Search results for: ERA-5 analysis data
39627 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 24539626 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.Keywords: early warning system, knowledge management, market prediction, topic modeling.
Procedia PDF Downloads 34339625 The Role of Synthetic Data in Aerial Object Detection
Authors: Ava Dodd, Jonathan Adams
Abstract:
The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.Keywords: computer vision, machine learning, synthetic data, YOLOv4
Procedia PDF Downloads 22939624 Late Payment Issues Faced by Subcontractors in the Malaysian Construction Industry
Authors: Nur Emma Mustaffa, Hii Ping Ping
Abstract:
Late payment is a common issue in the construction industry and the subcontractors are not spared from it. This study has been carried out with the objectives to identify the implications of late payment issues toward the subcontractors and the strategies adopted by them to overcome the late payment issues. In terms of the strategies which can be adopted in overcoming the late payment, the subcontractors may suspend or slow down the construction process, making periodic follow up with the client, demand the rights to interest on late payment or the issuance of a promissory note by the client. The focus of the study is primarily on Grade 4 to Grade 7 contractors in Johor Bahru, Malaysia who carried out subcontracting works and registered under Construction Industry Development Board (CIDB). Employing survey as the main research method for data collection, the analysis would therefore mainly be adopting Likert Scale Analysis, Ranking Analysis and Frequency Distribution Analysis. This research showed the main implication of late payment issues towards subcontractors is created financial hardship to them. Besides, the most effective strategy adopted by the subcontractors to overcome the late payment issues is follow-up with client using formal procedure. From the findings, most of the subcontractors had low level of experiences and frequency in the adoption of Construction Industry Payment and Adjudication Act (CIPAA) 2012 to solve the payment disputes in the construction industry. In a nutshell, it is hoped that these findings will become guidance to the subcontractors to overcome the late payment issues in their future projects.Keywords: subcontractors, implications, strategies, CIPAA 2012, payment
Procedia PDF Downloads 17739623 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis
Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos
Abstract:
Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis
Procedia PDF Downloads 14339622 Analysis of Oral and Maxillofacial Histopathology Service in Tertiary Center in Oman in the Past 13 Years
Authors: Sabreen Al Shamli, Abdul Rahman Al azure
Abstract:
Microscopic examination by histopathology is the gold standard for diagnosing many oral and maxillofacial pathologies. Current clinical guidelines and medicolegal regulations recommend the utilization of histopathology services for confirming pathologies being treated. The goal of this study was to determine the prevalence and distribution of oral and maxillofacial biopsies that had been histopathologically diagnosed at Anahdha Hospital (ANH). A total of 512 biopsies randomly selected from a ground total of 3310 biopsies, which were submitted for oral and maxillofacial histopathological specimens, were analyzed at Nahdha Hospital in Oman between January 2010 and December 2022. Data collected retrospectively selected from all case notes of patients who had oral histopathology examinations performed as part of their treatment. Data collected from the Shifa system was transferred to Microsoft Excel and analyzed using SPSS. Research ethics approval was obtained from the research committee of the hospital. This study provides background information on oral histopathology prevalence that could be helpful in future research in Oman. The findings of the present study are in agreement with the reported data from other investigations, even when it is taken into account how difficult it is to compare prevalence rates from different studies.Keywords: oral biopsy, maxillofacial histopathology, oral disease, maxillofacial specimens
Procedia PDF Downloads 8039621 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 14839620 The Relationship between Psychological Capital and Mental Health in Economically Disadvantaged Youth: The Mediating Role of Family Cohesion
Authors: Chang Li-Yu
Abstract:
Aims: This study investigates the impact of psychological capital on the mental health of economically disadvantaged youth and examines whether family cohesion acts as a mediating variable between psychological capital and mental health. Methods: The sample for the study was drawn from the "Taiwan Poverty Children's Database: Survey on the Living Trends of Disadvantaged Children and Youth." The data analysis methods included descriptive statistics, confirmatory factor analysis, and structural equation modeling. Results: The results indicated that both psychological capital and family cohesion can significantly negatively predict mental health, with psychological capital significantly positively predicting family cohesion. The mediation effect analysis revealed that family cohesion fully mediates the relationship between psychological capital and mental health, meaning that psychological capital influences mental health through family cohesion. Recommendations: Based on these findings, the study concretely discusses the significance of psychological capital and family cohesion for the mental health of economically disadvantaged youth and offers suggestions for psychological counseling, therapy, and future research.Keywords: psychological capital, mental health, economically disadvantaged youth, family cohesion
