wang, T. J. Craft, H. Iacovides

Abstract:

When handling the near-wall regions of turbulent flows, it is necessary to account for the viscous effects which are important over the thin near-wall layers. Low-Reynolds- number turbulence models do this by including explicit viscous and also damping terms which become active in the near-wall regions, and using very fine near-wall grids to properly resolve the steep gradients present. In order to overcome the cost associated with the low-Re turbulence models, a more advanced wall function approach has been implemented within OpenFoam and tested together with a standard log-law based wall function in the prediction of flows which involve 2-D shock wave/turbulent boundary layer interactions (SWTBLIs). On the whole, from the calculation of the impinging shock interaction, the three turbulence modelling strategies, the Lauder-Sharma k-ε model with Yap correction (LS), the high-Re k-ε model with standard wall function (SWF) and analytical wall function (AWF), display good predictions of wall-pressure. However, the SWF approach tends to underestimate the tendency of the flow to separate as a result of the SWTBLI. The analytical wall function, on the other hand, is able to reproduce the shock-induced flow separation and returns predictions similar to those of the low-Re model, using a much coarser mesh.

Keywords: SWTBLIs, skin-friction, turbulence modeling, wall function

Procedia PDF Downloads 319
1392 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics

Procedia PDF Downloads 432
1391 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali

Abstract:

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Keywords: excavations, support systems, wall stiffness, cantilever walls

Procedia PDF Downloads 176
1390 Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus

Authors: Soad Abokhamis Mousavi

Abstract:

The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings.

Keywords: trombe wall, societal acceptance, building, energy efficacy

Procedia PDF Downloads 52
1389 Comparative Study of Various Wall Finishes in Buildings in Ondo State, Nigeria

Authors: Ayodele Oluwole Alejo

Abstract:

Wall finishes are the term to describe an application over a wall surface to provide a suitable surface. Wall finishes are smelt, touched and seen by building occupiers even colour and design affects the user psychology and the atmosphere of our building. Building users/owners seem not to recognize the function of various wall finishes in building and factors to be considered in selecting them suitable for the type and purpose of proposed buildings. Therefore, defects such as deterioration, dampness, and stain may occur when comparisons of wall finishes are not made before the selection of appropriate materials at the design stage with knowledge of the various factors that may hinder the performance or maintenance culture of proposed building of a particular location. This research work investigates and compares various wall finishes in building. Buildings in Ondo state, Nigeria were used as the target area to conduct the research works. The factors bearing on various wall finishes were analyzed to find out their individual and collective impact using suitable analytical tools. The findings revealed that paint with high percentage score was the most preferred wall finishes, whereas wall paper was ranked the least by the respondent findings, Factors considered most in the selection of wall finishes was durability with the highest ranking percentage and least was the cost. The study recommends that skilled worker should carry out operations, quality product should be used and all of wall finishes and materials should be considered before selection.

Keywords: building, construction, design, finishes, wall

Procedia PDF Downloads 109
1388 Evaluation of the Integration of a Direct Reduction Process into an Existing Steel Mill

Authors: Nils Mueller, Gregor Herz, Erik Reichelt, Matthias Jahn

Abstract:

In the context of climate change, the reduction of greenhouse gas emissions in all economic sectors is considered to be an important factor in order to meet the demands of a sustainable energy system. The steel industry as one of the large industrial CO₂ emitters is currently highly dependent on fossil resources. In order to reduce coke consumption and thereby CO₂ emissions while still being able to further utilize existing blast furnaces, the possibility of including a direct reduction process (DRP) into a fully integrated steel mill was investigated. Therefore, a blast furnace model, derived from literature data and implemented in Aspen Plus, was used to analyze the impact of DRI in the blast furnace process. Furthermore, a state-of-the-art DRP was modeled to investigate the possibility of substituting the reducing agent natural gas with hydrogen. A sensitivity analysis was carried out in order to find the boundary percentage of hydrogen as a reducing agent without penalty to the DRI quality. Lastly, the two modeled process steps were combined to form a route of producing pig iron. By varying boundary conditions of the DRP while recording the CO₂ emissions of the two process steps, the overall potential for the reduction of CO₂ emissions was estimated. Within the simulated range, a maximum reduction of CO₂ emissions of 23.5% relative to typical emissions of a blast furnace could be determined.

