Search results for: time domain reflectometry (TDR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19369

Search results for: time domain reflectometry (TDR)

16489 Weighted Data Replication Strategy for Data Grid Considering Economic Approach

Authors: N. Mansouri, A. Asadi

Abstract:

Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.

Keywords: data grid, data replication, simulation, replica selection, replica placement

Procedia PDF Downloads 260
16488 The Efficacy of Box Lesion+ Procedure in Patients with Atrial Fibrillation: Two-Year Follow-up Results

Authors: Oleg Sapelnikov, Ruslan Latypov, Darina Ardus, Samvel Aivazian, Andrey Shiryaev, Renat Akchurin

Abstract:

OBJECTIVE: MAZE procedure is one of the most effective surgical methods in atrial fibrillation (AF) treatment. Nowadays we are all aware of its modifications. In our study we conducted clinical analysis of “Box lesion+” approach during MAZE procedure in two-year follow-up. METHODS: We studied the results of the open-heart on-pump procedures performed in our hospital from 2017 to 2018 years. Thirty-two (32) patients with atrial fibrillation (AF) were included in this study. Fifteen (15) patients had concomitant coronary bypass grafting and seventeen (17) patients had mitral valve repair. Mean age was 62.3±8.7 years; prevalence of men was admitted (56.1%). Mean duration of AF was 4.75±5.44 and 7.07±8.14 years. In all cases, we performed endocardial Cryo-MAZE procedure with one-time myocardium revascularization or mitral-valve surgery. All patients of this study underwent pulmonary vein (PV) isolation and ablation of mitral isthmus with additional isolation of LA posterior wall (Box-lesion+ procedure). Mean follow-up was 2 years. RESULTS: All cases were performed without any complications. Additional isolation of posterior wall did not prolong the operative time and artificial circulation significantly. Cryo-MAZE procedure directly lasted 20±2.1 min, the whole operation time was 192±24 min and artificial circulation time was 103±12 min. According to design of the study, we performed clinical investigation of the patients in 12 months and in 2 years from the initial procedure. In 12 months, the number of AF free patients 81.8% and 75.8% in two years of follow-up. CONCLUSIONS: Isolation of the left atrial posterior wall and perimitral area may considerably improve the efficacy of surgical treatment, which was demonstrated in significant decrease of AF recurrences during the whole period of follow-up.

Keywords: atrial fibrillation, cryoablation, left atrium isolation, open heart procedure

Procedia PDF Downloads 127
16487 Impact of the Time Interval in the Numerical Solution of Incompressible Flows

Authors: M. Salmanzadeh

Abstract:

In paper, we will deal with incompressible Couette flow, which represents an exact analytical solution of the Navier-Stokes equations. Couette flow is perhaps the simplest of all viscous flows, while at the same time retaining much of the same physical characteristics of a more complicated boundary-layer flow. The numerical technique that we will employ for the solution of the Couette flow is the Crank-Nicolson implicit method. Parabolic partial differential equations lend themselves to a marching solution; in addition, the use of an implicit technique allows a much larger marching step size than would be the case for an explicit solution. Hence, in the present paper we will have the opportunity to explore some aspects of CFD different from those discussed in the other papers.

Keywords: incompressible couette flow, numerical method, partial differential equation, Crank-Nicolson implicit

Procedia PDF Downloads 536
16486 The Explanation for Dark Matter and Dark Energy

Authors: Richard Lewis

Abstract:

The following assumptions of the Big Bang theory are challenged and found to be false: the cosmological principle, the assumption that all matter formed at the same time and the assumption regarding the cause of the cosmic microwave background radiation. The evolution of the universe is described based on the conclusion that the universe is finite with a space boundary. This conclusion is reached by ruling out the possibility of an infinite universe or a universe which is finite with no boundary. In a finite universe, the centre of the universe can be located with reference to our home galaxy (The Milky Way) using the speed relative to the Cosmic Microwave Background (CMB) rest frame and Hubble's law. This places our home galaxy at a distance of approximately 26 million light years from the centre of the universe. Because we are making observations from a point relatively close to the centre of the universe, the universe appears to be isotropic and homogeneous but this is not the case. The CMB is coming from a source located within the event horizon of the universe. There is sufficient mass in the universe to create an event horizon at the Schwarzschild radius. Galaxies form over time due to the energy released by the expansion of space. Conservation of energy must consider total energy which is mass (+ve) plus energy (+ve) plus spacetime curvature (-ve) so that the total energy of the universe is always zero. The predominant position of galaxy formation moves over time from the centre of the universe towards the boundary so that today the majority of new galaxy formation is taking place beyond our horizon of observation at 14 billion light years.