Procedia PDF Downloads 6839619 A Methodology for Automatic Diversification of Document Categories
Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.Keywords: big data analysis, document classification, multi-category, text mining, topic analysis
Procedia PDF Downloads 27639618 Fault Study and Reliability Analysis of Rotative Machine
Authors: Guang Yang, Zhiwei Bai, Bo Sun
Abstract:
This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications.Keywords: rotative machine, reliability test, fault tree analysis, FMECA
Procedia PDF Downloads 15639617 Landslide Hazard Zonation Using Satellite Remote Sensing and GIS Technology
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
Landslide is the major geo-environmental problem of Himalaya because of high ridges, steep slopes, deep valleys, and complex system of streams. They are mainly triggered by rainfall and earthquake and causing severe damage to life and property. In Uttarakhand, the Tehri reservoir rim area, which is situated in the lesser Himalaya of Garhwal hills, was selected for landslide hazard zonation (LHZ). The study utilized different types of data, including geological maps, topographic maps from the survey of India, Landsat 8, and Cartosat DEM data. This paper presents the use of a weighted overlay method in LHZ using fourteen causative factors. The various data layers generated and co-registered were slope, aspect, relative relief, soil cover, intensity of rainfall, seismic ground shaking, seismic amplification at surface level, lithology, land use/land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), stream power index (SPI), drainage buffer and reservoir buffer. Seismic analysis is performed using peak horizontal acceleration (PHA) intensity and amplification factors in the evaluation of the landslide hazard index (LHI). Several digital image processing techniques such as topographic correction, NDVI, and supervised classification were widely used in the process of terrain factor extraction. Lithological features, LULC, drainage pattern, lineaments, and structural features are extracted using digital image processing techniques. Colour, tones, topography, and stream drainage pattern from the imageries are used to analyse geological features. Slope map, aspect map, relative relief are created by using Cartosat DEM data. DEM data is also used for the detailed drainage analysis, which includes TWI, SPI, drainage buffer, and reservoir buffer. In the weighted overlay method, the comparative importance of several causative factors obtained from experience. In this method, after multiplying the influence factor with the corresponding rating of a particular class, it is reclassified, and the LHZ map is prepared. Further, based on the land-use map developed from remote sensing images, a landslide vulnerability study for the study area is carried out and presented in this paper.Keywords: weighted overlay method, GIS, landslide hazard zonation, remote sensing
Procedia PDF Downloads 13839616 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 8439615 Load Flow Analysis of 5-IEEE Bus Test System Using Matlab
Abstract:
A power flow analysis is a steady-state study of power grid. The goal of power flow analysis is to determine the voltages, currents, and real and reactive power flows in a system under a given load conditions. In this paper, the load flow analysis program by Newton Raphson polar coordinates Method is developed. The effectiveness of the developed program is evaluated through a simple 5-IEEE test system bus by simulations using MATLAB.Keywords: power flow analysis, Newton Raphson polar coordinates method
Procedia PDF Downloads 60639614 A Development Model of Factors Affecting Decision Making to Select Successor in Family Business of Thailand
Authors: Polvasut Mahaiamsiri, Piraphong Foosiri
Abstract:
The purpose of this research is to explore the model of factors affecting decision making to select successor in family business of Thailand. A Structural Equation Model (SEM) was created from relevant theories and researches. Consequently, examine and analyse, the causal relation factors of Succession Plan, Recruitment Process and Strategic Planning, whether they have direct or indirect effects on Decision Making to Select Successor in family business. Units of analysis are selected from the family business, totalling 300 sampling. Population sampling is current owners or CEO from the percentage of six district areas in Thailand with multi-stage sampling. A set of questionnaires is used to collect data. An analysis of structural equation modelling (SEM) technique using AMOS 21 program is conducted to test the hypotheses and confirmatory factor analysis is performed and shows that these variables can be tested. The finding of this study revealed that these factors are separate constructs that combine to determine decision making to select successors.Keywords: succession plan, family business, recruitment process, strategic planning, decision making to select successor
Procedia PDF Downloads 21339613 Condition Based Assessment of Power Transformer with Modern Techniques
Authors: Piush Verma, Y. R. Sood
Abstract:
This paper provides the information on the diagnostics techniques for condition monitoring of power transformer (PT). This paper deals with the practical importance of the transformer diagnostic in the Electrical Engineering field. The life of the transformer depends upon its insulation i.e paper and oil. The major testing techniques applies on transformer oil and paper i.e dissolved gas analysis, furfural analysis, radio interface, acoustic emission, infra-red emission, frequency response analysis, power factor, polarization spectrum, magnetizing currents, turn and winding ratio. A review has been made on the modern development of this practical technology.Keywords: temperature, condition monitoring, diagnostics methods, paper analysis techniques, oil analysis techniques
