Search results for: marine gas turbine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1354

Search results for: marine gas turbine

1114 The Triple Threat: Microplastic, Nanoplastic, and Macroplastic Pollution and Their Cumulative Impacts on Marine Ecosystem

Authors: Tabugbo B. Ifeyinwa, Josephat O. Ogbuagu, Okeke A. Princewill, Victor C. Eze

Abstract:

The increasing amount of plastic pollution in maritime settings poses a substantial risk to the functioning of ecosystems and the preservation of biodiversity. This comprehensive analysis combines the most recent data on the environmental effects of pollution from macroplastics, microplastics, and nanoplastics within marine ecosystems. Our goal is to provide a comprehensive understanding of the cumulative impacts that plastic waste accumulates on marine life by outlining the origins, processes, and ecological repercussions connected with each size category of plastic debris. Microplastics and nanoplastics have more sneaky effects that are controlled by chemicals. These effects can get through biological barriers and affect the health of cells and the whole body. Compared to macroplastics, which primarily contribute to physical harm through entanglement and ingestion by marine fauna, microplastics, and nanoplastics are associated with non-physical effects. The review underlines a vital need for research that crosses disciplinary boundaries to untangle the intricate interactions that the various sizes of plastic pollution have with marine animals, evaluate the long-term ecological repercussions, and identify effective measures for mitigating the effects of plastic pollution. Additionally, we urge governmental interventions and worldwide cooperation to solve this pervasive environmental concern. Specifically, we identify significant knowledge gaps in the detection and effect assessment of nanoplastics. To protect marine biodiversity and preserve ecosystem services, this review highlights how urgent it is to address the broad spectrum of plastic pollution.

Keywords: macroplastic pollution, marine ecosystem, microplastic pollution, nanoplastic pollution

Procedia PDF Downloads 40
1113 Marine Natural Products: A Rich Source of Medicine in Ayurveda, the Ancient Indian Medical Science

Authors: Ashok D. Satpute

Abstract:

Ayurveda, the ancient Indian Medical system is practiced all over India and abroad, is rich in natural source of medicines, including marine products. The marine drugs which prominently used are pravala (coral), mukta (pearl), kapardika (cowry).Shukti (oyster shell), shankha (conch), agnijara (amber) etc. Except agnijara (amber) all are rich in calcium. Interestingly they are not used as supplements in calcium deficiency as done in conventional medical practice. They are used as medicines in the disease like fever, tuberculosis, bleeding disorders, eye problems, digestive complaints etc. Many scientific studies have shown their potent medicinal value. Each has its own properties and used therapeutically after subjecting them to various purificatory processes which are called shodhana in which several medicinal plants are used which also help in enhancing therapeutical activity. Then these purified marine products are subjected to marana (incineration) process and obtained in the form of Bhasma (a finest form of medicine). Agnijara, a derivative of whale is useful as aphrodisiac and prescribed in neuromuscular disorders and tetanus. The ancient scriptures written in Sanskrit language thousands of years back have rich information about all these natural marine products and their medicinal usage.

Keywords: Ayurveda, bhasma, marana, shodhana

Procedia PDF Downloads 262
1112 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 67
1111 Distribution and Taxonomy of Marine Fungi in Nha Trang Bay and Van Phong Bay, Vietnam

Authors: Thu Thuy Pham, Thi Chau Loan Tran, Van Duy Nguyen

Abstract:

Marine fungi play an important role in the marine ecosystems. Marine fungi also supply biomass and metabolic products of industrial value. Currently, the biodiversity of marine fungi along the coastal areas of Vietnam has not yet been studied fully. The objective of this study is to assess the spatial and temporal diversity of planktonic fungi from the coastal waters of Nha Trang Bay and Van Phong Bay in Central Vietnam using culture-dependent and independent approach. Using culture-dependent approach, filamentous fungi and yeasts were isolated on selective media and then classified by phenotype and genotype based on the sequencing of ITS (internal transcribed spacers) regions of rDNA with two primer pairs (ITS1F_KYO2 and ITS4; NS1 and NS8). Using culture-independent approach, environmental DNA samples were isolated and amplified using fungal-specific ITS primer pairs. A total of over 160 strains were isolated from 10 seawater sampling stations at 50 cm depth. They were classified into diverse genera and species of both yeast and mold. At least 5 strains could be potentially novel species. Our results also revealed that planktonic fungi were molecularly diverse with hundreds of phylotypes recovered across these two bays. The results of the study provide data about the distribution and taxonomy of mycoplankton in this area, thereby allowing assessment of their positive role in the biogeochemical cycle of coastal ecosystems and the development of new bioactive compounds for industrial applications.

