Search results for: accessibility score
24 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture
Authors: Zakia Hbellaq
Abstract:
The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants
Procedia PDF Downloads 16123 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data
Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone
Abstract:
The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine
Procedia PDF Downloads 24022 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation
Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy
Abstract:
The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis
Procedia PDF Downloads 40621 Impact of Interdisciplinary Therapy Allied to Online Health Education on Cardiometabolic Parameters and Inflammation Factor Rating in Obese Adolescents
Authors: Yasmin A. M. Ferreira, Ana C. K. Pelissari, Sofia De C. F. Vicente, Raquel M. Da S. Campos, Deborah C. L. Masquio, Lian Tock, Lila M. Oyama, Flavia C. Corgosinho, Valter T. Boldarine, Ana R. Dâmaso
Abstract:
The prevalence of overweight and obesity is growing around the world and currently considered a global epidemic. Food and nutrition are essential requirements for promoting health and protecting non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate the inflammation and oxidative stress in obese individuals. Few studies have investigated the dietary Inflammation Factor Rating (IFR) in obese adolescents. The IFR was developed to characterize an individual´s diet on anti- to pro-inflammatory score. This evaluation contributes to investigate the effects of inflammatory diet in metabolic profile in several individual conditions. Objectives: The present study aims to investigate the effects of a multidisciplinary weight loss therapy on inflammation factor rating and cardiometabolic risk in obese adolescents. Methods: A total of 26 volunteers (14-19 y.o) were recruited and submitted to 20 weeks interdisciplinary therapy allied to health education website- Ciclo do Emagrecimento®, including clinical, nutritional, psychological counseling and exercise training. The body weight was monitored weekly by self-report and photo. The adolescents answered a test to evaluate the knowledge of the topics covered in the videos. A 24h dietary record was applied at the baseline and after 20 weeks to assess the food intake and to calculate IFR. A negative IFR suggests that diet may have inflammatory effects and a positive IFR indicates an anti-inflammatory effect. Statistical analysis was performed using the program STATISTICA version 12.5 for Windows. The adopted significant value was α ≤ 5 %. Data normality was verified with the Kolmogorov Smirnov test. Data were expressed as mean±SD values. To analyze the effects of intervention it was applied test t. Pearson´s correlations test was performed. Results: After 20 weeks of treatment, body mass index (BMI), body weight, body fat (kg and %), abdominal and waist circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. Moreover, it was found an improvement of inflammation factor rating from -427,27±322,47 to -297,15±240,01, suggesting beneficial effects of nutritional counselling. Considering the correlations analysis, it was found that pro-inflammatory diet is associated with increase in the BMI, very low-density lipoprotein cholesterol (VLDL), triglycerides, insulin and insulin resistance index (HOMA-IR); while an anti-inflammatory diet is associated with improvement of HDL-c and insulin sensitivity Check index (QUICKI). Conclusion: The 20-week blended multidisciplinary therapy was effective to reduce body weight, anthropometric circumferences and improve inflammatory markers in obese adolescents. In addition, our results showed that an increase in inflammatory profile diet is associated with cardiometabolic parameters, suggesting the relevance to stimulate anti-inflammatory diet habits as an effective strategy to treat and control of obesity and related comorbidities. Financial Support: FAPESP (2017/07372-1) and CNPq (409943/2016-9)Keywords: cardiometabolic risk, inflammatory diet, multidisciplinary therapy, obesity
Procedia PDF Downloads 19420 Gene Expression Meta-Analysis of Potential Shared and Unique Pathways Between Autoimmune Diseases Under anti-TNFα Therapy
Authors: Charalabos Antonatos, Mariza Panoutsopoulou, Georgios K. Georgakilas, Evangelos Evangelou, Yiannis Vasilopoulos
Abstract:
The extended tissue damage and severe clinical outcomes of autoimmune diseases, accompanied by the high annual costs to the overall health care system, highlight the need for an efficient therapy. Increasing knowledge over the pathophysiology of specific chronic inflammatory diseases, namely Psoriasis (PsO), Inflammatory Bowel Diseases (IBD) consisting of Crohn’s disease (CD) and Ulcerative colitis (UC), and Rheumatoid Arthritis (RA), has provided insights into the underlying mechanisms that lead to the maintenance of the inflammation, such as Tumor Necrosis Factor alpha (TNF-α). Hence, the anti-TNFα biological agents pose as an ideal therapeutic approach. Despite the efficacy of anti-TNFα agents, several clinical trials have shown that 20-40% of patients do not respond to treatment. Nowadays, high-throughput technologies have been recruited in order to elucidate the complex interactions in multifactorial phenotypes, with the most ubiquitous ones referring to transcriptome quantification analyses. In this context, a random effects meta-analysis of available gene expression cDNA microarray datasets was performed between responders and non-responders to anti-TNFα therapy in patients with IBD, PsO, and RA. Publicly available datasets were systematically searched from inception to 10th of November 2020 and selected for further analysis if they assessed the response to anti-TNFα therapy with clinical score indexes from inflamed biopsies. Specifically, 4 IBD (79 responders/72 non-responders), 3 PsO (40 responders/11 non-responders) and 2 RA (16 responders/6 non-responders) datasetswere selected. After the separate pre-processing of each dataset, 4 separate meta-analyses were conducted; three disease-specific and a single combined meta-analysis on the disease-specific results. The MetaVolcano R package (v.1.8.0) was utilized for a random-effects meta-analysis through theRestricted Maximum Likelihood (RELM) method. The top 1% of the most consistently perturbed genes in the included datasets was highlighted through the TopConfects approach while maintaining a 5% False Discovery Rate (FDR). Genes were considered as Differentialy Expressed (DEGs) as those with P ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of the included datasets. Over-representation analysis was performed using Gene Ontology and Reactome Pathways for both up- and down-regulated genes in all 4 performed meta-analyses. Protein-Protein interaction networks were also incorporated in the subsequentanalyses with STRING v11.5 and Cytoscape v3.9. Disease-specific meta-analyses detected multiple distinct pro-inflammatory and immune-related down-regulated genes for each disease, such asNFKBIA, IL36, and IRAK1, respectively. Pathway analyses revealed unique and shared pathways between each disease, such as Neutrophil Degranulation and Signaling by Interleukins. The combined meta-analysis unveiled 436 DEGs, 86 out of which were up- and 350 down-regulated, confirming the aforementioned shared pathways and genes, as well as uncovering genes that participate in anti-inflammatory pathways, namely IL-10 signaling. The identification of key biological pathways and regulatory elements is imperative for the accurate prediction of the patient’s response to biological drugs. Meta-analysis of such gene expression data could aid the challenging approach to unravel the complex interactions implicated in the response to anti-TNFα therapy in patients with PsO, IBD, and RA, as well as distinguish gene clusters and pathways that are altered through this heterogeneous phenotype.Keywords: anti-TNFα, autoimmune, meta-analysis, microarrays