Keywords: blast furnace, CO₂ mitigation, DRI, hydrogen

Procedia PDF Downloads 255
1387 Investigation of Steel Infill Panels under Blast Impulsive Loading

Authors: Seyed M. Zahrai, Saeid Lotfi

Abstract:

If an infill panel does not have enough ductility against the loading, it breaks and gets damaged before depreciation and load transfer. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Concerning enough ductility of out-of-plane behavior the infill panel, the impact force enters the horizontal diaphragm and is distributed among the lateral elements which can be made from steel infill panels. This article investigates the behavior of steel infill panels with different thickness and stiffeners using finite element analysis with geometric and material nonlinearities for optimization of the steel plate thickness and stiffeners arrangement to obtain more efficient design for its out-of-plane behavior.

Keywords: blast loading, ductility, maximum displacement, steel infill panel

Procedia PDF Downloads 243
1386 Properties of Ground Granulated Blast Furnace Slag Based Geopolymer Concrete

Authors: Niragi Dave, Ruchika Lalit

Abstract:

Concrete is one of the most widely used materials across the globe mostly second to water and generating high carbon dioxide emission during its whole manufacturing due to the presence of cement as an ingredient. Therefore it is necessary to find an alternative material to the Portland cement. This study focused on the use of Ground Granulated Blast Furnace Slag as geopolymer binder. Geopolymer concrete can be an alternative material which is produced by the chemical reaction of inorganic molecules. On the other hand, waste generating from power plants and other industries like iron and steel industries can be effectively used which has disposal problems. Therefore in this study geopolymer concrete is manufactured by 100% replacement of cement content by ground granulated blast furnace slag and a combination of sodium silicate and sodium hydroxide is used as an alkaline solution. The results have shown that the compressive strengths increased with increasing curing time and type of alkali activators. Naphthalene sulfonate-based superplasticizer performed better than other superplasticizers. All the specimens have been cast at ambient temperature.

Keywords: alkali activators, concrete, geopolymer, ground granulated blast furnace slag

Procedia PDF Downloads 292
1385 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity

Authors: Eun Kyung Kim, Kyehan Rhee

Abstract:

Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.

Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity

Procedia PDF Downloads 181
1384 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: iron ore concentrate, flowability, moisture content, wall friction angle

Procedia PDF Downloads 292
1383 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar

Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo

Abstract:

Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.

Keywords: alkali-activated material, blast furnace slag, fly ash, flowability, strength development

Procedia PDF Downloads 217
1382 Design of Rigid L-Shaped Retaining Walls

Authors: Ahmed Rouili

Abstract:

Cantilever L-shaped walls are known to be relatively economical as retaining solution. The design starts by proportioning the wall dimensions for which the stability is checked for. A ratio between the lengths of the base and the stem, falling between 0,5 to 0,7, ensure the stability requirements in most cases. However, the displacement pattern of the wall in terms of rotations and translations, and the lateral pressure profile, do not have the same figure for all wall’s proportioning, as it is usually assumed. In the present work, the results of a numerical analysis are presented, different wall geometries were considered. The results show that the proportioning governs the equilibrium between the instantaneous rotation and the translation of the wall-toe, also, the lateral pressure estimation based on the average value between the at-rest and the active pressure, recommended by most design standards, is found to be not applicable for all walls.