Keywords: cosmology, dark energy, dark matter, evolution of the universe

Procedia PDF Downloads 141
16485 An Agent-Service Oriented Framework for Online Contracts in Virtual Organizations

Authors: Zahra Raeisi, Reza Akbari

Abstract:

Contracting is known as one of the important tasks in virtual organization creation. Contracting is a costly process in terms of time and effort. One way to cut the time and effort is conducting contract electronically. The online contracting enable us to form virtual organization (VO) dynamically. This work presents an agent-service oriented framework for online contracting in virtual organizations. The proposed framework considers the main aspects and steps of traditional contracting process and uses the efficiency of service and agent based methodologies in order to provide a flexible and efficient way to establish contracts electronically in a VO.

Keywords: service oriented architecture, online contracts, agent-oriented architecture, virtual organization

Procedia PDF Downloads 504
16484 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 414
16483 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers

Authors: Rajkumar Kolangarakandy

Abstract:

Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.

Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL

Procedia PDF Downloads 335
16482 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 119
16481 Analysis and Design of Single Switch Mosfet Dimmer for AC Driven Lamp

Authors: S.Pandeeswari, Raju Padma

Abstract:

In this paper a new solution to implement and control single-stage electronic ballast based on the integration of a buck-boost power factor correction stage and a half bridge resonant inverter is presented. The control signals are obtained using the inverter resonant current by means of a saturable transformer. Core saturation is used to control the required dead time between the control pulses on both switches. The turn-on time of one of the inverter switches is controlled to provide proper cathode preheating during the lamp ignition process. No special integrated circuits are required to control the ballast and the total number of components is minimized. Analysis and basic design of phase cut dimmer.

Keywords: MOSFET dimmer, PIC 16F877A, voltage regulator, bridge rectifier

Procedia PDF Downloads 379
16480 Learning on the Go: Practicing Vocabulary with Mobile Apps

Authors: Shoba Bandi-Rao

Abstract:

The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.

Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet

Procedia PDF Downloads 224
16479 Effect of Outliers in Assessing Significant Wave Heights Through a Time-Dependent GEV Model

Authors: F. Calderón-Vega, A. D. García-Soto, C. Mösso

Abstract:

Recorded significant wave heights sometimes exhibit large uncommon values (outliers) that can be associated with extreme phenomena such as hurricanes and cold fronts. In this study, some extremely large wave heights recorded in NOAA buoys (National Data Buoy Center, noaa.gov) are used to investigate their effect in the prediction of future wave heights associated with given return periods. Extreme waves are predicted through a time-dependent model based on the so-called generalized extreme value distribution. It is found that the outliers do affect the estimated wave heights. It is concluded that a detailed inspection of outliers is envisaged to determine whether they are real recorded values since this will impact defining design wave heights for coastal protection purposes.

Keywords: GEV model, non-stationary, seasonality, outliers

Procedia PDF Downloads 195
16478 Optimization of Ultrasound Assisted Extraction and Characterization of Functional Properties of Dietary Fiber from Oat Cultivar S2000

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Waseem Khalid, Ammara Ainee, Taleeha Roheen, Sadaf Javaria, Aftab Ahmed, Hira Fatima, Mian Nadeem Riaz, Muhammad Zubair Khalid, Isam A. Mohamed Ahmed J, Moneera O. Aljobair

Abstract:

This study was executed to explore the efficacy of ultrasound-assisted extraction of dietary fiber from oat cultivar S2000. Extraction (variables time, temperature and amplitude) was optimized by using response surface methodology (RSM) conducted by Box Behnken Design (BBD). The effect of time, temperature and amplitude were studied at three levels. It was observed that time and temperature exerted more impact on extraction efficiency as compared to amplitude. The highest yield of total dietary fiber (TDF), soluble dietary fiber (SDF) and In-soluble dietary fiber (IDF) fractions were observed under ultrasound processing for 20 min at 40 ◦C with 80% amplitude. Characterization of extracted dietary fiber showed that it had better crystallinity, thermal properties and good fibrous structure. It also showed better functional properties as compared to traditionally extracted dietary fiber. Furthermore, dietary fibers from oats may offer high-value utilization and the expansion of comprehensive utilization in functional food and nutraceutical development.

Keywords: extraction, ultrasonication, response surface methodology, box behnken design

Procedia PDF Downloads 50
16477 Risk-Based Institutional Evaluation of Trans Sumatera Toll Road Infrastructure Development to Improve Time Performance

Authors: Muhammad Ridho Fakhrin, Leni Sagita Riantini, Yusuf Latief

Abstract:

Based on the 2015-2019 RPJMN data, the realization of toll road infrastructure development in Indonesia experienced a delay of 49% or 904 km of the total plan. One of the major causes of delays in development is caused by institutional factors. The case study taken in this research is the construction of the Trans Sumatra Toll Road (JTTS). The purpose of this research is to identify the institutional forms, functions, roles, duties, and responsibilities of each stakeholder and the risks that occur in the Trans Sumatra Toll Road Infrastructure Development. Risk analysis is implemented on functions, roles, duties, responsibilities of each existing stakeholder and is carried out at the Funding Stage, Technical Planning Stage, and Construction Implementation Stage in JTTS. This research is conducted by collecting data through a questionnaire survey, then processed using statistical methods, such as homogeneity, data adequacy, validity, and reliability test, continued with risk assessment based on a risk matrix. The results of this study are the evaluation and development of institutional functions in risk-based JTTS development can improve time performance and minimize delays in the construction process.

Keywords: institutional, risk management, time performance, toll road

Procedia PDF Downloads 163
16476 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR

Authors: C. Rattanakawin, S. Vasailor

Abstract:

Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.

Keywords: agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid

Procedia PDF Downloads 119
16475 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition

Procedia PDF Downloads 156
16474 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict

Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez

Abstract:

This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.

Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks

Procedia PDF Downloads 487
16473 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree

Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli

Abstract:

Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.

Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture

Procedia PDF Downloads 420
16472 Successes on in vitro Isolated Microspores Embryogenesis

Authors: Zelikha Labbani

Abstract:

The In Vitro isolated micro spore culture is the most powerful androgenic pathway to produce doubled haploid plants in the short time. To deviate a micro spore toward embryogenesis, a number of factors, different for each species, must concur at the same time and place. Once induced, the micro spore undergoes numerous changes at different levels, from overall morphology to gene expression. Induction of micro spore embryogenesis not only implies the expression of an embryogenic program, but also a stress-related cellular response and a repression of the gametophytic program to revert the microspore to a totipotent status. As haploid single cells, micro spore became a strategy to achieve various objectives particularly in genetic engineering. In this study we would show the most recent advances in the producing haploid embryos via In Vitro isolated micro spore culture.

Keywords: haploid cells, In Vitro isolated microspore culture, success

Procedia PDF Downloads 615
16471 On-The-Fly Cross Sections Generation in Neutron Transport with Wide Energy Region

Authors: Rui Chen, Shu-min Zhou, Xiong-jie Zhang, Ren-bo Wang, Fan Huang, Bin Tang

Abstract:

During the temperature changes in reactor core, the nuclide cross section in reactor can vary with temperature, which eventually causes the changes of reactivity. To simulate the interaction between incident neutron and various materials at different temperatures on the nose, it is necessary to generate all the relevant reaction temperature-dependent cross section. Traditionally, the real time cross section generation method is used to avoid storing huge data but contains severe problems of low efficiency and adaptability for narrow energy region. Focused on the research on multi-temperature cross sections generation in real time during in neutron transport, this paper investigated the on-the-fly cross section generation method for resolved resonance region, thermal region and unresolved resonance region, and proposed the real time multi-temperature cross sections generation method based on double-exponential formula for resolved resonance region, as well as the Neville interpolation for thermal and unresolved resonance region. To prove the correctness and validity of multi-temperature cross sections generation based on wide energy region of incident neutron, the proposed method was applied in critical safety benchmark tests, which showed the capability for application in reactor multi-physical coupling simulation.