Procedia PDF Downloads 18119 Unique Interprofessional Mental Health Education Model: A Pre/Post Survey
Authors: Michele L. Tilstra, Tiffany J. Peets
Abstract:
Interprofessional collaboration in behavioral healthcare education is increasingly recognized for its value in training students to address diverse client needs. While interprofessional education (IPE) is well-documented in occupational therapy education to address physical health, limited research exists on collaboration with counselors to address mental health concerns and the psychosocial needs of individuals receiving care. Counseling education literature primarily examines the collaboration of counseling students with psychiatrists, psychologists, social workers, and marriage and family therapists. This pretest/posttest survey research study explored changes in attitudes toward interprofessional teams among 56 Master of Occupational Therapy (MOT) (n = 42) and Counseling and Human Development (CHD) (n = 14) students participating in the Counselors and Occupational Therapists Professionally Engaged in the Community (COPE) program. The COPE program was designed to strengthen the behavioral health workforce in high-need and high-demand areas. Students accepted into the COPE program were divided into small MOT/CHD groups to complete multiple interprofessional multicultural learning modules using videos, case studies, and online discussion board posts. The online modules encouraged reflection on various behavioral healthcare roles, benefits of team-based care, cultural humility, current mental health challenges, personal biases, power imbalances, and advocacy for underserved populations. Using the Student Perceptions of Interprofessional Clinical Education- Revision 2 (SPICE-R2) scale, students completed pretest and posttest surveys using a 5-point Likert scale (Strongly Agree = 5 to Strongly Disagree = 1) to evaluate their attitudes toward interprofessional teamwork and collaboration. The SPICE-R2 measured three different factors: interprofessional teamwork and team-based practice (Team), roles/responsibilities for collaborative practice (Roles), and patient outcomes from collaborative practice (Outcomes). The mean total scores for all students improved from 4.25 (pretest) to 4.43 (posttest), Team from 4.66 to 4.58, Roles from 3.88 to 4.30, and Outcomes from 4.08 to 4.36. A paired t-test analysis for the total mean scores resulted in a t-statistic of 2.54, which exceeded both one-tail and two-tail critical values, indicating statistical significance (p = .001). When the factors of the SPICE-R2 were analyzed separately, only the Roles (t Stat=4.08, p =.0001) and Outcomes (t Stat=3.13, p = .002) were statistically significant. The item ‘I understand the roles of other health professionals’ showed the most improvement from a mean score for all students of 3.76 (pretest) to 4.46 (posttest). The significant improvement in students' attitudes toward interprofessional teams suggests that the unique integration of OT and CHD students in the COPE program effectively develops a better understanding of the collaborative roles necessary for holistic client care. These results support the importance of IPE through structured, engaging interprofessional experiences. These experiences are essential for enhancing students' readiness for collaborative practice and align with accreditation standards requiring interprofessional education in OT and CHD programs to prepare practitioners for team-based care. The findings contribute to the growing body of evidence supporting the integration of IPE in behavioral healthcare curricula to improve holistic client care and encourage students to engage in collaborative practice across healthcare settings.Keywords: behavioral healthcare, counseling education, interprofessional education, mental health education, occupational therapy education
Procedia PDF Downloads 3918 Medical Decision-Making in Advanced Dementia from the Family Caregiver Perspective: A Qualitative Study
Authors: Elzbieta Sikorska-Simmons
Abstract:
Advanced dementia is a progressive terminal brain disease that is accompanied by a syndrome of difficult to manage symptoms and complications that eventually lead to death. The management of advanced dementia poses major challenges to family caregivers who act as patient health care proxies in making medical treatment decisions. Little is known, however, about how they manage advanced dementia and how their treatment choices influence the quality of patient life. This prospective qualitative study examines the key medical treatment decisions that family caregivers make while managing advanced dementia. The term ‘family caregiver’ refers to a relative or a friend who is primarily responsible for managing patient’s medical care needs and legally authorized to give informed consent for medical treatments. Medical decision-making implies a process of choosing between treatment options in response to patient’s medical care needs (e.g., worsening comorbid conditions, pain, infections, acute medical events). Family caregivers engage in this process when they actively seek treatments or follow recommendations by healthcare professionals. Better understanding of medical decision-making from the family caregiver perspective is needed to design interventions that maximize the quality of patient life and limit inappropriate treatments. Data were collected in three waves of semi-structured interviews with 20 family caregivers for patients with advanced dementia. A purposive sample of 20 family caregivers was recruited from a senior care center in Central Florida. The qualitative personal interviews were conducted by the author in 4-5 months intervals. The ethical approval for the study was obtained prior to the data collection. Advanced dementia was operationalized as stage five or higher on the Global Deterioration Scale (GDS) (i.e., starting with the GDS score of five, patients are no longer able survive without assistance due to major cognitive and functional impairments). Information about patients’ GDS scores was obtained from the Center’s Medical Director, who had an in-depth knowledge of each patient’s health and medical treatment history. All interviews were audiotaped and transcribed verbatim. The qualitative data analysis was conducted to answer the following research questions: 1) what treatment decisions do family caregivers make while managing the symptoms of advanced dementia and 2) how do these treatment