Search results for: web proxy detection
924 Profiles of Physical Fitness and Enjoyment among Children: Associations with Sport Participation
Authors: Norjali Wazir M. R. W., Pion P., Mostaert M., De Meester A., Lenoir M., Bardid F.
Abstract:
Background and study aim: Most of the people assume that someone will perform well on something they like. A tool evaluating how much an individual likes an activity can also be guidance for talent detection and to keep youngster doing what they like as a recreational sport. The purpose of this study was to identify the relationship between physical performances with something that they like. Material and methods: In this cross-sectional study, 558 pupils age between 8 years to 11 years were tested using test battery containing 7 physical performance tests (I Do) compared to a pictorial scale containing 7 pictures (I Like) referring to the physical performance tests. Pearson correlation was computed to investigate the relation between the actual performance and the enjoyment. Results: Moderate significant correlations between each of the respective I Do, and I Like components were found. It appears that the correlation between the endurance items is higher as compared to the other six characteristics. Rerunning the analysis for age and sex groups separately resulted in only one significant correlation across all age group, namely between the evaluations of cardiovascular endurance. Conclusions: Information on enjoyment appears to be a useful and cost-effective addition to current multidimensional test batteries in a sport. By providing a clear picture on activities the young child or athlete likes or dislikes, attrition can be increased if a child starts his ‘career’ in a sport that alludes to skills or tasks he/she likes. This enjoyment will increase the intrinsic motivation, which is beneficial for sustained sports participation as well as for avoiding dropout in promising young athletes.Keywords: I Do, I Like, physical performance, enjoyment
Procedia PDF Downloads 153923 Photo Electrical Response in Graphene Based Resistive Sensor
Authors: H. C. Woo, F. Bouanis, C. S. Cojocaur
Abstract:
Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications.Keywords: graphene, resistive sensor, optoelectronics, photoresponse
Procedia PDF Downloads 285922 Comparison of the Positive and Indeterminate Rates of QuantiFERON-TB Gold In-Tube and T-SPOT. TB According to Age-group
Authors: Kina Kim
Abstract:
Background: There are two types of interferon-gamma release assays (IGRAs) in use for the detection of latent tuberculosis infection (LTBI), QuantiFERON-TB Gold In-tube (QFT-GIT) and T-SPOT.TB. There are some reports that IGRA results are affected by the patient's age. This study aims to compare the results of both IGRA tests according to age groups. Methods: We reviewed 54,882 samples referred to an independent reference laboratory (Seegene Medical Foundation, Seoul, Korea) for the diagnosis of LTBI from January 1, 2021, to December 31, 2021. This retrospective study enrolled 955 patients tested using QFT-GIT and 53,927 patients tested using T-SPOT.TB. The results of both IGRAs were divided in three age groups (0-9, 10-17, and ≥18-year old). The positive rates and the indeterminate rates between QFT-GIT and T-SPOT.TB were compared. We also evaluated the differences in positive and indeterminate rates by age-group. Results: The positive rate of QFT-GIT was 20.1% (192/955) and that of T-SPOT.TB was 8.7% (4704/53927) in overall patients. The positive rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18-year old were 15.4%, 13.3%, and 22.0%, respectively. The positive rates of T-SPOT.TB were 8.9%, 2.0% and 8.8%,in each agegroup, respectively.The overall prevalence of indeterminate results was 2.1% (20/955) of QFT-GIT and 0.5% (270/53927) of T-SPOT.TB. The indeterminate rates of QFT-GIT in individuals aged 0-9, 10-17, and over 18 years were 0.4%, 6.7%, and 2.6%, respectively. The indeterminate rate of T-SPOT.TB were 0.5%, 0.7% and 0.5%,in each age group, respectively. Conclusion: Our findings suggest that T-SPOT.TB has a lower rate of positive results in overall patients and a lower rate of indeterminate results than those of QFT-GIT. The highest positive rate was found in the over 18 years group for QFT-GIT, but the positive rates of T-SPOT.TB was not significantly different among groups by age. QFT-GIT showed variable and higher indeterminate rates according to age group, but T-SPOT.TB showed lower rates in all age groups(<1%).Keywords: LTBI, IGRA, QFT-GIT, T-SPOT. TB
Procedia PDF Downloads 120921 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection
Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis
Abstract:
This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller
Procedia PDF Downloads 125920 Molecular Detection of Viruses Causing Hemorrhagic Fevers in Rodents in the South-West of Korea
Authors: Sehrish Jalal, Choon-Mee Kim, Dong-Min Kim
Abstract:
