Search results for: patch-based similarity metric
714 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel
Authors: Binyam Teferi
Abstract:
In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction
Procedia PDF Downloads 90713 Trinary Affinity—Mathematic Verification and Application (1): Construction of Formulas for the Composite and Prime Numbers
Authors: Liang Ming Zhong, Yu Zhong, Wen Zhong, Fei Fei Yin
Abstract:
Trinary affinity is a description of existence: every object exists as it is known and spoken of, in a system of 2 differences (denoted dif1, dif₂) and 1 similarity (Sim), equivalently expressed as dif₁ / Sim / dif₂ and kn / 0 / tkn (kn = the known, tkn = the 'to be known', 0 = the zero point of knowing). They are mathematically verified and illustrated in this paper by the arrangement of all integers onto 3 columns, where each number exists as a difference in relation to another number as another difference, and the 2 difs as arbitrated by a third number as the Sim, resulting in a trinary affinity or trinity of 3 numbers, of which one is the known, the other the 'to be known', and the third the zero (0) from which both the kn and tkn are measured and specified. Consequently, any number is horizontally specified either as 3n, or as '3n – 1' or '3n + 1', and vertically as 'Cn + c', so that any number seems to occur at the intersection of its X and Y axes and represented by its X and Y coordinates, as any point on Earth’s surface by its latitude and longitude. Technically, i) primes are viewed and treated as progenitors, and composites as descending from them, forming families of composites, each capable of being measured and specified from its own zero called in this paper the realistic zero (denoted 0r, as contrasted to the mathematic zero, 0m), which corresponds to the constant c, and the nature of which separates the composite and prime numbers, and ii) any number is considered as having a magnitude as well as a position, so that a number is verified as a prime first by referring to its descriptive formula and then by making sure that no composite number can possibly occur on its position, by dividing it with factors provided by the composite number formulas. The paper consists of 3 parts: 1) a brief explanation of the trinary affinity of things, 2) the 8 formulas that represent ALL the primes, and 3) families of composite numbers, each represented by a formula. A composite number family is described as 3n + f₁‧f₂. Since there are an infinitely large number of composite number families, to verify the primality of a great probable prime, we have to have it divided with several or many a f₁ from a range of composite number formulas, a procedure that is as laborious as it is the surest way to verifying a great number’s primality. (So, it is possible to substitute planned division for trial division.)Keywords: trinary affinity, difference, similarity, realistic zero
Procedia PDF Downloads 209712 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis
Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei
Abstract:
Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE
Procedia PDF Downloads 339711 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 481710 L1-Convergence of Modified Trigonometric Sums
Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia
Abstract:
The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.Keywords: conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums
Procedia PDF Downloads 353709 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 374708 Prediction of Mental Health: Heuristic Subjective Well-Being Model on Perceived Stress Scale
Authors: Ahmet Karakuş, Akif Can Kilic, Emre Alptekin
Abstract:
A growing number of studies have been conducted to determine how well-being may be predicted using well-designed models. It is necessary to investigate the backgrounds of features in order to construct a viable Subjective Well-Being (SWB) model. We have picked the suitable variables from the literature on SWB that are acceptable for real-world data instructions. The goal of this work is to evaluate the model by feeding it with SWB characteristics and then categorizing the stress levels using machine learning methods to see how well it performs on a real dataset. Despite the fact that it is a multiclass classification issue, we have achieved significant metric scores, which may be taken into account for a specific task.Keywords: machine learning, multiclassification problem, subjective well-being, perceived stress scale
Procedia PDF Downloads 129707 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes
Authors: Alan Luo, Hunter N. B. Moseley
Abstract:
Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography
Procedia PDF Downloads 128706 Tip-Apex Distance as a Long-Term Risk Factor for Hospital Readmission Following Intramedullary Fixation of Intertrochanteric Fractures
Authors: Brandon Knopp, Matthew Harris
Abstract:
Purpose: Tip-apex distance (TAD) has long been discussed as a metric for determining risk of failure in the fixation of peritrochanteric fractures. TAD measurements over 25 millimeters (mm) have been associated with higher rates of screw cut out and other complications in the first several months after surgery. However, there is limited evidence for the efficacy of this measurement in predicting the long-term risk of negative outcomes following hip fixation surgery. The purpose of our study was to investigate risk factors including TAD for hospital readmission, loss of pre-injury ambulation and development of complications within 1 year after hip fixation surgery. Methods: A retrospective review of proximal hip fractures treated with single screw intramedullary devices between 2016 and 2020 was performed at a 327-bed regional medical center. Patients included had a postoperative follow-up of at least 12 months or surgery-related complications developing within that time. Results: 44 of the 67 patients in this study met the inclusion criteria with adequate follow-up post-surgery. There was a total of 10 males (22.7%) and 34 females (77.3%) meeting inclusion criteria with a mean age of 82.1 (± 12.3) at the time of surgery. The average TAD in our study population was 19.57mm and the average 1-year readmission rate was 15.9%. 