Keywords: biodiversity, ITS, marine fungi, Nha Trang Bay, Van Phong Bay

Procedia PDF Downloads 171
1110 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 288
1109 Predicting the Turbulence Intensity, Excess Energy Available and Potential Power Generated by Building Mounted Wind Turbines over Four Major UK City

Authors: Emejeamara Francis

Abstract:

The future of potentials wind energy applications within suburban/urban areas are currently faced with various problems. These include insufficient assessment of urban wind resource, and the effectiveness of commercial gust control solutions as well as unavailability of effective and cheaper valuable tools for scoping the potentials of urban wind applications within built-up environments. In order to achieve effective assessment of the potentials of urban wind installations, an estimation of the total energy that would be available to them were effective control systems to be used, and evaluating the potential power to be generated by the wind system is required. This paper presents a methodology of predicting the power generated by a wind system operating within an urban wind resource. This method was developed by using high temporal resolution wind measurements from eight potential sites within the urban and suburban environment as inputs to a vertical axis wind turbine multiple stream tube model. A relationship between the unsteady performance coefficient obtained from the stream tube model results and turbulence intensity was demonstrated. Hence, an analytical methodology for estimating the unsteady power coefficient at a potential turbine site is proposed. This is combined with analytical models that were developed to predict the wind speed and the excess energy (EEC) available in estimating the potential power generated by wind systems at different heights within a built environment. Estimates of turbulence intensities, wind speed, EEC and turbine performance based on the current methodology allow a more complete assessment of available wind resource and potential urban wind projects. This methodology is applied to four major UK cities namely Leeds, Manchester, London and Edinburgh and the potential to map the turbine performance at different heights within a typical urban city is demonstrated.

Keywords: small-scale wind, turbine power, urban wind energy, turbulence intensity, excess energy content

Procedia PDF Downloads 260
1108 Marine Fishing and Climate Change: A China’s Perspective on Fisheries Economic Development and Greenhouse Gas Emissions

Authors: Yidan Xu, Pim Martens, Thomas Krafft

Abstract:

Marine fishing, an energy-intensive activity, directly emits greenhouse gases through fuel combustion, making it a significant contributor to oceanic greenhouse gas (GHG) emissions and worsening climate change. China is the world’s second-largest economy and the top emitter of GHG emissions, and it carries a significant energy conservation and emission reduction burden. However, the increasing GHG emissions from marine fishing is an easily overlooked but essential issue in China. This study offers a diverse perspective by integrating the concepts of total carbon emissions, carbon intensity, and per capita carbon emissions as indicators into calculation and discussion. To better understand the GHG emissions-Gross marine fishery product (GFP) relationship and influencing factors in Chinese marine fishing, the relationship between GHG emissions and economic development in marine fishing, a comprehensive framework is developed by combining the environmental Kuznets curve, the Tapio elasticity index, and the decomposition model. Results indicated that (1) The GHG emissions increased from 16.479 to 18.601 million tons in 2001-2020, in which trawlers and gillnetter are the main source in fishing operation. (2) Total carbon emissions (TC) and CI presented the same decline as GHG emissions, while per capita carbon emissions (PC) displayed an uptrend. (32) GHG emissions and gross marine fishery product (GFP) presented an inverted U-shaped relationship in China; the turning point came in the 13th Five-year Plan period (2016-2020). (43) Most provinces strongly decoupled GFP and CI. Still, PC and TC need more effort to decouple. (54) GHG emissions promoted by an industry structure driven, though carbon intensity and industry scale aid in GHG emissions reduced. (5) Compare with TC and PC, CI has been relatively affected by COVID-19 in 2020. The rise in fish and seafood prices during COVID-19 has boosted the GFP.

Keywords: marine fishing economy, greenhouse gas emission, fishery management, green development

Procedia PDF Downloads 47
1107 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller

Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.

Abstract:

This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.