Background: Many pathogens causing hemorrhagic fevers of medical and veterinary importance have been identified and isolated from rodents in the Republic of Korea (ROK). Objective: We investigated the prevalence of emerging viruses causing hemorrhagic fevers, such as hemorrhagic fever with renal syndrome (HFRS), severe fever with thrombocytopenia syndrome (SFTS) and flaviviruses, from wild rodents. Methods: Striped field mice, Apodemus agrarius, (n=39) were captured during 2014-2015 in the south-west of ROK. Using molecular methods, lung samples were evaluated for SFTS virus, HFRS virus and flavivirus, and seropositivity was evaluated in the blood. Results: A high positive rate of Hantavirus (46.2%) was detected in A.agrarius lungs by reverse transcription-nested polymerase chain reaction (RT-N-PCR). The monthly prevalence of HFRS virus was 16.7% in October, 86.7% in November and 25% in August of the following year (p < 0.001). Moreover, 17.9% of blood samples were serologically positive for Hantavirus antibodies. The most prevalent strain in A. agrarius was Hantaan virus. All samples were positive for neither SFTS nor flavivirus. Conclusion: Hantan virus was detected in 86.7% of A. agrarius in November (autumn), and thus, virus shedding from A. agrarius can increase the risk of humans contracting HFRS. These findings may help to predict and prevent disease outbreaks in ROK.Keywords: hemorrhagic fever virus, molecular diagnostic technique, rodents, Korea
Procedia PDF Downloads 157919 Daily Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria
Authors: Sidali Khedidji, Noureddine Yassaa, Riad Ladji
Abstract:
In this study, n-alkanes which are hazardous for the environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from April 2013 to Mai 2013. Ambient concentration measurements of n-Alkanes were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MS). Total concentrations for n-Alkanes recorded in Sour El Ghozlane suburban ranged from 42 to 69 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of n-alkanes contain the PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 0.50–7.06 ng/m3 and 0.29–6.97 ng/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations. The guide value fixed by the European Community, 40 μg/m3 was not to exceed 35 days, was exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations 80 μg/m3 has been exceeded in 1 sampler during the period study.Keywords: n-alkanes, PM10, TSP, particulate matter, cement industry
Procedia PDF Downloads 392918 Autism Disease Detection Using Transfer Learning Techniques: Performance Comparison between Central Processing Unit vs. Graphics Processing Unit Functions for Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
Neural network approaches are machine learning methods used in many domains, such as healthcare and cyber security. Neural networks are mostly known for dealing with image datasets. While training with the images, several fundamental mathematical operations are carried out in the Neural Network. The operation includes a number of algebraic and mathematical functions, including derivative, convolution, and matrix inversion and transposition. Such operations require higher processing power than is typically needed for computer usage. Central Processing Unit (CPU) is not appropriate for a large image size of the dataset as it is built with serial processing. While Graphics Processing Unit (GPU) has parallel processing capabilities and, therefore, has higher speed. This paper uses advanced Neural Network techniques such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST-VGG16, and our proposed models to compare CPU and GPU resources. A system for classifying autism disease using face images of an autistic and non-autistic child was used to compare performance during testing. We used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and Execution time. It has been observed that GPU runs faster than the CPU in all tests performed. Moreover, the performance of the Neural Network models in terms of accuracy increases on GPU compared to CPU.Keywords: autism disease, neural network, CPU, GPU, transfer learning
Procedia PDF Downloads 117917 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis
Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao
Abstract:
Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array
Procedia PDF Downloads 105916 High Motivational Salient Face Distractors Slowed Target Detection: Evidence from Behavioral Studies
Authors: Rashmi Gupta
Abstract:
Rewarding stimuli capture attention involuntarily as a result of an association process that develops quickly during value learning, referred to as the reward or value-driven attentional capture. It is essential to compare reward with punishment processing to get a full picture of value-based modulation in visual attention processing. Hence, the present study manipulated both valence/value (reward as well as punishment) and motivational salience (probability of an outcome: high vs. low) together. Series of experiments were conducted, and there were two phases in each experiment. In phase 1, participants were required to learn to associate specific face stimuli with a high or low probability of winning or losing points. In the second phase, these conditioned stimuli then served as a distractor or prime in a speeded letter search task. Faces with high versus low outcome probability, regardless of valence, slowed the search for targets (specifically the left visual field target) and suggesting that the costs to performance on non-emotional cognitive tasks were only driven by motivational salience (high vs. loss) associated with the stimuli rather than the valence (gain vs. loss). It also suggests that the processing of motivationally salient stimuli is right-hemisphere biased. Together, results of these studies strengthen the notion that our visual attention system is more sensitive to affected by motivational saliency rather than valence, which termed here as motivational-driven attentional capture.Keywords: attention, distractors, motivational salience, valence