3 out of 6 patients (50%) with a TAD > 25mm were readmitted within one year due to surgery-related complications. In contrast, 3 out of 38 patients (7.9%) with a TAD < 25mm were readmitted within one year due to surgery-related complications (p=0.0254). Individual TAD measurements, averaging 22.05mm in patients readmitted within 1 year of surgery and 19.18mm in patients not readmitted within 1 year of surgery, were not significantly different between the two groups (p=0.2113). Conclusions: Our data indicate a significant improvement in hospital readmission rates up to one year after hip fixation surgery in patients with a TAD < 25mm with a decrease in readmissions of over 40% (50% vs 7.9%). This result builds upon past investigations by extending the follow-up time to 1 year after surgery and utilizing hospital readmissions as a metric for surgical success. With the well-documented physical and financial costs of hospital readmission after hip surgery, our study highlights a reduction of TAD < 25mm as an effective method of improving patient outcomes and reducing financial costs to patients and medical institutions. No relationship was found between TAD measurements and secondary outcomes, including loss of pre-injury ambulation and development of complications.Keywords: hip fractures, hip reductions, readmission rates, open reduction internal fixation
Procedia PDF Downloads 144705 A Hybrid Watermarking Scheme Using Discrete and Discrete Stationary Wavelet Transformation For Color Images
Authors: Bülent Kantar, Numan Ünaldı
Abstract:
This paper presents a new method which includes robust and invisible digital watermarking on images that is colored. Colored images are used as watermark. Frequency region is used for digital watermarking. Discrete wavelet transform and discrete stationary wavelet transform are used for frequency region transformation. Low, medium and high frequency coefficients are obtained by applying the two-level discrete wavelet transform to the original image. Low frequency coefficients are obtained by applying one level discrete stationary wavelet transform separately to all frequency coefficient of the two-level discrete wavelet transformation of the original image. For every low frequency coefficient obtained from one level discrete stationary wavelet transformation, watermarks are added. Watermarks are added to all frequency coefficients of two-level discrete wavelet transform. Totally, four watermarks are added to original image. In order to get back the watermark, the original and watermarked images are applied with two-level discrete wavelet transform and one level discrete stationary wavelet transform. The watermark is obtained from difference of the discrete stationary wavelet transform of the low frequency coefficients. A total of four watermarks are obtained from all frequency of two-level discrete wavelet transform. Obtained watermark results are compared with real watermark results, and a similarity result is obtained. A watermark is obtained from the highest similarity values. Proposed methods of watermarking are tested against attacks of the geometric and image processing. The results show that proposed watermarking method is robust and invisible. All features of frequencies of two level discrete wavelet transform watermarking are combined to get back the watermark from the watermarked image. Watermarks have been added to the image by converting the binary image. These operations provide us with better results in getting back the watermark from watermarked image by attacking of the geometric and image processing.Keywords: watermarking, DWT, DSWT, copy right protection, RGB
Procedia PDF Downloads 534704 Different Views and Evaluations of IT Artifacts
Authors: Sameh Al-Natour, Izak Benbasat
Abstract:
The introduction of a multitude of new and interactive e-commerce information technology (IT) artifacts has impacted adoption research. Rather than solely functioning as productivity tools, new IT artifacts assume the roles of interaction mediators and social actors. This paper describes the varying roles assumed by IT artifacts, and proposes and distinguishes between four distinct foci of how the artifacts are evaluated. It further proposes a theoretical model that maps the different views of IT artifacts to four distinct types of evaluations.Keywords: IT adoption, IT artifacts, similarity, social actor
Procedia PDF Downloads 389703 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods
Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard
Abstract:
The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.Keywords: algorithms, genetics, matching, population
Procedia PDF Downloads 142702 Basis Theorem of Equivalence of Explicit-Type Iterations for the Class of Multivalued Phi-Quasi-Contrative Maps in Modular Function Spaces
Authors: Hudson Akewe
Abstract:
We prove that the convergence of explicit Mann, explicit Ishikawa, explicit Noor, explicit SP, explicit multistep and explicit multistep-SP fixed point iterative procedures are equivalent for the classes of multi-valued phi-contraction, phi-Zamfirescu and phi-quasi-contractive mappings in the framework of modular function spaces. Our results complement equivalence results on normed and metric spaces in the literature as they elegantly cut out the triangle inequality.Keywords: multistep iterative procedures, multivalued mappings, equivalence results, fixed point
