Search results for: permittivity measurement techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9049

Search results for: permittivity measurement techniques

8809 The Measurement of City Brand Effectiveness as Methodological and Strategic Challenge: Insights from Individual Interviews with International Experts

Authors: A. Augustyn, M. Florek, M. Herezniak

Abstract:

Since the public authorities are constantly pressured by the public opinion to showcase the tangible and measurable results of their efforts, the evaluation of place brand-related activities becomes a necessity. Given the political and social character of place branding process, the legitimization of the branding efforts requires the compliance of the objectives set out in the city brand strategy with the actual needs, expectations, and aspirations of various internal stakeholders. To deliver on the diverse promises, city authorities and brand managers need to translate them into the measurable indicators against which the brand strategy effectiveness will be evaluated. In concert with these observations are the findings from branding and marketing literature with a widespread consensus that places should adopt a more systematic and holistic approach in order to ensure the performance of their brands. However, the measurement of the effectiveness of place branding remains insufficiently explored in theory, even though it is considered a significant step in the process of place brand management. Therefore, the aim of the research presented in the current paper was to collect insights on the nature of effectiveness measurement of city brand strategies and to juxtapose these findings with the theoretical assumptions formed on the basis of the state-of-the-art literature review. To this end, 15 international academic experts (out of 18 initially selected) with affiliation from ten countries (five continents), were individually interviewed. The standardized set of 19 open-ended questions was used for all the interviewees, who had been selected based on their expertise and reputation in the fields of place branding/marketing. Findings were categorized into four modules: (i) conceptualizations of city brand effectiveness, (ii) methodological issues of city brand effectiveness measurement, (iii) the nature of measurement process, (iv) articulation of key performance indicators (KPIs). Within each module, the interviewees offered diverse insights into the subject based on their academic expertise and professional activity as consultants. They proposed that there should be a twofold understanding of effectiveness. The narrow one when it is conceived as the aptitude to achieve specific goals, and the broad one in which city brand effectiveness is seen as an increase in social and economic reality of a place, which in turn poses diverse challenges for the measurement concepts and processes. Moreover, the respondents offered a variety of insights into the methodological issues, particularly about the need for customization and flexibility of the measurement systems, for the employment of interdisciplinary approach to measurement and implications resulting therefrom. Considerable emphasis was put on the inward approach to measurement, namely the necessity to monitor the resident’s evaluation of brand related activities instead of benchmarking cities against the competitive set. Other findings encompass the issues of developing appropriate KPIs for the city brand, managing the measurement process and the inclusion of diverse stakeholders to produce a sound measurement system. Furthermore, the interviewees enumerated the most frequently made mistakes in measurement mainly resulting from the misunderstanding of the nature of city brands. This research was financed by the National Science Centre, Poland, research project no. 2015/19/B/HS4/00380 Towards the categorization of place brand strategy effectiveness indicators – findings from strategic documents of Polish district cities – theoretical and empirical approach.

Keywords: city branding, effectiveness, experts’ insights, measurement

Procedia PDF Downloads 138
8808 Fair Value Implementation of Financial Asset: Evidence in Indonesia’s Banking Sector

Authors: Alhamdi Alfi Fajri

Abstract:

The purpose of this study is to analyze and to give empirical proof about the effect of fair value implementation on financial asset against information asymmetry in Indonesia’s banking sector. This research tested the effect of fair value implementation on financial asset based on Statement of Financial Accounting Standard (PSAK) No. 55 and the fair value reliability measurement based on PSAK No. 60 against level of information asymmetry. The scope of research is Indonesia’s banking sector. The test’s result shows that the use of fair value based on PSAK No. 55 is significantly associated with information asymmetry. This positive relation is higher than the amortized cost implementation on financial asset. In addition, the fair value hierarchy based on PSAK No. 60 is significantly associated with information asymmetry. This research proves that the more reliable measurement of fair value on financial asset, the more observable fair value measurement and reduces level of information asymmetry.