Procedia PDF Downloads 219915 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda
Authors: Emmanuel Iyamuremye
Abstract:
Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution
Procedia PDF Downloads 134914 Exploring the Issue of Occult Hypoperfusion in the Pre-Hospital Setting
Authors: A. Fordham, A. Hudson
Abstract:
Background: Studies have suggested 16-25% of normotensive trauma patients with no clinical signs of shock have abnormal lactate and BD readings evidencing shock; a phenomenon known as occult hypoperfusion (OH). In light of the scarce quantity of evidence currently documenting OH, this study aimed to identify the prevalence of OH in the pre-hospital setting and explore ways to improve its identification and management. Methods: A quantitative retrospective data analysis was carried out on 75 sets of patient records for trauma patients treated by Kent Surrey Sussex Air Ambulance Trust between November 2013 and October 2014. The KSS HEMS notes and subsequent ED notes were collected. Trends between patients’ SBP on the scene, whether or not they received PRBCs on the scene as well as lactate and BD readings in the ED were assessed. Patients’ KSS HEMS notes written by the HEMS crew were also reviewed and recorded. Results: -Suspected OH was identified in 7% of the patients who did not receive PRBCs in the pre-hospital phase. -SBP heavily influences the physicians’ decision of whether or not to transfuse PRBCs in the pre-hospital phase. Preliminary conclusions: OH is an under-studied and underestimated phenomenon. We suggest a prospective trial is carried out to evaluate whether detecting trauma patients’ tissue perfusion status in the pre-hospital phase using portable devices capable of measuring serum BD and/or lactate could aid more accurate detection and management of all haemorrhaging trauma patients, including patients with OH.Keywords: occult hypoperfusion, PRBC transfusion, point of care testing, pre-hospital emergency medicine, trauma
Procedia PDF Downloads 358913 Detection of Arcobacter and Helicobacter pylori Contamination in Organic Vegetables by Cultural and Polymerase Chain Reaction (PCR) Methods
Authors: Miguel García-Ferrús, Ana González, María A. Ferrús
Abstract:
The most demanded organic foods worldwide are those that are consumed fresh, such as fruits and vegetables. However, there is a knowledge gap about some aspects of organic food microbiological quality and safety. Organic fruits and vegetables are more exposed to pathogenic microorganisms due to surface contact with natural fertilizers such as animal manure, wastes and vermicompost used during farming. It has been suggested that some emergent pathogens, such as Helicobacter pylori or Arcobacter spp., could reach humans through the consumption of raw or minimally processed vegetables. Therefore, the objective of this work was to study the contamination of organic fresh green leafy vegetables by Arcobacter spp. and Helicobacter pylori. For this purpose, a total of 24 vegetable samples, 13 lettuce and 11 spinach were acquired from 10 different ecological supermarkets and greengroceries and analyzed by culture and PCR. Arcobacter spp. was detected in 5 samples (20%) by PCR, 4 spinach and one lettuce. One spinach sample was found to be also positive by culture. For H. pylori, the H. pylori VacA gene-specific band was detected in 12 vegetable samples (50%), 10 lettuces and 2 spinach. Isolation in the selective medium did not yield any positive result, possibly because of low contamination levels together with the presence of the organism in its viable but non-culturable form. Results showed significant levels of H. pylori and Arcobacter contamination in organic vegetables that are generally consumed raw, which seems to confirm that these foods can act as transmission vehicles to humans.Keywords: Arcobacter sp., Helicobacter pylori, Organic Vegetables, Polymerase Chain Reaction (PCR)
Procedia PDF Downloads 163912 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait
Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı
Abstract:
Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).Keywords: effect-range classification, ICP/MS, marine sediments, XRF
Procedia PDF Downloads 130911 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides
Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami
Abstract:
Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane
Procedia PDF Downloads 435910 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil
Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi
Abstract:
Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.Keywords: heavy metals, spectroscopy, spectral bands, PLS regression
Procedia PDF Downloads 82909 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions
Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu
Abstract:
With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence
Procedia PDF Downloads 250908 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method