decisions influence the quality of patient life? To validate the results, the author asked each participating family caregiver if the summarized findings accurately captured his/her experiences. The identified medical decisions ranged from seeking specialist medical care to end-of-life care. The most common decisions were related to arranging medical appointments, medication management, seeking treatments for pain and other symptoms, nursing home placement, and accessing community-based healthcare services. The most challenging and consequential decisions were related to the management of acute complications, hospitalizations, and discontinuation of treatments. Decisions that had the greatest impact on the quality of patient life and survival were triggered by traumatic falls, worsening psychiatric symptoms, and aspiration pneumonia. The study findings have important implications for geriatric nurses in the context of patient/caregiver-centered dementia care. Innovative nursing approaches are needed to support family caregivers to effectively manage medical care needs of patients with advanced dementia.Keywords: advanced dementia, family caregiver, medical decision-making, symptom management
Procedia PDF Downloads 12117 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators
Authors: K. O'Malley
Abstract:
Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university
Procedia PDF Downloads 3216 Developing Primal Teachers beyond the Classroom: The Quadrant Intelligence (Q-I) Model
Authors: Alexander K. Edwards
Abstract:
Introduction: The moral dimension of teacher education globally has assumed a new paradigm of thinking based on the public gain (return-on-investments), value-creation (quality), professionalism (practice), and business strategies (innovations). Abundant literature reveals an interesting revolutionary trend in complimenting the raising of teachers and academic performances. Because of the global competition in the knowledge-creation and service areas, the C21st teacher at all levels is expected to be resourceful, strategic thinker, socially intelligent, relationship aptitude, and entrepreneur astute. This study is a significant contribution to practice and innovations to raise exemplary or primal teachers. In this study, the qualities needed were considered as ‘Quadrant Intelligence (Q-i)’ model for a primal teacher leadership beyond the classroom. The researcher started by examining the issue of the majority of teachers in Ghana Education Services (GES) in need of this Q-i to be effective and efficient. The conceptual framing became determinants of such Q-i. This is significant for global employability and versatility in teacher education to create premium and primal teacher leadership, which are again gaining high attention in scholarship due to failing schools. The moral aspect of teachers failing learners is a highly important discussion. In GES, some schools score zero percent at the basic education certificate examination (BECE). The question is what will make any professional teacher highly productive, marketable, and an entrepreneur? What will give teachers the moral consciousness of doing the best to succeed? Method: This study set out to develop a model for primal teachers in GES as an innovative way to highlight a premium development for the C21st business-education acumen through desk reviews. The study is conceptually framed by examining certain skill sets such as strategic thinking, social intelligence, relational and emotional intelligence and entrepreneurship to answer three main burning questions and other hypotheses. Then the study applied the causal comparative methodology with a purposive sampling technique (N=500) from CoE, GES, NTVI, and other teachers associations. Participants responded to a 30-items, researcher-developed questionnaire. Data is analyzed on the quadrant constructs and reported as ex post facto analyses of multi-variances and regressions. Multiple associations were established for statistical significance (p=0.05). Causes and effects are postulated for scientific discussions. Findings: It was found out that these quadrants are very significant in teacher development. There were significant variations in the demographic groups. However, most teachers lack considerable skills in entrepreneurship, leadership in teaching and learning, and business thinking strategies. These have significant effect on practices and outcomes. Conclusion and Recommendations: It is quite conclusive therefore that in GES teachers may need further instructions in innovations and creativity to transform knowledge-creation into business venture. In service training (INSET) has to be comprehensive. Teacher education curricula at Colleges may have to be re-visited. Teachers have the potential to raise their social capital, to be entrepreneur, and to exhibit professionalism beyond their community services. Their primal leadership focus will benefit many clienteles including students and social circles. Recommendations examined the policy implications for curriculum design, practice, innovations and educational leadership.Keywords: emotional intelligence, entrepreneurship, leadership, quadrant intelligence (q-i), primal teacher leadership, strategic thinking, social intelligence
Procedia PDF Downloads 31215 Adolescent Health Risk Behaviors and the Mediating Effects of Family Dynamics and Socio-Demographic Factors
Authors: Rufina C. Abul, Dylan Kyle D. Apostol, Darius Rex G. Binuya, Alyanah Mae F. Cauilan, Darren A. Diaz, Angelica Jones A. Gallang, Charisse G. Kiwang, Alyanna Nicole G. Mactal, Nadine Beatrize V. Nerona, Janella Nicole R. Posadas, Charisse Purie C. Toledo
Abstract:
Background: Dramatic physical development, socioemotional adjustment, and cognitive changes highlight adolescent development. Adolescent brains are susceptible to emotional reactivity, making them likely to engage in risk-taking and impulsive behaviors. The family is crucial in laying the foundations of good health. Aims: This study determined the degree of family cohesion, quality of father-child and mother-child relationships, and degree of academic pressure across cultures, age groups, and sexual orientations. Further, it sought the prevalence of adolescent health concerns, including suicide risks, risk-taking behaviors, social media engagement, and self-care deviations. Finally, the correlations between health risk behaviors and the elements of family dynamics were unraveled. Methods: The descriptive-correlational design served as the blueprint for this study. Data were collected from 1095 adolescents aged 12-21 in two high schools and two universities in Baguio City using self-report questionnaires. Data was analyzed using Microsoft Excel Toolpak and IBM SPSS Statistics to identify significant differences and relationships among variables through descriptive statistics (frequency, %, means and figures) and inferential statistics (ANOVA and logistic regression). Results and Discussion: Adolescents generally have strong family cohesion (FC), high-quality father-child relationships (F-CR), very high-quality mother-child relationships(M-CR), and experience high academic pressure (AP). Cultural affiliation does not influence the 4 elements of