Keywords: wind, grid, PMSG, MPPT, OTSR

Procedia PDF Downloads 344
1106 Topography Effects on Wind Turbines Wake Flow

Authors: H. Daaou Nedjari, O. Guerri, M. Saighi

Abstract:

A numerical study was conducted to optimize the positioning of wind turbines over complex terrains. Thus, a two-dimensional disk model was used to calculate the flow velocity deficit in wind farms for both flat and complex configurations. The wind turbine wake was assessed using the hybrid methods that combine CFD (Computational Fluid Dynamics) with the actuator disc model. The wind turbine rotor has been defined with a thrust force, coupled with the Navier-Stokes equations that were resolved by an open source computational code (Code_Saturne V3.0 developed by EDF) The simulations were conducted in atmospheric boundary layer condition considering a two-dimensional region located at the north of Algeria at 36.74°N longitude, 02.97°E latitude. The topography elevation values were collected according to a longitudinal direction of 1km downwind. The wind turbine sited over topography was simulated for different elevation variations. The main of this study is to determine the topography effect on the behavior of wind farm wake flow. For this, the wake model applied in complex terrain needs to selects the singularity effects of topography on the vertical wind flow without rotor disc first. This step allows to determine the existence of mixing scales and friction forces zone near the ground. So, according to the ground relief the wind flow waS disturbed by turbulence and a significant speed variation. Thus, the singularities of the velocity field were thoroughly collected and thrust coefficient Ct was calculated using the specific speed. In addition, to evaluate the land effect on the wake shape, the flow field was also simulated considering different rotor hub heights. Indeed, the distance between the ground and the hub height of turbine (Hhub) was tested in a flat terrain for different locations as Hhub=1.125D, Hhub = 1.5D and Hhub=2D (D is rotor diameter) considering a roughness value of z0=0.01m. This study has demonstrated that topographical farm induce a significant effect on wind turbines wakes, compared to that on flat terrain.

Keywords: CFD, wind turbine wake, k-epsilon model, turbulence, complex topography

Procedia PDF Downloads 544
1105 Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software

Authors: Syed Nauman Bin Asghar Bukhari, Mohtashim Mansoor, Mohammad Nouman

Abstract:

Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving.

Keywords: Gas turbine engine, engine test cell, data acquisition, instrumentation

Procedia PDF Downloads 107
1104 Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation

Authors: Amir Jalalian-Khakshour, T. N. Croft

Abstract:

Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.

Keywords: power generation, renewable energy, rotordynamics, wind energy

Procedia PDF Downloads 287
1103 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction

Procedia PDF Downloads 282
1102 Performance Prediction of a SANDIA 17-m Vertical Axis Wind Turbine Using Improved Double Multiple Streamtube

Authors: Abolfazl Hosseinkhani, Sepehr Sanaye

Abstract:

Different approaches have been used to predict the performance of the vertical axis wind turbines (VAWT), such as experimental, computational fluid dynamics (CFD), and analytical methods. Analytical methods, such as momentum models that use streamtubes, have low computational cost and sufficient accuracy. The double multiple streamtube (DMST) is one of the most commonly used of momentum models, which divide the rotor plane of VAWT into upwind and downwind. In fact, results from the DMST method have shown some discrepancy compared with experiment results; that is because the Darrieus turbine is a complex and aerodynamically unsteady configuration. In this study, analytical-experimental-based corrections, including dynamic stall, streamtube expansion, and finite blade length correction are used to improve the DMST method. Results indicated that using these corrections for a SANDIA 17-m VAWT will lead to improving the results of DMST.

Keywords: vertical axis wind turbine, analytical, double multiple streamtube, streamtube expansion model, dynamic stall model, finite blade length correction

Procedia PDF Downloads 120
1101 Dual Set Point Governor Control Structure with Common Optimum Temporary Droop Settings for both Islanded and Grid Connected Modes

Authors: Deepen Sharma, Eugene F. Hill

Abstract:

For nearly 100 years, hydro-turbine governors have operated with only a frequency set point. This natural governor action means that the governor responds with changing megawatt output to disturbances in system frequency. More and more, power system managers are demanding that governors operate with constant megawatt output. One way of doing this is to introduce a second set point in the control structure called a power set point. The control structure investigated and analyzed in this paper is unique in the way that it utilizes a power reference set point in addition to the conventional frequency reference set point. An optimum set of temporary droop parameters derived based on the turbine-generator inertia constant and the penstock water start time for stable islanded operation are shown to be also equally applicable for a satisfactory rate of generator loading during its grid connected mode. A theoretical development shows why this is the case. The performance of the control structure has been investigated and established based on the simulation study made in MATLAB/Simulink as well as through testing the real time controller performance on a 15 MW Kaplan Turbine and generator. Recordings have been made using the labVIEW data acquisition platform. The hydro-turbine governor control structure and its performance investigated in this paper thus eliminates the need to have a separate set of temporary droop parameters, one valid for islanded mode and the other for interconnected operations mode.