Procedia PDF Downloads 130701 Building an Arithmetic Model to Assess Visual Consistency in Townscape
Authors: Dheyaa Hussein, Peter Armstrong
Abstract:
The phenomenon of visual disorder is prominent in contemporary townscapes. This paper provides a theoretical framework for the assessment of visual consistency in townscape in order to achieve more favourable outcomes for users. In this paper, visual consistency refers to the amount of similarity between adjacent components of townscape. The paper investigates parameters which relate to visual consistency in townscape, explores the relationships between them and highlights their significance. The paper uses arithmetic methods from outside the domain of urban design to enable the establishment of an objective approach of assessment which considers subjective indicators including users’ preferences. These methods involve the standard of deviation, colour distance and the distance between points. The paper identifies urban space as a key representative of the visual parameters of townscape. It focuses on its two components, geometry and colour in the evaluation of the visual consistency of townscape. Accordingly, this article proposes four measurements. The first quantifies the number of vertices, which are points in the three-dimensional space that are connected, by lines, to represent the appearance of elements. The second evaluates the visual surroundings of urban space through assessing the location of their vertices. The last two measurements calculate the visual similarity in both vertices and colour in townscape by the calculation of their variation using methods including standard of deviation and colour difference. The proposed quantitative assessment is based on users’ preferences towards these measurements. The paper offers a theoretical basis for a practical tool which can alter the current understanding of architectural form and its application in urban space. This tool is currently under development. The proposed method underpins expert subjective assessment and permits the establishment of a unified framework which adds to creativity by the achievement of a higher level of consistency and satisfaction among the citizens of evolving townscapes.Keywords: townscape, urban design, visual assessment, visual consistency
Procedia PDF Downloads 311700 Constant Dimension Codes via Generalized Coset Construction
Authors: Kanchan Singh, Sheo Kumar Singh
Abstract:
The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction
Procedia PDF Downloads 17699 Identification of Analogues to EGCG for the Inhibition of HPV E7: A Fundamental Insights through Structural Dynamics Study
Authors: Murali Aarthy, Sanjeev Kumar Singh
Abstract:
High risk human papillomaviruses are highly associated with the carcinoma of the cervix and the other genital tumors. Cervical cancer develops through the multistep process in which increasingly severe premalignant dysplastic lesions called cervical intraepithelial neoplastic progress to invasive cancer. The oncoprotein E7 of human papillomavirus expressed in the lower epithelial layers drives the cells into S-phase creating an environment conducive for viral genome replication and cell proliferation. The replication of the virus occurs in the terminally differentiating epithelium and requires the activation of cellular DNA replication proteins. To date, no suitable drug molecule is available to treat HPV infection whereas identification of potential drug targets and development of novel anti-HPV chemotherapies with unique mode of actions are expected. Hence, our present study aimed to identify the potential inhibitors analogous to EGCG, a green tea molecule which is considered to be safe to use for mammalian systems. A 3D similarity search on the natural small molecule library from natural product database using EGCG identified 11 potential hits based on their similarity score. The structure based docking strategies were implemented in the potential hits and the key interacting residues of protein with compounds were identified through simulation studies and binding free energy calculations. The conformational changes between the apoprotein and the complex were analyzed with the simulation and the results demonstrated that the dynamical and structural effects observed in the protein were induced by the compounds and indicated the dominance to the oncoprotein. Overall, our study provides the basis for the structural insights of the identified potential hits and EGCG and hence, the analogous compounds identified can be potent inhibitors against the HPV 16 E7 oncoprotein.Keywords: EGCG, oncoprotein, molecular dynamics simulation, analogues
Procedia PDF Downloads 126698 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA
Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt
Abstract:
Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry
Procedia PDF Downloads 151697 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 70696 Location Quotient Analysis: Case Study
Authors: Seyed Habib A. Rahmati, Mohamad Hasan Sadeghpour, Parsa Fallah Sheikhlari
Abstract:
Location quotient (LQ) is a comparison technique that represents emphasized economic structure of single zone versus the standard area to identify specialty for every zone. In another words, the exact calculation of this metric can show the main core competencies and critical capabilities of an area to the decision makers. This research focus on the exact calculation of the LQ for an Iranian Province called Qazvin and within a case study introduces LQ of the capable industries of Qazvin. Finally, through different graphs and tables, it creates an opportunity to compare the recognized capabilities.Keywords: location quotient, case study, province analysis, core competency
Procedia PDF Downloads 653695 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators
Authors: Nur Aziza Luxfiati
Abstract:
Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development
Procedia PDF Downloads 157694 Developing Location-allocation Models in the Three Echelon Supply Chain
Authors: Mehdi Seifbarghy, Zahra Mansouri
Abstract:
In this paper a few location-allocation models are developed in a multi-echelon supply chain including suppliers, manufacturers, distributors and retailers. The objectives are maximizing demand coverage, minimizing the total distance of distributors from suppliers, minimizing some facility establishment costs and minimizing the environmental effects. Since nature of the given models is multi-objective, we suggest a number of goal-based solution techniques such L-P metric, goal programming, multi-choice goal programming and goal attainment in order to solve the problems.Keywords: location, multi-echelon supply chain, covering, goal programming
Procedia PDF Downloads 558693 Computational Team Dynamics and Interaction Patterns in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams
Procedia PDF Downloads 68692 On q-Non-extensive Statistics with Non-Tsallisian Entropy
Authors: Petr Jizba, Jan Korbel
Abstract:
We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding ‘high’ and ‘low-temperature’ asymptotics and reveal a non-trivial structure of the parameter space.Keywords: multifractals, Rényi information entropy, THC entropy, MaxEnt, heavy-tailed distributions
Procedia PDF Downloads 441691 Using of the Fractal Dimensions for the Analysis of Hyperkinetic Movements in the Parkinson's Disease
Authors: Sadegh Marzban, Mohamad Sobhan Sheikh Andalibi, Farnaz Ghassemi, Farzad Towhidkhah
Abstract:
Parkinson's disease (PD), which is characterized by the tremor at rest, rigidity, akinesia or bradykinesia and postural instability, affects the quality of life of involved individuals. The concept of a fractal is most often associated with irregular geometric objects that display self-similarity. Fractal dimension (FD) can be used to quantify the complexity and the self-similarity of an object such as tremor. In this work, we are aimed to propose a new method for evaluating hyperkinetic movements such as tremor, by using the FD and other correlated parameters in patients who are suffered from PD. In this study, we used 'the tremor data of Physionet'. The database consists of fourteen participants, diagnosed with PD including six patients with high amplitude tremor and eight patients with low amplitude. We tried to extract features from data, which can distinguish between patients before and after medication. We have selected fractal dimensions, including correlation dimension, box dimension, and information dimension. Lilliefors test has been used for normality test. Paired t-test or Wilcoxon signed rank test were also done to find differences between patients before and after medication, depending on whether the normality is detected or not. In addition, two-way ANOVA was used to investigate the possible association between the therapeutic effects and features extracted from the tremor. Just one of the extracted features showed significant differences between patients before and after medication. According to the results, correlation dimension was significantly different before and after the patient's medication (p=0.009). Also, two-way ANOVA demonstrates significant differences just in medication effect (p=0.033), and no significant differences were found between subject's differences (p=0.34) and interaction (p=0.97). The most striking result emerged from the data is that correlation dimension could quantify medication treatment based on tremor. This study has provided a technique to evaluate a non-linear measure for quantifying medication, nominally the correlation dimension. Furthermore, this study supports the idea that fractal dimension analysis yields additional information compared with conventional spectral measures in the detection of poor prognosis patients.Keywords: correlation dimension, non-linear measure, Parkinson’s disease, tremor
Procedia PDF Downloads 242690 Design of Functional Safe Motor Control Systems in Automotive Applications
Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.Keywords: AUTOSAR, MDPS, Simulink, software component
Procedia PDF Downloads 411689 Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate
Authors: Chia-Ling Li
Abstract:
The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate.Keywords: economic analysis, hydrogenation, non-phthalate, process simulation
Procedia PDF Downloads 276688 Poisson Type Spherically Symmetric Spacetimes
Authors: Gonzalo García-Reyes
Abstract:
Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter
Procedia PDF Downloads 84687 Modifying Hawking Radiation in 2D-Approximated Schwarzschild Black Holes near the Event Horizon
Authors: Richard Pincak
Abstract:
Starting from a 4D spacetime model using a partially negative dimensional product manifold (PNDP-manifold), which emerges as a 2D spacetime, we developed an analysis of tidal forces and Hawking radiation near the event horizon of a Schwarzchild black hole. The modified 2D metric, incorporating the effects of the four-dimensional Weyl tensor, with the dilatonic field and the newly derived time relation \(2\alpha t = \ln \epsilon\), can enable a deeper understanding of quantum gravity. The analysis shows how the modified Hawking temperature and distribution of emitted particles are affected by additional fields, providing potential observables for future experiments.Keywords: black holes, Hawking radiation, Weyl tensor, information paradox
Procedia PDF Downloads 19686 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 236685 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.Keywords: flux, free impinging jet, solid-surface, uniform wall temperature
Procedia PDF Downloads 477