family dynamics; the higher the age, the stronger the family cohesion; males score significantly higher on family cohesion and mother-child relationship while significantly lower in perceived academic pressure compared to their female and LGBT counterparts. Suicide risk is prevalent among 29-63% of the population, safety issues have the lowest prevalence for having an abusive relationship (8.22%) and the highest for encountering major family changes (53.52%). Substance use was highest for vaping (22.74%), sexual engagement occurs in 14.61% of the population, while 63% are engaged in social media for >5 hours/day. The self-care deviation is highest for weight concerns (63.39%), lack of visits to health care professionals (64.65%) and lack of exercise (49.94%). All 4 elements of family dynamic (FC, F-CR, M-CR and AP) are significantly associated with safety concerns, suicide risks and social media engagement, while M-CR significantly influences cigarette smoking, alcohol drinking, rugby use and engagement in sex. Conclusion and Recommendations: Strong family cohesion and quality parent-child interactions improve emotional and behavioral outcomes. Sexual orientation has a significant impact on academic pressure and social media use, demanding targeted treatments. The link between family dynamics and health-risk behaviors emphasizes the importance of promoting positive family relationships and encouraging safer behaviors, which are critical for increasing adolescents' well-being.Keywords: adolescent health, family cohesion, health risk behaviors, suicide risk
Procedia PDF Downloads 1114 Developing and integrated Clinical Risk Management Model
Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei
Abstract:
Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.Keywords: failure modes and effective analysis, risk management, root cause analysis, model
Procedia PDF Downloads 24913 Neologisms and Word-Formation Processes in Board Game Rulebook Corpus: Preliminary Results
Authors: Athanasios Karasimos, Vasiliki Makri
Abstract:
This research focuses on the design and development of the first text Corpus based on Board Game Rulebooks (BGRC) with direct application on the morphological analysis of neologisms and tendencies in word-formation processes. Corpus linguistics is a dynamic field that examines language through the lens of vast collections of texts. These corpora consist of diverse written and spoken materials, ranging from literature and newspapers to transcripts of everyday conversations. By morphologically analyzing these extensive datasets, morphologists can gain valuable insights into how language functions and evolves, as these extensive datasets can reflect the byproducts of inflection, derivation, blending, clipping, compounding, and neology. This entails scrutinizing how words are created, modified, and combined to convey meaning in a corpus of challenging, creative, and straightforward texts that include rules, examples, tutorials, and tips. Board games teach players how to strategize, consider alternatives, and think flexibly, which are critical elements in language learning. Their rulebooks reflect not only their weight (complexity) but also the language properties of each genre and subgenre of these games. Board games are a captivating realm where strategy, competition, and creativity converge. Beyond the excitement of gameplay, board games also spark the art of word creation. Word games, like Scrabble, Codenames, Bananagrams, Wordcraft, Alice in the Wordland, Once uUpona Time, challenge players to construct words from a pool of letters, thus encouraging linguistic ingenuity and vocabulary expansion. These games foster a love for language, motivating players to unearth obscure words and devise clever combinations. On the other hand, the designers and creators produce rulebooks, where they include their joy of discovering the hidden potential of language, igniting the imagination, and playing with the beauty of words, making these games a delightful fusion of linguistic exploration and leisurely amusement. In this research, more than 150 rulebooks in English from all types of modern board games, either language-independent or language-dependent, are used to create the BGRC. A representative sample of each genre (family, party, worker placement, deckbuilding, dice, and chance games, strategy, eurogames, thematic, role-playing, among others) was selected based on the score from BoardGameGeek, the size of the texts and the level of complexity (weight) of the game. A morphological model with morphological networks, multi-word expressions, and word-creation mechanics based on the complexity of the textual structure, difficulty, and board game category will be presented. In enabling the identification of patterns, trends, and variations in word formation and other morphological processes, this research aspires to make avail of this creative yet strict text genre so as to (a) give invaluable insight into morphological creativity and innovation that (re)shape the lexicon of the English language and (b) test morphological theories. Overall, it is shown that corpus linguistics empowers us to explore the intricate tapestry of language, and morphology in particular, revealing its richness, flexibility, and adaptability in the ever-evolving landscape of human expression.Keywords: board game rulebooks, corpus design, morphological innovations, neologisms, word-formation processes
Procedia PDF Downloads 9912 Flood Risk Assessment for Agricultural Production in a Tropical River Delta Considering Climate Change
Authors: Chandranath Chatterjee, Amina Khatun, Bhabagrahi Sahoo
Abstract:
With the changing climate, precipitation events are intensified in the tropical river basins. Since these river basins are significantly influenced by the monsoonal rainfall pattern, critical impacts are observed on the agricultural practices in the downstream river reaches. This study analyses the crop damage and associated flood risk in terms of net benefit in the paddy-dominated tropical Indian delta of the Mahanadi River. The Mahanadi River basin lies in eastern part of the Indian sub-continent and is greatly affected by the southwest monsoon rainfall extending from the month of June to September. This river delta is highly flood-prone and has suffered from recurring high floods, especially after the 2000s. In this study, the lumped conceptual model, Nedbør Afstrømnings Model (NAM) from the suite of MIKE models, is used for rainfall-runoff modeling. The NAM model is laterally integrated with the MIKE11-Hydrodynamic (HD) model to route the runoffs up to the head of the delta region. To obtain the precipitation-derived future projected discharges at the head of the delta, nine Global Climate Models (GCMs), namely, BCC-CSM1.1(m), GFDL-CM3, GFDL-ESM2G, HadGEM2-AO, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC5, MIROC-ESM-CHEM and NorESM1-M, available in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) archive are considered. These nine GCMs are previously found to best-capture the Indian Summer Monsoon rainfall. Based on the performance of the nine GCMs in reproducing the historical discharge pattern, three GCMs (HadGEM2-AO, IPSL-CM5A-MR and MIROC-ESM-CHEM) are