Procedia PDF Downloads 43439612 Reasons to Redesign: Teacher Education for a Brighter Tomorrow
Authors: Deborah L. Smith
Abstract:
To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.Keywords: DEI, field experiences, program redesign, teacher preparation
Procedia PDF Downloads 17539611 Developing Open-Air Museum: The Heritage Conservation Effort, Oriented to Geotourism Concept and Education
Authors: Rinaldi Ikhram, R. A. Julia Satriani
Abstract:
The discovery of historical objects in Indonesia, especially in the area around Bandung and Priangan zone in general, have been inventorized and recorded by Dutch geologists during the colonial time. Among artefacts such as axes made of chalcedony and quartzite; arrowheads, knives, shrivel, and drill bit all made from obsidian; grindstones, even bracelet from stones. Ceramic mold for smelting bronze or iron were also found. The abundance of artefacts inspired DR. W. Docters van Leeuwen and his colleagues to initiate the establishment of Sunda Open-air Museum "Soenda Openlucht Museum" in 1917, located in the hills of North Bandung area, the site of pre-historic settlements that needs conservation. Unfortunately, this plan was not implemented because shortly after, World War II occurred. The efforts of heritage conservation is one of our responsibilities as a geologist today. Open-air Museum may be one of the solutions of heritage conservation for historic sites around the world. In this paper, the study of the development of Open-air Museum will be focused on the area of Dago, North Bandung. Method used is data analysis of field surveys, and data analysis of the remaining artefacts stored at both the National Museum in Jakarta, and the Bandung Museum of Geology. The museum is based on Geotourism and further research on pre-historic culture, while its purpose is to give people a common interest and to motivate them to participate in the research and conservation of pre-historic relics. This paper will describe more details about the concept, form, and management of the geopark and the Open-air Museum within.Keywords: geoparks, heritage conservation, open-air museum, sustainable tourism
Procedia PDF Downloads 34939610 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 6939609 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example
Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang
Abstract:
Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital
Procedia PDF Downloads 18139608 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model
Authors: Amit R. Bhende, G. K. Awari
Abstract:
Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis
Procedia PDF Downloads 44239607 Analysis on Cyber Threat Actors Targeting Automated Border Security Systems
Authors: Mirko Sailio
Abstract:
Border crossing automatization reduces required human resources in handling people crossing borders. As technology replaces and augments the work done by border officers, new cyber threats arise to threaten border security. This research analyses the current cyber threat actors and their capabilities. The analysis is conducted by gathering the threat actor data from a wide range of public sources. A model for a general border automatization system is presented, and its most significant cyber-security attributes are then compared to threat actor activity and capabilities in order to predict priorities in securing such systems. Organized crime and nation-state actors present the clearest threat to border cyber-security, and additional focus is given to their motivations and activities.Keywords: border automation, cyber-security, threat actors, border cyber-security
Procedia PDF Downloads 20839606 Spatio-Temporal Data Mining with Association Rules for Lake Van
Authors: Tolga Aydin, M. Fatih Alaeddinoğlu
Abstract:
People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.Keywords: apriori algorithm, association rules, data mining, spatio-temporal data
Procedia PDF Downloads 37739605 Evaluating the Performance of 28 EU Member Countries on Health2020: A Data Envelopment Analysis Evaluation of the Successful Implementation of Policies
Authors: Elias K. Maragos, Petros E. Maravelakis, Apostolos I. Linardis
Abstract:
Health2020 is a promising framework of policies provided by the World Health Organization (WHO) and aiming to diminish the health and well-being inequalities among the citizens of the European Union (EU) countries. The major demographic, social and environmental changes, in addition to the resent economic crisis prevent the unobstructed and successful implementation of this framework. The unemployment rates and the percentage of people at risk of poverty have increased among the citizens of EU countries. At the same time, the adopted fiscal, economic policies do not help governments to serve their social role and mitigate social and health inequalities. In those circumstances, there is a strong pressure to organize all health system resources efficiently and wisely. In order to provide a unified and value-based framework of valuation, we propose a valuation framework using data envelopment analysis (DEA) and dynamic DEA. We believe that the adopted methodology could provide a robust tool which can capture the degree of success with which policies have been implemented and is capable to determine which of the countries developed the requested policies efficiently and which of the countries have been lagged. Using the proposed methodology, we evaluated the performance of 28 EU member-countries in relation to the Health2020 peripheral targets. We adopted several versions of evaluation, measuring the effectiveness and the efficiency of EU countries from 2011 to 2016. Our results showed stability in technological changes and revealed a group of countries which were benchmarks in most of the years for the inefficient countries.Keywords: DEA, Health2020, health inequalities, malmquist index, policies evaluation, well-being