Keywords: fair value, PSAK No. 55, PSAK No. 60, information asymmetry, bank

Procedia PDF Downloads 343
8807 Coping Techniques, Repertoire, and Flexibility in Parental Adjustment to Pediatric Cancer

Authors: Michael Dolgin, Oz Hamtzani, Talma Kushnir

Abstract:

A literature review has shown that while parents of children with cancer experience increased levels of psychological distress associated with their child's medical condition, considerable variability in parental adjustment is evident. Of the factors that may account for this variability, little attention has been devoted to the simultaneous interaction of three coping constructs and their role in parental adjustment: (1) Coping techniques employed, (2) Repertoire of coping techniques, and (3) Flexibility in applying coping techniques. While these constructs have been studied individually in relation to adjustment in general, studies to date have not included them together within a single conceptual model and research design and evaluated them in a clinical population. The objective of the current study was to determine how these three coping technique constructs interact to impact parental adjustment to pediatric cancer. A cross-sectional sample of 145 parents of children in active cancer treatment completed standardized measures of coping techniques, repertoire, flexibility, and parental distress. A hierarchical multiple regression analysis demonstrated that 37% of the variance in parental distress was predicted by the use of avoidance-focused coping techniques [F(1,118)=69.843, p<.001], with an additional 3% predicted by coping repertoire [F(2,117)=7.63, p=.00] for a total of 40% variance explained. Coping flexibility was found to mediate the relationship between coping repertoire and parental distress. These findings suggest that coping techniques employed by parents (problem/emotion-focused vs. avoidance-focused), as well as coping repertoire, significantly impact parental adjustment. Flexibility in applying coping techniques within one’s coping repertoire further contributes to parental adjustment. Implications for further study and clinical intervention will be presented.

Keywords: coping techniques, repertoire, flexibility, adjustment

Procedia PDF Downloads 37
8806 The Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.

Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials

Procedia PDF Downloads 64
8805 Comparison of Loosely Coupled and Tightly Coupled INS/GNSS Architecture for Guided Rocket Navigation System

Authors: Rahmat Purwoko, Bambang Riyanto Trilaksono

Abstract:

This paper gives comparison of INS/GNSS architecture namely Loosely Coupled and Tightly Coupled using Hardware in the Loop Simulation in Guided Missile RKX-200 rocket model. INS/GNSS Tightly Coupled architecture requires pseudo-range, pseudo-range rate, and position and velocity of each satellite in constellation from GPS (Global Positioning System) measurement. The Loosely Coupled architecture use estimated position and velocity from GNSS receiver. INS/GNSS architecture also requires angular rate and specific force measurement from IMU (Inertial Measurement Unit). Loosely Coupled arhitecture designed using 15 states Kalman Filter and Tightly Coupled designed using 17 states Kalman Filter. Integration algorithm calculation using ECEF frame. Navigation System implemented Zedboard All Programmable SoC.

Keywords: kalman filter, loosely coupled, navigation system, tightly coupled

Procedia PDF Downloads 301
8804 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 479
8803 Taking Learning beyond Kirkpatrick’s Levels: Applying Return on Investment Measurement in Training

Authors: Charles L. Sigmund, M. A. Aed, Lissa Graciela Rivera Picado

Abstract:

One critical component of the training development process is the evaluation of the impact and value of the program. Oftentimes, however, learning organizations bypass this phase either because they are unfamiliar with effective methods for measuring the success or effect of the training or because they believe the effort to be too time-consuming or cumbersome. As a result, most organizations that do conduct evaluation limit their scope to Kirkpatrick L1 (reaction) and L2 (learning), or at most carry through to L4 (results). In 2021 Microsoft made a strategic decision to assess the measurable and monetized impact for all training launches and designed a scalable and program-agnostic tool for providing full-scale L5 return on investment (ROI) estimates for each. In producing this measurement tool, the learning and development organization built a framework for making business prioritizations and resource allocations that is based on the projected ROI of a course. The analysis and measurement posed by this process use a combination of training data and operational metrics to calculate the effective net benefit derived from a given training effort. Business experts in the learning field generally consider a 10% ROI to be an outstanding demonstration of the value of a project. Initial findings from this work applied to a critical customer-facing program yielded an estimated ROI of more than 49%. This information directed the organization to make a more concerted and concentrated effort in this specific line of business and resulted in additional investment in the training methods and technologies being used.