selected. A higher Taylor Skill Score is considered as the GCM selection criteria. Thereafter, the 10-year return period design flood is estimated using L-moments based flood frequency analysis for the historical and three future projected periods (2010-2039, 2040-2069 and 2070-2099) under Representative Concentration Pathways (RCP) 4.5 and 8.5. A non-dimensional hydrograph analysis is performed to obtain the hydrographs for the historical/projected 10-year return period design floods. These hydrographs are forced into the calibrated and validated coupled 1D-2D hydrodynamic model, MIKE FLOOD, to simulate the flood inundation in the delta region. Historical and projected flood risk is defined based on the information about the flood inundation simulated by the MIKE FLOOD model and the inundation depth-damage-duration relationship of a normal rice variety cultivated in the river delta. In general, flood risk is expected to increase in all the future projected time periods as compared to the historical episode. Further, in comparison to the 2010s (2010-2039), an increased flood risk in the 2040s (2040-2069) is shown by all the three selected GCMs. However, the flood risk then declines in the 2070s as we move towards the end of the century (2070-2099). The methodology adopted herein for flood risk assessment is one of its kind and may be implemented in any world-river basin. The results obtained from this study can help in future flood preparedness by implementing suitable flood adaptation strategies.Keywords: flood frequency analysis, flood risk, global climate models (GCMs), paddy cultivation
Procedia PDF Downloads 7511 Cognitive Decline in People Living with HIV in India and Correlation with Neurometabolites Using 3T Magnetic Resonance Spectroscopy (MRS): A Cross-Sectional Study
Authors: Kartik Gupta, Virendra Kumar, Sanjeev Sinha, N. Jagannathan
Abstract:
Introduction: A significant number of patients having human immunodeficiency virus (HIV) infection show a neurocognitive decline (NCD) ranging from minor cognitive impairment to severe dementia. The possible causes of NCD in HIV-infected patients include brain injury by HIV before cART, neurotoxic viral proteins and metabolic abnormalities. In the present study, we compared the level of NCD in asymptomatic HIV-infected patients with changes in brain metabolites measured by using magnetic resonance spectroscopy (MRS). Methods: 43 HIV-positive patients (30 males and 13 females) coming to ART center of the hospital and HIV-seronegative healthy subjects were recruited for the study. All the participants completed MRI and MRS examination, detailed clinical assessments and a battery of neuropsychological tests. All the MR investigations were carried out at 3.0T MRI scanner (Ingenia/Achieva, Philips, Netherlands). MRI examination protocol included the acquisition of T2-weighted imaging in axial, coronal and sagittal planes, T1-weighted, FLAIR, and DWI images in the axial plane. Patients who showed any apparent lesion on MRI were excluded from the study. T2-weighted images in three orthogonal planes were used to localize the voxel in left frontal lobe white matter (FWM) and left basal ganglia (BG) for single voxel MRS. Single voxel MRS spectra were acquired with a point resolved spectroscopy (PRESS) localization pulse sequence at an echo time (TE) of 35 ms and a repetition time (TR) of 2000 ms with 64 or 128 scans. Automated preprocessing and determination of absolute concentrations of metabolites were estimated using LCModel by water scaling method and the Cramer-Rao lower bounds for all metabolites analyzed in the study were below 15\%. Levels of total N-acetyl aspartate (tNAA), total choline (tCho), glutamate + glutamine (Glx), total creatine (tCr), were measured. Cognition was tested using a battery of tests validated for Indian population. The cognitive domains tested were the memory, attention-information processing, abstraction-executive, simple and complex perceptual motor skills. Z-scores normalized according to age, sex and education standard were used to calculate dysfunction in these individual domains. The NCD was defined as dysfunction with Z-score ≤ 2 in at least two domains. One-way ANOVA was used to compare the difference in brain metabolites between the patients and healthy subjects. Results: NCD was found in 23 (53%) patients. There was no significant difference in age, CD4 count and viral load between the two groups. Maximum impairment was found in the domains of memory and simple motor skills i.e., 19/43 (44%). The prevalence of deficit in attention-information processing, complex perceptual motor skills and abstraction-executive function was 37%, 35%, 33% respectively. Subjects with NCD had a higher level of Glutamate in the Frontal region (8.03 ± 2.30 v/s. 10.26 ± 5.24, p-value 0.001). Conclusion: Among newly diagnosed, ART-naïve retroviral disease patients from India, cognitive decline was found in 53\% patients using tests validated for this population. Those with neurocognitive decline had a significantly higher level of Glutamate in the left frontal region. There was no significant difference in age, CD4 count and viral load at initiation of ART between the two groups.Keywords: HIV, neurocognitive decline, neurometabolites, magnetic resonance spectroscopy
Procedia PDF Downloads 21310 Production of Insulin Analogue SCI-57 by Transient Expression in Nicotiana benthamiana
Authors: Adriana Muñoz-Talavera, Ana Rosa Rincón-Sánchez, Abraham Escobedo-Moratilla, María Cristina Islas-Carbajal, Miguel Ángel Gómez-Lim
Abstract:
The highest rates of diabetes incidence and prevalence worldwide will increase the number of diabetic patients requiring insulin or insulin analogues. Then, current production systems would not be sufficient to meet the future market demands. Therefore, developing efficient expression systems for insulin and insulin analogues are needed. In addition, insulin analogues with better pharmacokinetics and pharmacodynamics properties and without mitogenic potential will be required. SCI-57 (single chain insulin-57) is an insulin analogue having 10 times greater affinity to the insulin receptor, higher resistance to thermal degradation than insulin, native mitogenicity and biological effect. Plants as expression platforms have been used to produce recombinant proteins because of their advantages such as cost-effectiveness, posttranslational modifications, absence of human pathogens and high quality. Immunoglobulin production with a yield of 50% has been achieved by transient expression in Nicotiana benthamiana (Nb). The aim of this study is to produce SCI-57 by transient expression in Nb. Methodology: DNA sequence encoding SCI-57 was cloned in pICH31070. This construction was introduced into Agrobacterium tumefaciens by electroporation. The resulting strain was used to infiltrate leaves of Nb. In order to isolate SCI-57, leaves from transformed plants were incubated 3 hours with the extraction buffer therefore filtrated to remove solid material. The resultant protein solution was subjected to anion exchange chromatography on an FPLC system and ultrafiltration to purify SCI-57. Detection of SCI-57 was made by electrophoresis pattern (SDS-PAGE). Protein band was digested