Keywords: frequency set point, hydro governor, interconnected operation, isolated operation, power set point

Procedia PDF Downloads 353
1100 Near Shore Wave Manipulation for Electricity Generation

Authors: K. D. R. Jagath-Kumara, D. D. Dias

Abstract:

The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.

Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation

Procedia PDF Downloads 458
1099 Control of a Wind Energy Conversion System Works in Tow Operating Modes (Hyper Synchronous and Hypo Synchronous)

Authors: A. Moualdia, D. J. Boudana, O. Bouchhida, A. Medjber

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil fuels, especially on sites less windy. The performance of a wind turbine depends on three parameters: the power of wind, the power curve of the turbine and the generator's ability to respond to wind fluctuations. This paper presents a control chain conversion based on a double-fed asynchronous machine and flow-oriented. The supply system comprises of two identical converters, one connected to the rotor and the other one connected to the network via a filter. The architecture of the device is up by three commands are necessary for the operation of the turbine control extraction of maximum power of the wind to control itself (MPPT) control of the rotor side converter controlling the electromagnetic torque and stator reactive power and control of the grid side converter by controlling the DC bus voltage and active power and reactive power exchanged with the network. The proposed control has been validated in both modes of operation of the three-bladed wind 7.5 kW, using Matlab/Simulink. The results of simulation control technology study provide good dynamic performance and static.

Keywords: D.F.I.G, variable wind speed, hypersynchrone, energy quality, hyposynchrone

Procedia PDF Downloads 353
1098 Establishing Taiwan's Marine Space Planning System

Authors: Wen-Yan Chiau

Abstract:

Taiwan passed the 'Basic Ocean Act' in November 2019, and in accordance with Article 4 of its provisions, the government should draft a decree on ocean space planning (MSP). In the past few years, although Taiwan has passed the 'Coastal Zone Management Act' and the 'Spatial Planning Act', in the face of multiple use of marine areas, it still lacks a comprehensive marine area use blueprint and a fundamental mechanism for multi-purpose use planning management. In particular, Taiwan's active development of offshore wind power is facing this problem, and it is impossible to fully reconcile the use of each domain and the public welfare through a holistic system, highlighting the urgency of the establishment of MSP system. Therefore, this article will review relevant Taiwan laws and regulations, refer to important international initiatives and experiences, and participate in the exchange of practical experience in international conference(s), and propose adequate framework, principles, procedures, and promotion strategies on MSP. Possible solutions to promote sustainable and wise use in Taiwan's waters will also be suggested for comments.

Keywords: basic ocean act, coastal zone management act, marine spatial planning, spatial planning act, Taiwan

Procedia PDF Downloads 116
1097 Pharmacological Active Compounds of Sponges and a Gorgonian Coral from the Andaman Sea, Thailand

Authors: Patchara Pedpradab, Kietisak Yoksang, Kosin Pattanamanee

Abstract:

In our ongoing search for pharmacological significant of compounds from marine organisms, we investigated the active constituents of two sponges (Xestospongia sp., Halichondria sp.) and a gorgonian coral (Juncella sp.) from the Andaman Sea, Thailand. Several compounds were isolated from those of marine organisms. A marine sponge, Xestospongia sp. contained an isoqinoline compound namely aureol and cytotoxic thiophenen sesterterpene while Halichondria sp. produced C-28 sterols. The white gorgonian coral, Juncella sp. contained anti-tuberculosis diterpenes namely, junceellin and praelolide. All of the isolated compounds were analyzed by spectroscopic methods, extensively.

Keywords: Xestospongia sp., Halichondria sp., gorgonian, Juncella sp. biological activity

Procedia PDF Downloads 351
1096 Analysis of Syngas Combustion Characteristics in Can-Type Combustor using CFD

Authors: Norhaslina Mat Zian, Hasril Hasini, Nur Irmawati Om

Abstract:

This study focuses on the flow and combustion behavior inside gas turbine combustor used in thermal power plant. The combustion process takes place using synthetic gas and the baseline solution was made on gas turbine combustor firing natural gas (100% Methane) as the main source of fuel. Attention is given to the effect of the H2/CO ratio on the variation of the flame profile, temperature distribution, and emissions. The H2/CO ratio varies in the range of 10-80 % and the CH4 values are fixed 10% for each case. While keeping constant the mass flow rate and operating pressure, the preliminary result shows that the flow inside the can-combustor is highly swirling which indicates good mixing of fuel and air prior to the entrance of the mixture to the main combustion zone.