Procedia PDF Downloads 14739604 Privacy Concerns and Law Enforcement Data Collection to Tackle Domestic and Sexual Violence
Authors: Francesca Radice
Abstract:
Domestic and sexual violence provokes, on average in Australia, one female death per week due to intimate violence behaviours. 83% of couples meet online, and intercepting domestic and sexual violence at this level would be beneficial. It has been observed that violent or coercive behaviour has been apparent from initial conversations on dating apps like Tinder. Child pornography, stalking, and coercive control are some criminal offences from dating apps, including women murdered after finding partners through Tinder. Police databases and predictive policing are novel approaches taken to prevent crime before harm is done. This research will investigate how police databases can be used in a privacy-preserving way to characterise users in terms of their potential for violent crime. Using the COPS database of NSW Police, we will explore how the past criminal record can be interpreted to yield a category of potential danger for each dating app user. It is up to the judgement of each subscriber on what degree of the potential danger they are prepared to enter into. Sentiment analysis is an area where research into natural language processing has made great progress over the last decade. This research will investigate how sentiment analysis can be used to interpret interchanges between dating app users to detect manipulative or coercive sentiments. These can be used to alert law enforcement if continued for a defined number of communications. One of the potential problems of this approach is the potential prejudice a categorisation can cause. Another drawback is the possibility of misinterpreting communications and involving law enforcement without reason. The approach will be thoroughly tested with cross-checks by human readers who verify both the level of danger predicted by the interpretation of the criminal record and the sentiment detected from personal messages. Even if only a few violent crimes can be prevented, the approach will have a tangible value for real people.Keywords: sentiment analysis, data mining, predictive policing, virtual manipulation
Procedia PDF Downloads 8039603 Spatial Point Process Analysis of Dengue Fever in Tainan, Taiwan
Authors: Ya-Mei Chang
Abstract:
This research is intended to apply spatio-temporal point process methods to the dengue fever data in Tainan. The spatio-temporal intensity function of the dataset is assumed to be separable. The kernel estimation is a widely used approach to estimate intensity functions. The intensity function is very helpful to study the relation of the spatio-temporal point process and some covariates. The covariate effects might be nonlinear. An nonparametric smoothing estimator is used to detect the nonlinearity of the covariate effects. A fitted parametric model could describe the influence of the covariates to the dengue fever. The correlation between the data points is detected by the K-function. The result of this research could provide useful information to help the government or the stakeholders making decisions.Keywords: dengue fever, spatial point process, kernel estimation, covariate effect
Procedia PDF Downloads 35539602 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 10139601 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining
Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie
Abstract:
With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.Keywords: classification, data mining, machine learning, online shopping, WEKA
Procedia PDF Downloads 35439600 Analysis of Scholarly Communication Patterns in Korean Studies
Authors: Erin Hea-Jin Kim
Abstract:
This study aims to investigate scholarly communication patterns in Korean studies, which focuses on all aspects of Korea, including history, culture, literature, politics, society, economics, religion, and so on. It is called ‘national study or home study’ as the subject of the study is itself, whereas it is called ‘area study’ as the subject of the study is others, i.e., outside of Korea. Understanding of the structure of scholarly communication in Korean studies is important since the motivations, procedures, results, or outcomes of individual studies may be affected by the cooperative relationships that appear in the communication structure. To this end, we collected 1,798 articles with the (author or index) keyword ‘Korean’ published in 2018 from the Scopus database and extracted the institution and country of the authors using a text mining technique. A total of 96 countries, including South Korea, was identified. Then we constructed a co-authorship network based on the countries identified. The indicators of social network analysis (SNA), co-occurrences, and cluster analysis were used to measure the activity and connectivity of participation in collaboration in Korean studies. As a result, the highest frequency of collaboration appears in the following order: S. Korea with the United States (603), S. Korea with Japan (146), S. Korea with