Keywords: evaluation, measurement, return on investment, value

Procedia PDF Downloads 182
8802 Infusion Pump Historical Development, Measurement and Parts of Infusion Pump

Authors: Samuel Asrat

Abstract:

Infusion pumps have become indispensable tools in modern healthcare, allowing for precise and controlled delivery of fluids, medications, and nutrients to patients. This paper provides an overview of the historical development, measurement, and parts of infusion pumps. The historical development of infusion pumps can be traced back to the early 1960s when the first rudimentary models were introduced. These early pumps were large, cumbersome, and often unreliable. However, advancements in technology and engineering over the years have led to the development of smaller, more accurate, and user-friendly infusion pumps. Measurement of infusion pumps involves assessing various parameters such as flow rate, volume delivered, and infusion duration. Flow rate, typically measured in milliliters per hour (mL/hr), is a critical parameter that determines the rate at which fluids or medications are delivered to the patient. Accurate measurement of flow rate is essential to ensure the proper administration of therapy and prevent adverse effects. Infusion pumps consist of several key parts, including the pump mechanism, fluid reservoir, tubing, and control interface. The pump mechanism is responsible for generating the necessary pressure to push fluids through the tubing and into the patient's bloodstream. The fluid reservoir holds the medication or solution to be infused, while the tubing serves as the conduit through which the fluid travels from the reservoir to the patient. The control interface allows healthcare providers to program and adjust the infusion parameters, such as flow rate and volume. In conclusion, infusion pumps have evolved significantly since their inception, offering healthcare providers unprecedented control and precision in delivering fluids and medications to patients. Understanding the historical development, measurement, and parts of infusion pumps is essential for ensuring their safe and effective use in clinical practice.

Keywords: dip, ip, sp, is

Procedia PDF Downloads 55
8801 Demonstrating a Relationship of Frequency and Weight with Arduino UNO and Visual Basic Program

Authors: Woraprat Chaomuang, Sirikorn Sringern, Pawanrat Chamnanwongsritorn, Kridsada Luangthongkham

Abstract:

In this study, we have applied a digital scale to demonstrate the electricity concept of changing the capacity (C), due to the weight of an object, as a function of the distance between the conductor plates and the pressing down. By calibrating on standard scales with the Visual Basic program and the Arduino Uno microcontroller board, we can obtain the weight of the object from the frequency (ƒ) that is measured from the electronic circuit (Astable Multivibrator). Our results support the concept, showing a linear correlation between the frequency and weight with an equation y = –0.0112x + 379.78 and the R2 value of 0.95. In addition, the effects of silicone rods shrinkage, permittivity and temperature were also examined and have found to affect various graph patterns observed.

Keywords: Arduino Uno board, frequency, microcontroller board, parallel plate conductor

Procedia PDF Downloads 201
8800 Measurement and Analysis of Building Penetration Loss for Mobile Networks in Tripoli Area

Authors: Tammam A. Benmusa, Mohamed A. Shlibek, Rawad M. Swesi

Abstract:

The investigation of Buildings Penetration Loss (BPL) of radio signal is getting more and more important. It plays an important role in calculating the indoor coverage for wireless communication networks. In this paper, the theory behind BPL and its mechanisms have been reviewed. The operating frequency, coverage area type, climate condition, time of measurement, and other factors affecting the values of BPL have been discussed. The practical part of this work was conducting 4000 measurements of BPL in different areas in the Libyan capital, Tripoli, to get empirical model for this loss. The measurements were taken for 2 different types of wireless communication networks; mobile telephone network (for Almadar company), which operates at 900 MHz and WiMAX network (LTT company) which operates at 2500 MHz. The results for each network were summarized and presented in several graphs. The graphs are showing how the BPL affected by: time of measurement, morphology (type of area), and climatic environment.