Keywords: cross section, neutron transport, numerical simulation, on-the-fly

Procedia PDF Downloads 197
16470 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts

Authors: Linda Dusman, Linda Baker

Abstract:

The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.

Keywords: audience engagement, informal education, music technology, real-time learning

Procedia PDF Downloads 203
16469 Museums and Corporate Social Responsibility: Environmental Impact and Strategies in Corporate Social Responsibility Policies

Authors: Nicola Urbino

Abstract:

The definition of corporate social responsibility policies is a central topic in contemporary museology, as the role of museums in developing social, cultural, and environmental impact strategies has become increasingly prominent. An overarching perspective in this domain can be provided by the publication of the primary tool for impact verification and reporting in the CSR field: the Social Report. The presentation, based on an international and national theoretical and regulatory assessment, focuses on the operational significance of structured social reporting for Italian museums. The study involves analyzing over 25 Social Reports from leading Italian museums over the past 5 years to assess their CSR practices, examining both the strengths and weaknesses, in order to offer a comprehensive overview of the phenomenon of social responsibility in the national context. Moreover, a benchmark will be done between the legislative framework and guidelines and the effective implementation of CSR policies and practices. That said, the contribution aims at analyzing the strategies of the main Italian museums regarding their environmental impact on the territory. Through the analysis of the Social Balance Sheets published by a group of museums from the north to the south of Italy, it will highlight the relations that museums have established over the years with the territory and the environment, their sensitivity to climate change, and the strategies proposed to mitigate their environmental impact. Starting from a general analysis, the paper will help to highlight best practices and management models to be followed for sustainable growth, analyzing best practice, case studies and strategies applied to the museological field.

Keywords: museums, social report, sustainable development, footprint

Procedia PDF Downloads 28
16468 Current Practices of Permitted Daily Exposure (PDE) Calculation and Selection

Authors: Annie Ramanbhai Mecwan

Abstract:

Cleaning validation in a pharmaceutical manufacturing facility is documented evidence that a cleaning process has effectively removed contaminants, residues from previous drug products and cleaning agents below a pre-defined threshold from the reusable tools and parts of equipment. In shared manufacturing facilities more than one drug product is prepared. After cleaning of reusable tools and parts of equipment after one drug product manufacturing, there are chances that some residues of drug substance from previously manufactured drug products may be retained on the equipment and can carried forward to the next drug product and thus cause cross-contamination. Health-based limits through the derivation of a safe threshold value called permitted daily exposure (PDE) for the residues of drug substances should be employed to identify the risks posed at these manufacturing facilities. The PDE represents a substance-specific dose that is unlikely to cause an adverse effect if an individual is exposed to or below this dose every day for a lifetime. There are different practices to calculate PDE. Data for all APIs in the public domain are considered to calculate PDE value though, company to company may vary the final PDE value based on different toxicologist’s perspective or their subjective evaluation. Hence, Regulatory agencies should take responsibility for publishing PDE values for all APIs as it is done for elemental PDEs. This will harmonize the PDE values all over the world and prevent the unnecessary load on manufacturers for cleaning validation

Keywords: active pharmaceutical ingredient, good manufacturing practice, NOAEL, no observed adverse effect level, permitted daily exposure

Procedia PDF Downloads 90
16467 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT

Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez

Abstract:

Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.

Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management

Procedia PDF Downloads 138
16466 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD

Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang

Abstract:

In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.

Keywords: LTE-A, relay, TDD, power saving

Procedia PDF Downloads 516
16465 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.

Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization

Procedia PDF Downloads 147
16464 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 124
16463 3D Guided Image Filtering to Improve Quality of Short-Time Binned Dynamic PET Images Using MRI Images

Authors: Tabassum Husain, Shen Peng Li, Zhaolin Chen

Abstract:

This paper evaluates the usability of 3D Guided Image Filtering to enhance the quality of short-time binned dynamic PET images by using MRI images. Guided image filtering is an edge-preserving filter proposed to enhance 2D images. The 3D filter is applied on 1 and 5-minute binned images. The results are compared with 15-minute binned images and the Gaussian filtering. The guided image filter enhances the quality of dynamic PET images while also preserving important information of the voxels.

Keywords: dynamic PET images, guided image filter, image enhancement, information preservation filtering

Procedia PDF Downloads 132
16462 The Changing Role of the Chief Academic Officer in American Higher Education: Causes and Consequences

Authors: Michael W. Markowitz, Jeffrey Gingerich

Abstract:

The landscape of higher education in the United States has undergone significant changes in the last 25 years. What was once a domain of competition among prospective students for a limited number of college and university seats has become a marketplace in which institutions vie for the enrollment of educational consumers. A central figure in this paradigm shift has been the Chief Academic Officer (CAO), whose institutional role has also evolved beyond academics to include such disparate responsibilities as strategic planning, fiscal oversight, student recruitment, fundraising and personnel management. This paper explores the scope and impact of this transition by, first, explaining its context: the intersection of key social, economic and political factors in neo-conservative, late 20th Century America that redefined the value and accountability of institutions of higher learning. This context, in turn, is shown to have redefined the role and function of the CAO from a traditional academic leader to one centered on the successful application of corporate principles of organizational and fiscal management. Information gathered from a number of sitting Provosts, Vice-Presidents of Academic Affairs and Deans of Faculty is presented to illustrate the parameters of this change, as well as the extent to which today’s academic officers feel prepared and equipped to fulfill this broader institutional role. The paper concludes with a discussion of the impact of this transition on the American academy and whether it serves as a portend of change to come in higher education systems around the globe.

Keywords: academic administration, higher education, leadership, organizational management

Procedia PDF Downloads 220
16461 Expression Level of Dehydration-Responsive Element Binding/DREB Gene of Some Local Corn Cultivars from Kisar Island-Maluku Indonesia Using Quantitative Real-Time PCR

Authors: Hermalina Sinay, Estri L. Arumingtyas

Abstract:

The research objective was to determine the expression level of dehydration responsive element binding/DREB gene of local corn cultivars from Kisar Island Maluku. The study design was a randomized block design with single factor consist of six local corn cultivars obtained from farmers in Kisar Island and one reference varieties wich has been released by the government as a drought-tolerant varieties and obtained from Cereal Crops Research Institute (ICERI) Maros South Sulawesi. Leaf samples were taken is the second leaf after the flag leaf at the 65 days after planting. Isolation of total RNA from leaf samples was carried out according to the protocols of the R & A-BlueTM Total RNA Extraction Kit and was used as a template for cDNA synthesis. The making of cDNA from total RNA was carried out according to the protocol of One-Step Reverse Transcriptase PCR Premix Kit. Real Time-PCR was performed on cDNA from reverse transcription followed the procedures of Real MODTM Green Real-Time PCR Master Mix Kit. Data obtained from the real time-PCR results were analyzed using relative quantification method based on the critical point / Cycle Threshold (CP / CT). The results of gene expression analysis of DREB gene showed that the expression level of the gene was highest obtained at Deep Yellow local corn cultivar, and the lowest one was obtained at the Rubby Brown Cob cultivar. It can be concluded that the expression level of DREB gene of Deep Yellow local corn cultivar was highest than other local corn cultivars and Srikandi variety as a reference variety.

Keywords: expression, level, DREB gene, local corn cultivars, Kisar Island, Maluku

Procedia PDF Downloads 299
16460 Computational Models for Accurate Estimation of Joint Forces

Authors: Ibrahim Elnour Abdelrahman Eltayeb

Abstract:

Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.

Keywords: joint force, joint model, optimisation problem, validation

Procedia PDF Downloads 170