Keywords: cantilever wall, proportioning, numerical analysis, lateral pressure estimation

Procedia PDF Downloads 296
1381 The Reduction of Post-Blast Fumes to Improve Productivity and Safety: A Review Paper

Authors: Nhleko Monique Chiloane

Abstract:

The gold mining industry has predominantly used ammonium nitrate fuel oil (ANFO) explosives for decades, although these are known to be “gassier” and their detonation results in toxic fumes, for example, carbon monoxide (CO), nitrogen oxides (NOx) and ammonia. Re-entry into underground workings too soon after blasting can lead to fatal exposure to toxic fumes. It is, therefore, required that the polluted air be removed from the affected areas within a reasonable period before employees' re-entry into the working area. Post-blast re-entry times have therefore been described as a productivity bottleneck. The known causes of post-blast fumes are water ingress, incorrect fuel to oxygen ratio, confinement, explosive additives etc. To prevent or minimize post-blast fumes, some researchers have used neutralization, re-burning technique and non-explosive products or different oxidizing agents. The use of commercial explosives without nitrate oxidizing agents can also minimize the production of blasting fumes and thereby reduce the time needed for the clearance of these fumes to allow workers to re-enter the underground workings safely. The reduction in non-production time directly contributes to an increase in the available time per shift for productive work, thus leading to continuous mining. However, owing to its low cost and ease of use, ANFO is still widely used in South African underground blasting operations.

Keywords: post-blast fumes, continuous mining, ammonium nitrate explosive, non-explosive blasting, re-entry period

Procedia PDF Downloads 151
1380 Strength of the Basement Wall Combined with a Temporary Retaining Wall for Excavation

Authors: Soo-yeon Seo, Su-jin Jung

Abstract:

In recent years, the need for remodeling of many apartments built 30 years ago is increasing. Therefore, researches on the structural reinforcement technology of existing apartments have been conducted. On the other hand, there is a growing need for research on the existing underground space expansion technology to expand the parking space required for remodeling. When expanding an existing underground space, for earthworks, an earth retaining wall must be installed between the existing apartment building and it. In order to maximize the possible underground space, it is necessary to minimize the thickness of the portion of earth retaining wall and underground basement wall. In this manner, the calculation procedure is studied for the evaluation of shear strength of the composite basement wall corresponding to shear span-to-depth ratio in this study. As a result, it was shown that the proposed calculation procedure can be used to evaluate the shear strength of the composite basement wall as safe. On the other hand, when shear span-to-depth ratio is small, shear strength is very underestimated.

Keywords: underground space expansion, combined structure, temporary retaining wall, basement wall, shear connectors

Procedia PDF Downloads 117
1379 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 407
1378 Response of Full-Scale Room Building Against Blast Loading

Authors: Eid Badshah, Amjad Naseer, Muhammad Ashraf

Abstract:

In this paper full-scale brick masonry room along with the veranda of a typical school building was subjected to eight successive blast tests with increasing charge weights ranging from 0.5kg to 16.02kg at 3.66m fixed stand-off distance. Pressure-time histories were obtained by data acquisition system from pressure sensors, installed on different points of room as well as veranda columns. The resulting damage pattern of different locations was observed during each test. Weak zones of masonry room were identified. Scaled distances for different damage levels in masonry room were experimentally obtained. The results provided a basis for determining the response of masonry room building against blast loading in a specific threat scenario.

Keywords: peak pressure, composition-B, TNT, pressure sensor, scaled distance, masonry

Procedia PDF Downloads 98
1377 Explosion Mechanics of Aluminum Plates Subjected to the Combined Effect of Blast Wave and Fragment Impact Loading: A Multicase Computational Modeling Study

Authors: Atoui Oussama, Maazoun Azer, Belkassem Bachir, Pyl Lincy, Lecompte David

Abstract:

For many decades, researchers have been focused on understanding the dynamic behavior of different structures and materials subjected to fragment impact or blast loads separately. The explosion mechanics, as well as the impact physics studies dealing with the numerical modeling of the response of protective structures under the synergistic effect of a blast wave and the impact of fragments, are quite limited in the literature. This article numerically evaluates the nonlinear dynamic behavior and damage mechanisms of Aluminum plates EN AW-1050A- H24 under different combined loading scenarios varied by the sequence of the applied loads using the commercial software LS-DYNA. For one hand, with respect to the terminal ballistic field investigations, a Lagrangian (LAG) formulation is used to evaluate the different failure modes of the target material in case of a fragment impact. On the other hand, with respect to the blast field analysis, an Arbitrary Lagrangian-Eulerian (ALE) formulation is considered to study the fluid-structure interaction (FSI) of the shock wave and the plate in case of a blast loading. Four different loading scenarios are considered: (1) only blast loading, (2) only fragment impact, (3) blast loading followed by a fragment impact and (4) a fragment impact followed by blast loading. From the numerical results, it was observed that when the impact load is applied to the plate prior to the blast load, it suffers more severe damage due to the hole enlargement phenomenon and the effects of crack propagation on the circumference of the damaged zone. Moreover, it was found that the hole from the fragment impact loading was enlarged to about three times in diameter as compared to the diameter of the projectile. The validation of the proposed computational model is based in part on previous experimental data obtained by the authors and in the other part on experimental data obtained from the literature. A good correspondence between the numerical and experimental results is found.