with trypsin and the peptides were analyzed by Liquid chromatography tandem-mass spectrometry (LC-MS/MS). A purified protein sample (20µM) was analyzed by ESI-Q-TOF-MS to obtain the ionization pattern and the exact molecular weight determination. Chromatography pattern and impurities detection were performed using RP-HPLC using recombinant insulin as standard. The identity of the SCI-57 was confirmed by anti-insulin ELISA. The total soluble protein concentration was quantified by Bradford assay. Results: The expression cassette was verified by restriction mapping (5393 bp fragment). The SDS-PAGE of crude leaf extract (CLE) of transformed plants, revealed a protein of about 6.4 kDa, non-present in CLE of untransformed plants. The LC-MS/MS results displayed one peptide with a high score that matches SCI-57 amino acid sequence in the sample, confirming the identity of SCI-57. From the purified SCI-57 sample (PSCI-57) the most intense charge state was 1069 m/z (+6) on the displayed ionization pattern corresponding to the molecular weight of SCI-57 (6412.6554 Da). The RP-HPLC of the PSCI-57 shows the presence of a peak with similar retention time (rt) and UV spectroscopic profile to the insulin standard (SCI-57 rt=12.96 and insulin rt=12.70 min). The collected SCI-57 peak had ELISA signal. The total protein amount in CLE from transformed plants was higher compared to untransformed plants. Conclusions: Our results suggest the feasibility to produce insulin analogue SCI-57 by transient expression in Nicotiana benthamiana. Further work is being undertaken to evaluate the biological activity by glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes.Keywords: insulin analogue, mass spectrometry, Nicotiana benthamiana, transient expression
Procedia PDF Downloads 3489 Clinical Efficacy of Localized Salvage Prostate Cancer Reirradiation with Proton Scanning Beam Therapy
Authors: Charles Shang, Salina Ramirez, Stephen Shang, Maria Estrada, Timothy R. Williams
Abstract:
Purpose: Over the past decade, proton therapy utilizing pencil beam scanning has emerged as a preferred treatment modality in radiation oncology, particularly for prostate cancer. This retrospective study aims to assess the clinical and radiobiological efficacy of proton scanning beam therapy in the treatment of localized salvage prostate cancer, following initial radiation therapy with a different modality. Despite the previously delivered high radiation doses, this investigation explores the potential of proton reirradiation in controlling recurrent prostate cancer and detrimental quality of life side effects. Methods and Materials: A retrospective analysis was conducted on 45 cases of locally recurrent prostate cancer that underwent salvage proton reirradiation. Patients were followed for 24.6 ± 13.1 months post-treatment. These patients had experienced an average remission of 8.5 ± 7.9 years after definitive radiotherapy for localized prostate cancer (n=41) or post-prostatectomy (n=4), followed by rising PSA levels. Recurrent disease was confirmed by FDG-PET (n=31), PSMA-PET (n=10), or positive local biopsy (n=4). Gross tumor volume (GTV) was delineated based on PET and MR imaging, with the planning target volume (PTV) expanding to an average of 10.9 cm³. Patients received proton reirradiation using two oblique coplanar beams, delivering total doses ranging from 30.06 to 60.00 GyE in 17–30 fractions. All treatments were administered using the ProBeam Compact system with CT image guidance. The International Prostate Symptom Scores (IPSS) and prostate-specific antigen (PSA) levels were evaluated to assess treatment-related toxicity and tumor control. Results and Discussions: In this cohort (mean age: 76.7 ± 7.3 years), 60% (27/45) of patients showed sustained reductions in PSA levels post-treatment, while 36% (16/45) experienced a PSA decline of more than 0.8 ng/mL. Additionally, 73% (33/45) of patients exhibited an initial PSA reduction, though some showed later PSA increases, indicating the potential presence of undetected metastatic lesions. The median post-retreatment IPSS score was 4, significantly lower than scores reported in other treatment studies. Overall, 69% of patients reported mild urinary symptoms, with 96% (43/45) experiencing mild to moderate symptoms. Three patients experienced grade I or II proctitis, while one patient reported grade III proctitis. These findings suggest that regional organs, including the urethra, bladder, and rectum, demonstrate significant radiobiological recovery from prior radiation exposure, enabling tolerance to additional proton scanning beam therapy. Conclusions: This retrospective analysis of 45 patients with recurrent localized prostate cancer treated with salvage proton reirradiation demonstrates favorable outcomes, with a median follow-up of two years. The post-retreatment IPSS scores were comparable to those reported in follow-up studies of initial radiation therapy treatments, indicating stable or improved urinary symptoms compared to the end of initial treatment. These results highlight the efficacy of proton scanning beam therapy in providing effective salvage treatment while minimizing adverse effects on critical organs. The findings also enhance the understanding of radiobiological responses to reirradiation and support proton therapy as a viable option for patients with recurrent localized prostate cancer following previous definitive radiation therapy.Keywords: prostate salvage radiotherapy, proton therapy, biological radiation tolerance, radiobiology of organs
Procedia PDF Downloads 188 Screening and Improved Production of an Extracellular β-Fructofuranosidase from Bacillus Sp
Authors: Lynette Lincoln, Sunil S. More
Abstract:
With the rising demand of sugar used today, it is proposed that world sugar is expected to escalate up to 203 million tonnes by 2021. Hydrolysis of sucrose (table sugar) into glucose and fructose equimolar mixture is catalyzed by β-D-fructofuranoside fructohydrolase (EC 3.2.1.26), commonly called as invertase. For fluid filled center in chocolates, preparation of artificial honey, as a sweetener and especially to ensure that food stuffs remain fresh, moist and soft for longer spans invertase is applied widely and is extensively being used. From an industrial perspective, properties such as increased solubility, osmotic pressure and prevention of crystallization of sugar in food products are highly desired. Screening for invertase does not involve plate assay/qualitative test to determine the enzyme production. In this study, we use a three-step screening strategy for identification of a novel bacterial isolate from soil which is positive for invertase production. The primary step was serial dilution of soil collected from sugarcane fields (black soil, Maddur region of Mandya district, Karnataka, India) was grown on a Czapek-Dox medium (pH 5.0) containing sucrose as the sole C-source. Only colonies with the capability to utilize/breakdown sucrose exhibited growth. Bacterial isolates released invertase in order to take up sucrose, splitting the disaccharide into simple sugars. Secondly, invertase activity was determined from cell free extract by measuring the glucose released in the medium at 540 nm. Morphological