Keywords: building penetration loss, wireless network, mobile network, link budget, indoor network performance

Procedia PDF Downloads 374
8799 Progress in Accuracy, Reliability and Safety in Firedamp Detection

Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza

Abstract:

The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.

Keywords: ATEX standards, gas detector, methane meter, mining safety

Procedia PDF Downloads 134
8798 Investigation of Ceramic-Metal Composites Produced by Electroless Ni Plating of AlN- Astaloy Cr-M

Authors: A. Yönetken, A. Erol, A. Yakar, G. Peşmen

Abstract:

The microstructure, mechanical properties and metalgraphic characteristics of Ni plated AlN-Astaloy Cr-M powders were investigated using specimens produced by tube furnace sintering at 1000-1400 °C temperature. A uniform nickel layer on AlN powders was deposited prior to sintering using electroless plating technique. A composite consisting of ternary additions, metallic phase, Ni and ceramic phase AlN within a matrix of Astaloy Cr-M had been prepared under Ar shroud and then tube furnace sintered. The experimental results carried out by using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) for composition (10% AlN-Astaloy Cr-M) 10% Ni at 1400 °C suggest that the best properties as 132.45HB and permittivity were obtained at 1400 °C.

Keywords: composite, electroless nickel plating, powder metallurgy, sintering

Procedia PDF Downloads 273
8797 Engineering Management and Practice in Nigeria

Authors: Harold Jideofor

Abstract:

The application of Project Management (PM) tools and techniques in the public sector is gradually becoming an important issue in developing economies, especially in a country like Nigeria where projects of different size and structures are undertaken. The paper examined the application of the project management practice in the public sector in Nigeria. The PM lifecycles, tools, and techniques were presented. The study was carried out in Lagos because of its metropolitan nature and rapidly growing economy. Twenty-three copies of questionnaire were administered to 23 public institutions in Lagos to generate primary data. The descriptive analysis techniques using percentages and table presentations coupled with the coefficient of correlation were used for data analysis. The study revealed that application of PM tools and techniques is an essential management approach that tends to achieve specified objectives within specific time and budget limits through the optimum use of resources. Furthermore, the study noted that there is a lack of in-depth knowledge of PM tools and techniques in public sector institutions sampled, also a high cost of the application was also observed by the respondents. The study recommended among others that PM tools and techniques should be applied gradually especially in old government institutions where resistance to change is perceived to be high.

Keywords: project management, public sector, practice, Nigeria

Procedia PDF Downloads 334
8796 A Horn Antenna Loaded with SIW FSS of Crossed Dipoles

Authors: Ibrahim Mostafa El-Mongy, Abdelmegid Allam

Abstract:

In this article analysis and investigation of the effect of loading a horn antenna with substrate integrated waveguide frequency selective surface (SIW FSS) of crossed dipoles of finite size is presented. It is fabricated on Rogers RO4350 (lossy) of relative permittivity 3.33, thickness 1.524mm and loss tangent 0.004. This structure is called a filtering antenna (filtenna). Basically it is applied for filtering and minimizing the interference and noise in the desired band. The filtration is carried out using a finite SIW FSS of crossed dipoles of overall dimensions 98x58 mm2. The filtration is shown by limiting the transmission bandwidth from 4 GHz (8–12 GHz) to 0.3 GHz (0.955–0.985 GHz). It is simulated using CST MWS and measured using network analyzer. There is a good agreement between the simulated and measured results.