Keywords: cfd, combustion, flame, syngas

Procedia PDF Downloads 268
1095 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator

Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi

Abstract:

The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.

Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator

Procedia PDF Downloads 1454
1094 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 40
1093 Design and Analysis of Blade Length and Number of Blades of Small Horizontal Axis Wind Turbine

Authors: Ali Gul, Bhart Kumar, Samiullah Ansari

Abstract:

The current research is focused on the study of various lengths of blades (i.e. 1 to 5m) and several bladed rotors (3,5,7 & 9) of small horizontal axis wind turbine under low wind conditions usingQBlade software. Initially, the rotor was designed using airfoil SG6043 with five different lengths of the blades. Subsequently, simulations were carried out in which, under low wind regimes, the power output was observed. Further, four rotors having 3,5,7 & 9 blades were analyzed. However, the most promising coefficient of performance (CP) was observed at the 3-bladed rotor. Both studies established a clear view of harvesting wind energy at low wind speeds that can be mobilized in the energy sector. That suggests the utilization of wind energy at the domestic levelwhich is acceleratory growing in the last few decades.

Keywords: small HAWT, QBlade, BEM, CFD

Procedia PDF Downloads 158
1092 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants

Authors: Ambra Giovannelli, Coriolano Salvini

Abstract:

Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.

Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants

Procedia PDF Downloads 201
1091 Evaluation of the Socio-Economic Impact of Marine Debris in Coastal Nigeria

Authors: Chibuzo Okoye Daniels, Gillian Glegg, Lynda Rodwell

Abstract:

Marine debris from fishing nets to medical equipment to food packaging that play major roles in boosting the economy and protecting human health is now more than an environmental problem that can be solved by legislation, law enforcement and technical solutions. It has also been identified as a cultural problem that can only be addressed by identifying instruments that can be used to change human attitudes and behaviors. This may be through management approaches, education and involvement of all sectors/interests, including the public. To contribute to the sustainable development of coastal Nigeria, two case study areas (Ikoyi and Victoria Islands of Lagos State) were used to evaluate the socio-economic impacts of marine debris problem in coastal Nigeria. The following methods were used: (1) semi-structured interviews with key stakeholders and businesses on beaches, waterfronts and waterways within the study areas and (2) observational study of beaches, waterfronts and waterways within the study areas. The results of the study have shown that marine debris is a cultural and multi-sectoral problem that poses great threat not only to the environmental sustainability of the study areas but also to the wellbeing of its citizens and the economy of coastal Nigeria. Current solid waste and marine debris management practices are inefficient due to inadequate knowledge of how to tackle the problem. To ensure environmental sustainability in coastal Nigeria and avoid waste of scarce financial resources, adequate, appropriate and cost effective solutions to the marine debris problem need to be identified and effectively transferred for implementation in the study areas.

Keywords: sustainability, coastal Nigeria, study areas, aquaculture

Procedia PDF Downloads 538
1090 Estimating Marine Tidal Power Potential in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Keywords: tidal power, renewable energy, energy assessment, Kenya

Procedia PDF Downloads 548
1089 Effects of Diluent Gas Velocity on Formation of Moderate or Intense Low-Oxygen Dilution Combustion with Fuel Spray for Gas Turbine

Authors: ChunLoon Cha, HoYeon Lee, SangSoon Hwang

Abstract:

Mild combustion is characterized with its distinguished features, such as suppressed pollutant emission, homogeneous temperature distribution, reduced noise and thermal stress. However, most studies for MILD combustion have been focused on gas phase fuel. Therefore further study on MILD combustion using liquid fuel is needed for the application to liquid fueled gas turbine especially. In this work, we will focus on numerical simulation of the effects of diluent gas velocity on the formation of liquid fuel MILD combustion used in gas turbine area. A series of numerical simulations using Ansys fluent 18.2 have been carried out in order to investigate the detail effect of the flow field in the furnace on the formation of MILD combustion. The operating conditions were fixed at relatively lower heat intensity of 1.28 MW/m³ atm and various global equivalence ratios were changed. The results show that the local high temperature region was decreased and the flame temperature was uniformly distributed due to high velocity of diluted burnt gas. The increasing of diluted burnt gas velocity can be controlled by open ratio of adapter size. It was found that the maximum temperature became lower than 1800K and the average temperature was lower than 1500K that thermal NO formation was suppressed.