Authors: Temesgen Geremew
Abstract:
ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.Keywords: SERS, sensor, Hg2+, water detection, polythiophene
Procedia PDF Downloads 64907 Development of a New Characterization Method to Analyse Cypermethrin Penetration in Wood Material by Immunolabelling
Authors: Sandra Tapin-Lingua, Katia Ruel, Jean-Paul Joseleau, Daouia Messaoudi, Olivier Fahy, Michel Petit-Conil
Abstract:
The preservative efficacy of organic biocides is strongly related to their capacity of penetration and retention within wood tissues. The specific detection of the pyrethroid insecticide is currently obtained after extraction followed by chemical analysis by chromatography techniques. However visualizing the insecticide molecule within the wood structure requires specific probes together with microscopy techniques. Therefore, the aim of the present work was to apply a new methodology based on antibody-antigen recognition and electronic microscopy to visualize directly pyrethroids in the wood material. A polyclonal antibody directed against cypermethrin was developed and implement it on Pinus sylvestris wood samples coated with technical cypermethrin. The antibody was tested on impregnated wood and the specific recognition of the insecticide was visualized in transmission electron microscopy (TEM). The immunogold-TEM assay evidenced the capacity of the synthetic biocide to penetrate in the wood. The depth of penetration was measured on sections taken at increasing distances from the coated surface of the wood. Such results correlated with chemical analyzes carried out by GC-ECD after extraction. In addition, the immuno-TEM investigation allowed visualizing, for the first time at the ultrastructure scale of resolution, that cypermethrin was able to diffuse within the secondary wood cell walls.Keywords: cypermethrin, insecticide, wood penetration, wood retention, immuno-transmission electron microscopy, polyclonal antibody
Procedia PDF Downloads 411906 X-Ray Dosimetry by a Low-Cost Current Mode Ion Chamber
Authors: Ava Zarif Sanayei, Mustafa Farjad-Fard, Mohammad-Reza Mohammadian-Behbahani, Leyli Ebrahimi, Sedigheh Sina
Abstract:
The fabrication and testing of a low-cost air-filled ion chamber for X-ray dosimetry is studied. The chamber is made of a metal cylinder, a central wire, a BC517 Darlington transistor, a 9V DC battery, and a voltmeter in order to have a cost-effective means to measure the dose. The output current of the dosimeter is amplified by the transistor and then fed to the large internal resistance of the voltmeter, producing a readable voltage signal. The dose-response linearity of the ion chamber is evaluated for different exposure scenarios by the X-ray tube. kVp values 70, 90, and 120, and mAs up to 20 are considered. In all experiments, a solid-state dosimeter (Solidose 400, Elimpex Medizintechnik) is used as a reference device for chamber calibration. Each case of exposure is repeated three times, the voltmeter and Solidose readings are recorded, and the mean and standard deviation values are calculated. Then, the calibration curve, derived by plotting voltmeter readings against Solidose readings, provided a linear fit result for all tube kVps of 70, 90, and 120. A 99, 98, and 100% linear relationship, respectively, for kVp values 70, 90, and 120 are demonstrated. The study shows the feasibility of achieving acceptable dose measurements with a simplified setup. Further enhancements to the proposed setup include solutions for limiting the leakage current, optimizing chamber dimensions, utilizing electronic microcontrollers for dedicated data readout, and minimizing the impact of stray electromagnetic fields on the system.Keywords: dosimetry, ion chamber, radiation detection, X-ray
Procedia PDF Downloads 76905 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 246904 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device
Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres
Abstract:
The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device
Procedia PDF Downloads 279903 Ice Load Measurements on Known Structures Using Image Processing Methods
Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.Keywords: camera calibration, ice detection, ice load measurements, image processing
Procedia PDF Downloads 367902 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 249901 A Study on the Performance of 2-PC-D Classification Model
Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli
Abstract:
There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.Keywords: classification model, discriminant function, principle component analysis, variable reduction
Procedia PDF Downloads 330900 Paraoxonase 1 (PON 1) Arylesterase and Lactonase Activities, Polymorphism and Conjugated Dienes in Gastroenteritis in Paediatric Population
Authors: M. R. Mogarekar, Shraddha V. More, Pankaj Kumar
Abstract:
Gastroenteritis, the third leading killer of children in India today is responsible for 13% of all deaths in children <5 years of age and kills an estimated 300,000 children in India each year. We decided to investigate parameters which can help in early disease detection and prompt treatment. Serum paraoxonase is calcium dependent esterase which is widely distributed among tissues such as liver, kidney, and intestine and is located in the chromosomal region 7q21.3 22.1. Studies show the presence of excessive reactive oxygen metabolites and antioxidant imbalance in the gastrointestinal tract leading to oxidative stress in gastroenteritis. To our knowledge, this is the first ever study done. The objective of present study is to investigate the role of paraoxonase 1 (PON 1) status i.e arylesterase and lactonase activities and Q192R polymorphism and conjugated dienes, in gastroenteritis of paediatric population. The study and control group consists of 40 paediatric patients with and without gastroenteritis. Paraoxonase arylesterase and lactonase activities were assessed and phenotyping was determined. Conjugated dienes were also assessed. PON 1 arylesterase activities in cases (61.494±13.220) and controls (70.942±15.385) and lactonase activities in cases (15.702±1.036) and controls (17.434±1.176) were significantly decreased (p<0.05). There is no significant difference of phenotypic distribution in cases and controls. Conjugated dienes were found significantly increased in patients (0.086±0.024) than the control group (0.064±0.019) (p<0.05). Paraoxonase 1 activities (arylesterase and lactonase) and conjugated dienes may be useful in risk assessment and management in gastroenteritis in paediatric population.Keywords: paraoxonase 1 polymorphism, arylesterase, lactonase, conjugated dienes, p-nitrophenylacetate, DHC
Procedia PDF Downloads 306899 Computer-Aided Detection of Simultaneous Abdominal Organ CT Images by Iterative Watershed Transform
Authors: Belgherbi Aicha, Hadjidj Ismahen, Bessaid Abdelhafid
Abstract:
Interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis applications. Segmentation of liver, spleen and kidneys is regarded as a major primary step in the computer-aided diagnosis of abdominal organ diseases. In this paper, a semi-automated method for medical image data is presented for the abdominal organ segmentation data using mathematical morphology. Our proposed method is based on hierarchical segmentation and watershed algorithm. In our approach, a powerful technique has been designed to suppress over-segmentation based on mosaic image and on the computation of the watershed transform. Our algorithm is currency in two parts. In the first, we seek to improve the quality of the gradient-mosaic image. In this step, we propose a method for improving the gradient-mosaic image by applying the anisotropic diffusion filter followed by the morphological filters. Thereafter, we proceed to the hierarchical segmentation of the liver, spleen and kidney. To validate the segmentation technique proposed, we have tested it on several images. Our segmentation approach is evaluated by comparing our results with the manual segmentation performed by an expert. The experimental results are described in the last part of this work.Keywords: anisotropic diffusion filter, CT images, morphological filter, mosaic image, simultaneous organ segmentation, the watershed algorithm
Procedia PDF Downloads 438898 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 79897 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model
Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia
Abstract:
Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.Keywords: web page salience region, eye-tracker, spectral residual, visual salience
Procedia PDF Downloads 272896 Development and Validation of HPLC Method on Determination of Acesulfame-K in Jelly Drink Product
Authors: Candra Irawan, David Yudianto, Ahsanu Nadiyya, Dewi Anna Br Sitepu, Hanafi, Erna Styani
Abstract:
Jelly drink was produced from a combination of both natural and synthetic materials, such as acesulfame potassium (acesulfame-K) as synthetic sweetener material. Acesulfame-K content in jelly drink could be determined by High-Performance Liquid Chromatography (HPLC), but this method needed validation due to having a change on the reagent addition step which skips the carrez addition and comparison of mix mobile phase (potassium dihydrogen phosphate and acetonitrile) with ratio from 75:25 to 90:10 to be more efficient and cheap. This study was conducted to evaluate the performance of determination method for acesulfame-K content in the jelly drink by HPLC. The method referred to Deutsches Institut fur Normung European Standard International Organization for Standardization (DIN EN ISO):12856 (1999) about Foodstuffs, Determination of acesulfame-K, aspartame and saccharin. The result of the correlation coefficient value (r) on the linearity test was 0.9987 at concentration range 5-100 mg/L. Detection limit value was 0.9153 ppm, while the quantitation limit value was 1.1932 ppm. The recovery (%) value on accuracy test for sample concentration by spiking 100 mg/L was 102-105%. Relative Standard Deviation (RSD) value for precision and homogenization tests were 2.815% and 4.978%, respectively. Meanwhile, the comparative and stability tests were tstat (0.136) < ttable (2.101) and |µ1-µ2| (1.502) ≤ 0.3×CV Horwitz. Obstinacy test value was tstat < ttable. It can be concluded that the HPLC method for the determination of acesulfame-K in jelly drink product by HPLC has been valid and can be used for analysis with good performance.Keywords: acesulfame-K, jelly drink, HPLC, validation
Procedia PDF Downloads 127895 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 307