Keywords: computational analysis, combined loading, explosion mechanics, hole enlargement phenomenon, impact physics, synergistic effect, terminal ballistic

Procedia PDF Downloads 151
1376 TopClosure® of Large Abdominal Wall Defect Instead of Staged Hernia Repair as Part of Damage Control Laparotomy

Authors: Andriy Fedorenko

Abstract:

Background Early closure of the open abdomen is a priority after damage control laparotomy to prevent retraction of fascial layers and prevent hernia formation that requires definitive repair at a later stage. This substantially reduces the complications associated with ventral hernia formation for up to a year after initial surgery. TopClosure® is an innovative method that employs stress-relaxation and mechanical creep for skin stretching. Its use enables the primary closure of large abdominal wall defects and mitigates large ventral hernia formation. Materials and Methods A 7-year-old girl presented with severe blast injury. She underwent initial laparotomy in a facility within the conflict zone and was transferred in a state of septic shock to our facility for further care. Her abdominal injuries included liver lacerations, multiple perforations of the transverse colon and ileum, and a 8x16cm oblique abdominal wall defect. Further damage control laparotomy was performed with primary suture of the colon and ileum and temporary closure of the abdomen using a Bagota bag. Twelve hours later, negative pressure wound therapy (NPWT) was applied to the abdominal wound after relook laparotomy. Five days later, TopClosure® was applied to the lower part of the wound incorporating NPWT to the upper wound. Results The patient suffered leak from the colonic suture line and required relaparotomy. TopClosure® abdominal closure was achieved after every laparotomy. Conclusion TopClosure® utilizes the viscoelastic properties of the skin achieving full closure of the abdominal wall (including the fascia and skin),eliminating the need for prolonged NPWT, skin graft, and delayed ventral hernia repair surgery.

Keywords: topclosure, abdominal wall defect, hernia, damage control

Procedia PDF Downloads 50
1375 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: bubbly flows, log law, boundary layer, CFD

Procedia PDF Downloads 252
1374 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 220
1373 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits

Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi

Abstract:

Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.

Keywords: blast resistant, diversity analysis, heritability, upland rice

Procedia PDF Downloads 347
1372 Application of Flexi-Wall in Noise Barriers Renewal

Authors: B. Daee, H. M. El Naggar

Abstract:

This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.

Keywords: noise barrier, polyurethane foam, accelerated construction, full-scale experiment

Procedia PDF Downloads 260
1371 Efficient Iterative V-BLAST Detection Technique in Wireless Communication System

Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song

Abstract:

Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMOOFDM system is important issue. In this paper, efficient iterative VBLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6 % less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.

Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRDM, DFE, iterative scheme, channel condition

Procedia PDF Downloads 504
1370 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava

Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík

Abstract:

The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.

Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction

Procedia PDF Downloads 648
1369 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 372
1368 Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus)

Authors: L. Vafaei, McDominic Eze

Abstract:

The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum.

Keywords: heat insulation, hollow bricks, south facing, Ytong bricks wall

Procedia PDF Downloads 238
1367 Understanding Seismic Behavior of Masonry Buildings in Earthquake

Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi

Abstract:

Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.

Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column

Procedia PDF Downloads 224
1366 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving k-means clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: acute leukaemia images, clustering algorithms, image segmentation, moving k-means

Procedia PDF Downloads 258
1365 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation

Authors: Ahmed S. Abdulrasool

Abstract:

Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.

Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall

Procedia PDF Downloads 362