China (131), S. Korea with the United Kingdom (83), and China with the United States (65). This means that the most active participants are S. Korea as well as the USA. The highest rank in the role of mediator measured by betweenness centrality appears in the following order: United States (0.165), United Kingdom (0.045), China (0.043), Japan (0.037), Australia (0.026), and South Africa (0.023). These results show that these countries contribute to connecting in Korean studies. We found two major communities among the co-authorship network. Asian countries and America belong to the same community, and the United Kingdom and European countries belong to the other community. Korean studies have a long history, and the study has emerged since Japanese colonization. However, Korean studies have never been investigated by digital content analysis. The contributions of this study are an analysis of co-authorship in Korean studies with a global perspective based on digital content, which has not attempted so far to our knowledge, and to suggest ideas on how to analyze the humanities disciplines such as history, literature, or Korean studies by text mining. The limitation of this study is that the scholarly data we collected did not cover all domestic journals because we only gathered scholarly data from Scopus. There are thousands of domestic journals not indexed in Scopus that we can consider in terms of national studies, but are not possible to collect.Keywords: co-authorship network, Korean studies, Koreanology, scholarly communication
Procedia PDF Downloads 16439599 The Effect of Core Training on Physical Fitness Characteristics in Male Volleyball Players
Authors: Sibel Karacaoglu, Fatma Ç. Kayapinar
Abstract:
The aim of the study is to investigate the effect of the core training program on physical fitness characteristics and body composition in male volleyball players. 26 male university volleyball team players aged between 19 to 24 years who had no health problems and injury participated in the study. Subjects were divided into training (TG) and control groups (CG) as randomly. Data from twenty-one players who completed all training sessions were used for statistical analysis (TG,n=11; CG,n=10). A core training program was applied to the training group three days a week for 10 weeks. On the other hand, the control group did not receive any training. Before and after the 10-week training program, pre- and post-testing comprised of body composition measurements (weight, BMI, bioelectrical impedance analysis) and physical fitness measurements including flexibility (sit and reach test), muscle strength (back, leg and grip strength by dynamometer), muscle endurance (sit-ups and push-ups tests), power (one-legged jump and vertical jump tests), speed (20m sprint, 30m sprint) and balance tests (one-legged standing test) were performed. Changes of pre- and post- test values of the groups were determined by using dependent t test. According to the statistical analysis of data, no significant difference was found in terms of body composition in the both groups for pre- and post- test values. In the training group, all physical fitness measurements improved significantly after core training program (p<0.05) except 30m speed and handgrip strength (p>0.05). On the hand, only 20m speed test values improved after post-test period (p<0.05), but the other physical fitness tests values did not differ (p>0.05) between pre- and post- test measurement in the control group. The results of the study suggest that the core training program has positive effect on physical fitness characteristics in male volleyball players.Keywords: body composition, core training, physical fitness, volleyball
Procedia PDF Downloads 34939598 Factors Affecting Residential Satisfaction in Low-Income Housing: Case Study of War College Housing in Gwarinpa Estate-Abuja, Nigeria
Authors: Abdulmajeed Mustapha, Murat Sahin, Ebru Karahan
Abstract:
Low-income housing for poor people in urban areas is a global challenge, especially in developing countries. The quality of construction of mass housing is oftentimes compromised, thus resulting in a housing deficit, thereby affecting the residential satisfaction of users. This research analyses the various factors affecting residential satisfaction in War College Housing Estate, Abuja, Nigeria. These were investigated using parameters such as environmental characteristics and public amenities such as public benefits, safety/security, and sociodemographic characteristics. The study adopted a quantitative approach for the data gathering through literature reviews within the topic’s scope. The survey was conducted between April to May 2021 using a questionnaire form that was distributed to household members, onsite analysis within the selected housing project, and interviews with a few professionals within the field of this research. Data gathered from the survey and analysis on housing and sociodemographic characteristics, amongst others, were acquired through the means of interviews and site surveys of the selected Housing Estate. Findings from the various characteristics determining satisfaction revealed that residents had varying levels of satisfaction, ranging from a scale of satisfied to dissatisfied. It is recommended that the government come up with policies that will not only make the environment clean and safe but also make sure that the needs of the people who live there are taken into account. This will help the people who live there be more satisfied with their homes.Keywords: residential satisfaction, neighborhood satisfaction, low-income housing, socio-demographic characteristics, Nigeria
Procedia PDF Downloads 104