Keywords: MILD combustion, spray combustion, liquid fuel, diluent gas velocity, low NOx emission

Procedia PDF Downloads 219
1088 Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS

Authors: Ahmadreza Ashraf, Elias Saion, Elham Gharib Shahi, Chee Kong Yap, Mohd Suhaimi Hamzah

Abstract:

Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination.

Keywords: coastal East Malaysia, core marine sediments, enrichment factor, heavy metals, INAA and ICP method, modified degree of contamination

Procedia PDF Downloads 314
1087 Marine Ecosystem Mapping of Taman Laut Labuan: The First Habitat Mapping Effort to Support Marine Parks Management in Malaysia

Authors: K. Ismail, A. Ali, R. C. Hasan, I. Khalil, Z. Bachok, N. M. Said, A. M. Muslim, M. S. Che Din, W. S. Chong

Abstract:

The marine ecosystem in Malaysia holds invaluable potential in terms of economics, food security, pharmaceuticals components and protection from natural hazards. Although exploration of oil and gas industry and fisheries are active within Malaysian waters, knowledge of the seascape and ecological functioning of benthic habitats is still extremely poor in the marine parks around Malaysia due to the lack of detailed seafloor information. Consequently, it is difficult to manage marine resources effectively, protect ecologically important areas and set legislation to safeguard the marine parks. The limited baseline data hinders scientific linkage to support effective marine spatial management in Malaysia. This became the main driver behind the first seabed mapping effort at the national level. Taman Laut Labuan (TLL) is located to the west coast of Sabah and to the east of South China Sea. The total area of TLL is approximately 158.15 km2, comprises of three islands namely Pulau Kuraman, Rusukan Besar and Rusukan Kecil and is characterised by shallow fringing reef with few submerged shallow reef. The unfamiliar rocky shorelines limit the survey of multibeam echosounder to area with depth more than 10 m. Whereas, singlebeam and side scan sonar systems were used to acquire the data for area with depth less than 10 m. By integrating data from multibeam bathymetry and backscatter with singlebeam bathymetry and side sonar images, we produce a substrate map and coral coverage map for the TLL using i) marine landscape mapping technique and ii) RSOBIA ArcGIS toolbar (developed by T. Le Bas). We take the initiative to explore the ability of aerial drone and satellite image (WorldView-3) to derive the depths and substrate type within the intertidal and subtidal zone where it is not accessible via acoustic mapping. Although the coverage was limited, the outcome showed a promising technique to be incorporated towards establishing a guideline to facilitate a standard practice for efficient marine spatial management in Malaysia.

Keywords: habitat mapping, marine spatial management, South China Sea, National seabed mapping

Procedia PDF Downloads 202
1086 Wake Effects of Wind Turbines and Its Impacts on Power Curve Measurements

Authors: Sajan Antony Mathew, Bhukya Ramdas

Abstract:

Abstract—The impetus of wind energy deployment over the last few decades has seen potential sites being harvested very actively for wind farm development. Due to the scarce availability of highly potential sites, the turbines are getting more optimized in its location wherein minimum spacing between the turbines are resorted without comprising on the optimization of its energy yield. The optimization of the energy yield from a wind turbine is achieved by effective micrositing techniques. These time-tested techniques which are applied from site to site on terrain conditions that meet the requirements of the International standard for power performance measurements of wind turbines result in the positioning of wind turbines for optimized energy yields. The international standard for Power Curve Measurements has rules of procedure and methodology to evaluate the terrain, obstacles and sector for measurements. There are many challenges at the sites for complying with the requirements for terrain, obstacles and sector for measurements. Studies are being attempted to carry out these measurements within the scope of the international standard as various other procedures specified in alternate standards or the integration of LIDAR for Power Curve Measurements are in the nascent stage. The paper strives to assist in the understanding of the fact that if positioning of a wind turbine at a site is based on an optimized output, then there are no wake effects seen on the power curve of an adjacent wind turbine. The paper also demonstrates that an invalid sector for measurements could be used in the analysis in alteration to the requirement as per the international standard for power performance measurements. Therefore the paper strives firstly to demonstrate that if a wind turbine is optimally positioned, no wake effects are seen and secondly the sector for measurements in such a case could include sectors which otherwise would have to be excluded as per the requirements of International standard for power performance measurements.

Keywords: micrositing, optimization, power performance, wake effects

Procedia PDF Downloads 446
1085 Design and Optimization of a Small Hydraulic Propeller Turbine

Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink

Abstract:

A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.

Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design

Procedia PDF Downloads 136