Search results for: Pranav Ragji
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Search results for: Pranav Ragji

12 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation, or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 0
11 Laser Additive Manufacturing: A Literature Review

Authors: Pranav Mohan Parki, C. Mallika Parveen, Tahseen Ahmad Khan, Mihika Shivkumar

Abstract:

Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method.

Keywords: additive manufacturing (AM), 3D printing, prototype, laser sintering

Procedia PDF Downloads 378
10 Capital Punishment: A Paradoxical Wrinkle to the Principles of Ethics and Morality

Authors: Pranav Vaidya

Abstract:

The recent upheaval of a ballot initiative taken place in California & Los Angeles‘s newspapers shows how the concept of giving Death Penalty obliterates the very soul basis of community and society which rests upon the tripod of values, ethics, and morality. This paper goes on with examining how, by giving death penalties we are, on one hand trying to wipe out those heinous offenders committing such unspeakable crimes against the public; while on the other hand it comes with a devastating effect of corroding and eluding the existence of ethics and morality which is in the very nature of “protecting the life of humankind”. As it can be stated that, by giving capital punishment, we are trying to legitimize an irreversible act of violence by the authority of state and target innocent victims because as long as the human justice is fallible, the risk of executing an innocent can never be eliminated. However, scholars in the legalization of Capital Punishment have argued that the courts should impose punishment befitting the crime so that they could reflect public abhorrence of the crime, create deterrent or rehabilitating effects & deliver the truest form of justice.

Keywords: ethics, heinous offenders, morality, unspeakable crimes

Procedia PDF Downloads 284
9 Formulation Development and Evaluation of Floating Tablets of Venlafaxine Hydrochloride

Authors: Gajera Lalit, Shah Pranav, Shah Shailesh

Abstract:

Venlafaxine hydrochloride has a short elimination half-life of 5 ± 2 hr, and absorption window in the upper part of gastrointestinal tract. The conventional tablets need to be administered two to three times a day and possess an oral bioavailability of 45%. The purpose of this study was to formulate gastroretentive effervescent floating tablets of Venlafaxine HCl. Different grades of HPMC namely K15M, K4M, K100M and E15LV were employed as swelling polymers whereas sodium bicarbonate was employed as gas generating agent. The direct compression method was employed for the formulation of tablets. The tablets were evaluated in terms of hardness, friability, weight variation, drug content, water uptake, in-vitro floating behavior and in-vitro drug release study. All the formulations exhibited very short floating lag time of < 1 min and total floating time of 12 hr. Formulation L3 containing 25 mg and 75 mg of HPMC E15 LV and HPMC K15M respectively exhibited complete drug release within 12 hrs.

Keywords: venlafaxine HCl, hydroxyl propyl methylcellulose, floating gastro retentive tablets, in-vitro drug release, non-fickian diffusion

Procedia PDF Downloads 541
8 Buck Boost Inverter to Improve the Efficiency and Performance of E-Motor by Reducing the Influence of Voltage Sag of Battery on the Performance of E-Motor

Authors: Shefeen Maliyakkal, Pranav Satheesh, Steve Simon, Sharath Kuruppath

Abstract:

This paper researches the impact of battery voltage sag on the performance and efficiency of E-motor in electric cars. Terminal voltage of battery reduces with the S.o.C. This results in the downward shift of torque-speed curve of E-motor and increased copper losses in E-motor. By introducing a buck-boost inverter between the battery and E-motor, an additional degree of freedom was achieved. By boosting the AC voltage, the dependency of voltage sag on the performance of E-motor was eliminated. A strategy was also proposed for the operation of the buck-boost inverter to minimize copper and iron losses in E-motor to maximize efficiency. MATLAB-SIMULINK model of E-drive was used to obtain simulation results. The temperature rise in the E-motor was reduced by 14% for a 10% increase in AC voltage. From the results, it was observed that a 20% increase in AC voltage can result in improvement of running torque and maximum torque of E-motor by 44%. Hence it was concluded that using a buck-boost inverter for E-drive significantly improves both performance and efficiency of E-motor.

Keywords: buck-boost, E-motor, battery, voltage sag

Procedia PDF Downloads 398
7 Pesticides Regulations: An Urgent Need for Legal Reform in India

Authors: D. Pranav

Abstract:

Pesticides are a class of Biocide, whose use in agriculture has led to a momentous increase in the yield of crops, fruits and vegetables all over the word and its effective use has also been the pillars of success for the Green Revolution. However, the incessant use of pesticides has now reached alarming levels. In 2007 alone, the world used an estimated 2.4 million tons of pesticides. Despite its tremendous benefits for agriculture, pesticide has been one of the major reasons for degradation of the natural environment and undesirable effects on human beings. It has not only caused damage to human health, but has also threatened the survival of few birds and animal species. In India, the sale and usage of banned pesticide, increased usage of pesticides and its inadequate labeling has caused Bio magnification, which is causing deleterious effects on child development, resulting in stunted mental and physical growth. This paper aims to bring to shed light on major loopholes in the current pesticide regulations such as the Insecticide Act of 1968. It further discusses loopholes in the yet to be tabled Pesticides Management Bill of 2008. It discusses and arrives at potential amendments to the laws and regulations concerning pesticides; that cannot only be applied to the Indian subcontinent but other developing countries as well.

Keywords: pesticides, India, human health, environment, regulations, reform

Procedia PDF Downloads 317
6 Analysis of the 2023 Karnataka State Elections Using Online Sentiment

Authors: Pranav Gunhal

Abstract:

This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.

Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections

Procedia PDF Downloads 82
5 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 96
4 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 274
3 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 115
2 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 120
1 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study

Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle

Abstract:

The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.

Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area

Procedia PDF Downloads 116