observation of the most potent bacteria was examined by several identification tests using Bergey’s manual, which enabled us to know the genus of the isolate to be Bacillus. Furthermore, this potent bacterial colony was subjected to 16S rDNA PCR amplification and a single discrete PCR amplicon band of 1500 bp was observed. The 16S rDNA sequence was used to carry out BLAST alignment search tool of NCBI Genbank database to obtain maximum identity score of sequence. Molecular sequencing and identification was performed by Xcelris Labs Ltd. (Ahmedabad, India). The colony was identified as Bacillus sp. BAB-3434, indicating to be the first novel strain for extracellular invertase production. Molasses, a by-product of the sugarcane industry is a dark viscous liquid obtained upon crystallization of sugar. An enhanced invertase production and optimization studies were carried out by one-factor-at-a-time approach. Crucial parameters such as time course (24 h), pH (6.0), temperature (45 °C), inoculum size (2% v/v), N-source (yeast extract, 0.2% w/v) and C-source (molasses, 4% v/v) were found to be optimum demonstrating an increased yield. The findings of this study reveal a simple screening method of an extracellular invertase from a rapidly growing Bacillus sp., and selection of best factors that elevate enzyme activity especially utilization of molasses which served as an ideal substrate and also as C-source, results in a cost-effective production under submerged conditions. The invert mixture could be a replacement for table sugar which is an economic advantage and reduce the tedious work of sugar growers. On-going studies involve purification of extracellular invertase and determination of transfructosylating activity as at high concentration of sucrose, invertase produces fructooligosaccharides (FOS) which possesses probiotic properties.Keywords: Bacillus sp., invertase, molasses, screening, submerged fermentation
Procedia PDF Downloads 2317 Comparing Implications of Manual and ROSA-assisted Total Knee Replacements on Patients and Physicians: A Scoping Review
Authors: Bassem M. Darwish, Robert H. Ablove
Abstract:
Introduction: Total knee arthroscopy (TKA) is a commonly performed procedure in patients with end-stage osteoarthritis and inaccuracy of component alignment in TKA has been shown to have many adverse post-operative outcomes such as accelerated implant wear, reduced functional outcomes, and shorter overall implant survival. Robotic surgical systems have been introduced to try and improve joint alignment and functional outcomes in knee arthroscopy, one recent iteration is the ROSA knee system, released to the market in 2019. The objective of this scoping review is to map the available evidence, identify the current types of evidence, and identify knowledge gaps to guide future studies on patient outcomes following ROSA-assisted total knee arthroplasties. Methods: An electronic search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. Search terms included ROSA, knee arthroscopy, osteoarthritis, robotic, and malalignment. Types of study participants included patients with osteoarthritis, ages 18 and older, male or female, who received manual TKA (mTKA) or ROSA-assisted TKA (rTKA), and human patients or cadavers. Published, peer-reviewed controlled trials, observational studies, and case series were included. Case reports were not included in article review. Resulting articles were first screened based on title and abstract. Articles meeting inclusion criteria based on title and abstract review then underwent full-text review by the same reviewer. Results: This scoping review identified 11 total studies, 3 prospective observational studies, and 8 retrospective observational studies - a total of 970 rTKA patients and 1745 mTKA patients. There were no case series or randomized controlled trials comparing rTKA and mTKA. Patient-centered outcomes showed promise for rTKA, where it frequently showed significantly favorable functional outcomes, measured via KOOS-JR, VAS, KSS, OKS, FJS, and PROMIS scores, at various times postoperatively. However, there was much discrepancy about which score yielded significance at which postoperative follow-up. Complication rates, reoperation rates, and LOS were very similar between mTKA and rTKA groups. Studies also showed rTKA had more accurate joint alignment within the 0 ± 3o corridor and had significantly higher rates of achieving postoperative joint angles similar to the preoperative plan. Finally, there was major agreement that rTKA cases take significantly longer time at the start, however, there is a rapid learning curve. Once past the learning curve, rTKA cases are performed in a similar time to mTKA and reduced physician stress and strain. Conclusion: The ROSA knee system represents a promising option for the management of osteoarthritis via total knee arthroscopy. The studies reviewed in this paper favor the patient-centered function outcomes, joint alignments, and physician health implications of the ROSA knee system to conventional total knee arthroscopy. Further study is warranted, however, to better understand recovery periods, longer-term functional outcomes, operative fatigue, and reduction in radiation exposure.Keywords: arthroplasty, knee, robotics, malalignment
Procedia PDF Downloads 296 The Use of Antioxidant and Antimicrobial Properties of Plant Extracts for Increased Safety and Sustainability of Dairy Products
Authors: Loreta Serniene, Dalia Sekmokiene, Justina Tomkeviciute, Lina Lauciene, Vaida Andruleviciute, Ingrida Sinkeviciene, Kristina Kondrotiene, Neringa Kasetiene, Mindaugas Malakauskas
Abstract:
One of the most important areas of product development and research in the dairy industry is the product enrichment with active ingredients as well as leading to increased product safety and sustainability. The most expanding field of the active ingredients is the various plants' CO₂ extracts with aromatic, antioxidant and antimicrobial properties. In this study, 15 plant extracts were evaluated based on their antioxidant, antimicrobial properties as well as sensory acceptance indicators for the development of new dairy products. In order to increase the total antioxidant capacity of the milk products, it was important to determine the content of phenolic compounds and antioxidant activity of CO₂ extract. The total phenolic content of fifteen different commercial CO₂ extracts was determined by the Folin-Ciocalteu reagent and expressed as milligrams of the Gallic acid equivalents (GAE) in gram of extract. The antioxidant activities were determined by 2.2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonate (ABTS) methods. The study revealed that the antioxidant activities of investigated CO₂ extract vary from 4.478-62.035 µmole Trolox/g, while the total phenolic content was in the range of 2.021-38.906 mg GAE/g of extract. For the example, the estimated antioxidant activity of Chinese cinnamon (Cinammonum aromaticum) CO₂ extract was 62.023 ± 0.15 µmole Trolox/g and the total flavonoid content reached 17.962 ± 0.35 mg GAE/g. These two parameters suggest that cinnamon could be a promising supplement for the development of new cheese. The inhibitory effects of these essential oils