Keywords: antenna, filtenna, frequency-selective surface (FSS), horn antennas

Procedia PDF Downloads 282
8795 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant

Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.

Abstract:

The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.

Keywords: availability, displacement, vibration, rio-vibro, condition monitoring

Procedia PDF Downloads 81
8794 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 33
8793 Feasibility Study of Measurement of Turning Based-Surfaces Using Perthometer, Optical Profiler and Confocal Sensor

Authors: Khavieya Anandhan, Soundarapandian Santhanakrishnan, Vijayaraghavan Laxmanan

Abstract:

In general, measurement of surfaces is carried out by using traditional methods such as contact type stylus instruments. This prevalent approach is challenged by using non-contact instruments such as optical profiler, co-ordinate measuring machine, laser triangulation sensors, machine vision system, etc. Recently, confocal sensor is trying to be used in the surface metrology field. This sensor, such as a confocal sensor, is explored in this study to determine the surface roughness value for various turned surfaces. Turning is a crucial machining process to manufacture products such as grooves, tapered domes, threads, tapers, etc. The roughness value of turned surfaces are in the range of range 0.4-12.5 µm, were taken for analysis. Three instruments were used, namely, perthometer, optical profiler, and confocal sensor. Among these, in fact, a confocal sensor is least explored, despite its good resolution about 5 nm. Thus, such a high-precision sensor was used in this study to explore the possibility of measuring turned surfaces. Further, using this data, measurement uncertainty was also studied.

Keywords: confocal sensor, optical profiler, surface roughness, turned surfaces

Procedia PDF Downloads 128
8792 The Perceived Impact of Consultancy Organisations and Social Enterprises: Converging and Diverging Discourses

Authors: Seda Muftugil-Yalcin

Abstract:

With the proliferation of the number of social enterprises worldwide, there is now a whole ecosystem full of different organisational actors revolving around social enterprises. Impact hubs, incubation centers, and organisations (profit or non-profit) that offer consultancy services to social enterprises can be said to constitute one such cluster in the eco-system. These organisations offer a variety of services to social enterprises which desire to maximize their positive social impact. Especially with regards to impact measurement, there are numerous systems/guides/approaches/tools developed that claim to benefit social enterprises. Many organisations choose one of the existing tools and craft programs that help social enterprises to measure and to manage their social impacts. However, empirical evidence with regards to how the services of these consultancy organisations are precisely utilized on the field is scarce. This inevitably casts doubt on the impact of these organisations themselves. This research dwells on four case studies from the Netherlands and Turkey. In each country, two university-affiliated impact centers and two independent consultancy agencies that work with social entrepreneurs in the area of social impact measurement are closely examined. The overarching research question has been 'With regards to impact measurement, how do the founders/managers of these organisations perceive and make sense of their contribution to social enterprises and to the social entrepreneurship eco-system at large?' As for methodology, in-depth interviews were carried out with the managers/founders of these organisations and discourse analysis method has been used for data analysis together with grounded theory. The comparison between Turkey and Netherlands elucidate common denominators of impact measurement hype and discourses that are currently existing worldwide. In addition, it also reveals differing priorities of social enterprises in these different settings, which shape the expectations of social enterprises of consultancy organisations. Comparison between university affiliated impact hubs and independent consultancy organisations also give away important data about how different forms of consultancy organisations (in this case university based and independent) position themselves in relation to alike organisations with similar aims. The overall aim of the research is to reveal the contribution of the consultancy organisations that work with social enterprises to the social entrepreneurship field as perceived by them through a cross cultural study. The findings indicate that in both settings, the organisations that were claiming to bring positive social impact on the social entrepreneurship eco-system through their impact measurement trainings were themselves having a hard time in concretizing their own contributions; which indicated that these organisations were in need of a different impact measurement discourse than the ones they were championing.