were tested by using agar disc diffusion method against pathogenic bacteria, most commonly found in dairy products. The obtained results showed that essential oil of lemon myrtle (Backhousia citriodora) and cinnamon (Cinnamomum cassia) has antimicrobial activity against E. coli, S. aureus, B. cereus, P. florescens, L. monocytogenes, Br. thermosphacta, P. aeruginosa and S. typhimurium with the diameter of inhibition zones variation from 10 to 52 mm. The sensory taste acceptability of plant extracts in combination with a dairy product was evaluated by a group of sensory evaluation experts (31 individuals) by the criteria of overall taste acceptability in the scale of 0 (not acceptable) to 10 (very acceptable). Each of the tested samples included 200g grams of natural unsweetened greek yogurt without additives and 1 drop of single plant extract (essential oil). The highest average of overall taste acceptability was defined for the samples with essential oils of orange (Citrus sinensis) - average score 6.67, lemon myrtle (Backhousia citriodora) – 6.62, elderberry flower (Sambucus nigra flos.) – 6.61, lemon (Citrus limon) – 5.75 and cinnamon (Cinnamomum cassia) – 5.41, respectively. The results of this study indicate plant extracts of Cinnamomum cassia and Backhousia citriodora as a promising additive not only to increase the total antioxidant capacity of the milk products and as alternative antibacterial agent to combat pathogenic bacteria commonly found in dairy products but also as a desirable flavour for the taste pallet of the consumers with expressed need for safe, sustainable and innovative dairy products. Acknowledgment: This research was funded by the European Regional Development Fund according to the supported activity 'Research Projects Implemented by World-class Researcher Groups' under Measure No. 01.2.2-LMT-K-718.Keywords: antioxidant properties, antimicrobial properties, cinnamon, CO₂ plant extracts, dairy products, essential oils, lemon myrtle
Procedia PDF Downloads 2045 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study
Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan
Abstract:
Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study
Procedia PDF Downloads 1724 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 813 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas
Authors: Julien Caudeville, Muriel Ismert
Abstract:
Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.Keywords: health risk, environment, composite indicator, hotspot areas
Procedia PDF Downloads 2472 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 571 Non Pharmacological Approach to IBS (Irritable Bowel Syndrome)
Authors: A. Aceranti, L. Moretti, S. Vernocchi, M. Colorato, P. Caristia
Abstract:
Irritable bowel syndrome (IBS) is the association between abdominal pain, abdominal distension and intestinal dysfunction for recurring periods. About 10% of the world's population has IBS at any given time in their life, and about 200 people per 100,000 receive an initial diagnosis of IBS each year. Persistent pain is recognized as one of the most pervasive and challenging problems facing the medical community today. Persistent pain is considered more as a complex pathophysiological, diagnostic and therapeutic situation rather than as a persistent symptom. The low efficiency of conventional drug treatments has led many doctors to become interested in the non-drug alternative treatment of IBS, especially for more severe cases. Patients and providers are often dissatisfied with the available drug remedies and often seek complementary and alternative medicine (CAM), a unique and holistic approach to treatment that is not a typical component of conventional medicine. Osteopathic treatment may be of specific interest in patients with IBS. Osteopathy is a complementary health approach that emphasizes the role of the musculoskeletal system in health and promotes optimal function of the body's tissues using a variety of manual techniques to improve body function. Osteopathy has been defined as a patient-centered health discipline based on the principles of interrelation between body structure and function, the body's innate capacity for self-healing and the adoption of a whole person health approach. mainly by practicing manual processing. Studies reported that osteopathic manual treatment (OMT) reduced IBS symptoms, such as abdominal pain, constipation, diarrhea, and improved general well-being. The focus in the treatment of IBS with osteopathy has gone beyond simple spinal alignment, to directly address the abnormal physiology of the body using a series of direct and indirect techniques. The topic of this study was chosen for different reasons: due to the large number of people involved who suffer from this disorder and for the dysfunction itself, since nowadays there is still little clarity about the best type of treatment and, above all, to its origin. The visceral component in the osteopathic field is still a world to be discovered, although it is related to a large part of patient series, it has contents that affect numerous disciplines and this makes it an enigma yet to be solved. The study originated in the didactic practice where the curiosity of a topic is marked that, even today, no one is able to explain and, above all, cure definitively. The main purpose of this study is to try to create a good basis on the osteopathic discipline for subsequent studies that can be exhaustive in the best possible way, resolving some doubts about which treatment modality can be used with more relevance. The path was decided to structure it in such a way that 3 types of osteopathic treatment are used on 3 groups of people who will be selected after completing a questionnaire, which will deem them suitable for the study. They will, in fact, be divided into three groups where: - the first group was given a visceral osteopathic treatment. - The second group was given a manual osteopathic treatment of neurological stimulation. - The third group received a placebo treatment. At the end of the treatment, questionnaires will be re-proposed respectively one week after the session and one month after the treatment from which any data will be collected that will demonstrate the effectiveness or otherwise of the treatment received. The sample of 50 patients examined underwent an oral interview to evaluate the inclusion and exclusion criteria to participate in the study. Of the 50 patients questioned, 17 people who underwent different osteopathic techniques were eligible for the study. Comparing the data related to the first assessment of tenderness and frequency of symptoms with the data related to the first follow-up shows a significant improvement in the score assigned to the different questions, especially in the neurogenic and visceral groups. We are aware of the fact that it is a study performed on a small sample of patients, and this is a penalizing factor. We remain, however, convinced that having obtained good results in terms of subjective improvement in the quality of life of the subjects, it would be very interesting to re-propose the study on a larger sample and fill the gaps.Keywords: IBS, osteopathy, colon, intestinal inflammation
Procedia PDF Downloads 101