Keywords: consultancy organisations, social entrepreneurship, social impact measurement, social impact discourse

Procedia PDF Downloads 116
8791 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: multi-slotted antenna, microstrip patch antenna, frequency selective surface, artificial magnetic conduction

Procedia PDF Downloads 371
8790 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 158
8789 Lateral Cephalometric Radiograph to Determine Sex in Forensic Investigations

Authors: Paulus Maulana

Abstract:

Forensic identification is to help investigators determine a person's identity. Personal identification is often a problem in civil and criminal cases. Orthodontists like all other dental professionals can play a major role by maintaining lateral cephalogram and thus providing important or vital information or can clues to the legal authorities in order to help them in their search. Radiographic lateral cephalometry is a measurement method which focused on the anatomical points of human lateral skull. Sex determination is one of the most important aspects of the personal identification in forensic. Lateral cephalogram is a valuable tool in identification of sex as reveal morphological details of the skull on single radiograph. This present study evaluates the role of lateral cephalogram in identification of sex that parameters of lateral cephalogram are linear measurement and angle measurement. The linear measurements are N-S ( Anterior cranial length), Sna-Snp (Palatal plane length), Me-Go (menton-gonion), N-Sna ( Midfacial anterior height ), Sna-Me (Lower anterior face height), Co-Gn (total mandibular length). The angle measurements are SNA, SNB, ANB, Gonial, Interincical, and facial.

Keywords: lateral cephalometry, cephalogram, sex, forensic, parameter

Procedia PDF Downloads 187
8788 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm

Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra

Abstract:

With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.

Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction

Procedia PDF Downloads 116
8787 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles

Authors: Herath M. P. C. Jayaweera, Samer Hanoun

Abstract:

Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.

Keywords: drones, force field methods, obstacle avoidance, path planning

Procedia PDF Downloads 84
8786 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach

Authors: Joseph C. Chen

Abstract:

Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.

Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design

Procedia PDF Downloads 430
8785 Methods to Measure the Quality of 2D Image Compression Techniques

Authors: Mohammed H. Rasheed, Hussein Nadhem Fadhel, Mohammed M. Siddeq

Abstract:

In this paper we suggested image quality measuring metrics tools that can provide an accurate and close to the perceived quality sense of the tested images. Such tools give metrics that can be used to compare the performance of image compression algorithms. In this paper, two new metrics to measure the quality of decompressed images are proposed. The metric measurement based on combined data (CD) between an originals and decompressed images. Compared with other e.g., PSNR and RMSE, the proposed metrics gives values with the closest reflection of image quality perception by the human eye.

Keywords: RMSE, PSNR, image quality metrics, image compression

Procedia PDF Downloads 28
8784 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity

Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki

Abstract:

In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.

Keywords: 3D indexation, spherical harmonic, similarity of 3D objects, measurement similarity

Procedia PDF Downloads 428
8783 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors

Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri

Abstract:

Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.

Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods

Procedia PDF Downloads 129
8782 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 214
8781 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 91
8780 Building Information Modeling Applied for the Measurement of Water Footprint of Construction Supplies

Authors: Julio Franco

Abstract:

Water is used, directly and indirectly, in all activities of the construction productive chain, making it a subject of worldwide relevance for sustainable development. The ongoing expansion of urban areas leads to a high demand for natural resources, which in turn cause significant environmental impacts. The present work proposes the application of BIM tools to assist the measurement of the water footprint (WF) of civil construction supplies. Data was inserted into the model as element properties, allowing them to be analyzed by element or in the whole model. The WF calculation was automated using parameterization in Autodesk Revit software. Parameterization was associated to the materials of each element in the model so that any changes in these elements directly alter the results of WF calculations. As a case study, we applied into a building project model to test the parameterized calculus of WF. Results show that the proposed parameterization successfully automated WF calculations according to design changes. We envision this tool to assist the measurement and rationalization of the environmental impact in terms of WF of construction projects.

Keywords: building information modeling, BIM, sustainable development, water footprint

Procedia PDF Downloads 146