Search results for: active power tuning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9728

Search results for: active power tuning

7178 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management

Procedia PDF Downloads 712
7177 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: renewable energy sources, micro-grid system, modeling and simulation, on/off grid system, environmental impacts

Procedia PDF Downloads 267
7176 Effect on the Integrity of the DN300 Pipe and Valves in the Cooling Water System Imposed by the Pipes and Ventilation Pipes above in an Earthquake Situation

Authors: Liang Zhang, Gang Xu, Yue Wang, Chen Li, Shao Chong Zhou

Abstract:

Presently, more and more nuclear power plants are facing the issue of life extension. When a nuclear power plant applies for an extension of life, its condition needs to meet the current design standards, which is not fine for all old reactors, typically for seismic design. Seismic-grade equipment in nuclear power plants are now generally placed separately from the non-seismic-grade equipment, but it was not strictly required before. Therefore, it is very important to study whether non-seismic-grade equipment will affect the seismic-grade equipment when dropped down in an earthquake situation, which is related to the safety of nuclear power plants and future life extension applications. This research was based on the cooling water system with the seismic and non-seismic grade equipment installed together, as an example to study whether the non-seismic-grade equipment such as DN50 fire pipes and ventilation pipes arranged above will damage the DN300 pipes and valves arranged below when earthquakes occur. In the study, the simulation was carried out by ANSYS / LY-DYNA, and Johnson-Cook was used as the material model and failure model. For the experiments, the relative positions of objects in the room were restored by 1: 1. In the experiment, the pipes and valves were filled with water with a pressure of 0.785 MPa. The pressure-holding performance of the pipe was used as a criterion for damage. In addition to the pressure-holding performance, the opening torque was considered as well for the valves. The research results show that when the 10-meter-long DN50 pipe was dropped from the position of 8 meters height and the 8-meter-long air pipe dropped from a position of 3.6 meters height, they do not affect the integrity of DN300 pipe below. There is no failure phenomenon in the simulation as well. After the experiment, the pressure drop in two hours for the pipe is less than 0.1%. The main body of the valve does not fail either. The opening torque change after the experiment is less than 0.5%, but the handwheel of the valve may break, which affects the opening actions. In summary, impacts of the upper pipes and ventilation pipes dropdown on the integrity of the DN300 pipes and valves below in a cooling water system of a typical second-generation nuclear power plant under an earthquake was studied. As a result, the functionality of the DN300 pipeline and the valves themselves are not significantly affected, but the handwheel of the valve or similar articles can probably be broken and need to take care.

Keywords: cooling water system, earthquake, integrity, pipe and valve

Procedia PDF Downloads 111
7175 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria

Authors: Abdur Raheem, Ado Yakub

Abstract:

Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the north eastern parts have ignited violence, bloodshed, refuge exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of these social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for prompt response, encourage community and neighbourhood policing to ameliorate security challenges in Nigeria.

Keywords: social crisis, property market, economy, resources, north-eastern Nigeria

Procedia PDF Downloads 321
7174 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 152
7173 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 480
7172 High-Performance Li Doped CuO/Reduced Graphene Oxide Flexible Supercapacitor Electrode

Authors: Ruey-Chi Wang, Po-Hsiang Huang, Ping-Chang Chuang, Shu-Jen Chen

Abstract:

High-performance Li: CuO/reduced graphene oxide (RGO) flexible electrodes for supercapacitors were fabricated via a low-temperature and low-cost route. To increase energy density while maintaining high power density and long-term cyclability, Li was doped to increase the electrical conductivity of CuO particles between RGO flakes. Electrochemical measurements show that the electrical conductivity, specific capacitance, energy density, and rate capability were all enhanced by Li incorporation. The optimized Li:CuO/RGO electrodes show a high energy density of 179.9 Wh/kg and a power density of 900.0 W/kg at a current density of 1 A/g. Cyclic life tests show excellent stability over 10,000 cycles with a capacitance retention of 93.2%. Li doping improves the electrochemical performance of CuO, making CuO a promising pseudocapacitive material for fabricating low-cost excellent supercapacitors.

Keywords: supercapacitor, CuO, RGO, lithium

Procedia PDF Downloads 179
7171 Artificial Neural Networks Based Calibration Approach for Six-Port Receiver

Authors: Nadia Chagtmi, Nejla Rejab, Noureddine Boulejfen

Abstract:

This paper presents a calibration approach based on artificial neural networks (ANN) to determine the envelop signal (I+jQ) of a six-port based receiver (SPR). The memory effects called also dynamic behavior and the nonlinearity brought by diode based power detector have been taken into consideration by the ANN. Experimental set-up has been performed to validate the efficiency of this method. The efficiency of this approach has been confirmed by the obtained results in terms of waveforms. Moreover, the obtained error vector magnitude (EVM) and the mean absolute error (MAE) have been calculated in order to confirm and to test the ANN’s performance to achieve I/Q recovery using the output voltage detected by the power based detector. The baseband signal has been recovered using ANN with EVMs no higher than 1 % and an MAE no higher than 17, 26 for the SPR excited different type of signals such QAM (quadrature amplitude modulation) and LTE (Long Term Evolution).

Keywords: six-port based receiver; calibration, nonlinearity, memory effect, artificial neural network

Procedia PDF Downloads 75
7170 A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves

Authors: Mohammad Reza Ebrahimi

Abstract:

In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm.

Keywords: travelling-wave, maximum energy, parallel transmission-line, fault location

Procedia PDF Downloads 184
7169 Design and Implementation of PD-NN Controller Optimized Neural Networks for a Quad-Rotor

Authors: Chiraz Ben Jabeur, Hassene Seddik

Abstract:

In this paper, a full approach of modeling and control of a four-rotor unmanned air vehicle (UAV), known as quad-rotor aircraft, is presented. In fact, a PD and a PD optimized Neural Networks Approaches (PD-NN) are developed to be applied to control a quad-rotor. The goal of this work is to concept a smart self-tuning PD controller based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking the desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind added to the model on each axis. Thus, the quad-rotor is subject to three-dimensional unknown static/varying wind disturbances. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regard to decision-making facing disturbances. This technique offers some advantages over conventional control methods such as PD controller. Simulation results are obtained with the use of Matlab/Simulink environment and are founded on a comparative study between PD and PD-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, this controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient, facing turbulences in the form of wind disturbances.

Keywords: hostile environment, PD and PD-NN controllers, quad-rotor control, robustness against disturbance

Procedia PDF Downloads 136
7168 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle

Procedia PDF Downloads 232
7167 The Selectivities of Pharmaceutical Spending Containment: Social Profit, Incentivization Games and State Power

Authors: Ben Main Piotr Ozieranski

Abstract:

State government spending on pharmaceuticals stands at 1 trillion USD globally, promoting criticism of the pharmaceutical industry's monetization of drug efficacy, product cost overvaluation, and health injustice. This paper elucidates the mechanisms behind a state-institutional response to this problem through the sociological lens of the strategic relational approach to state power. To do so, 30 expert interviews, legal and policy documents are drawn on to explain how state elites in New Zealand have successfully contested a 30-year “pharmaceutical spending containment policy”. Proceeding from Jessop's notion of strategic “selectivity”, encompassing analyses of the enabling features of state actors' ability to harness state structures, a theoretical explanation is advanced. First, a strategic context is described that consists of dynamics around pharmaceutical dealmaking between the state bureaucracy, pharmaceutical pricing strategies (and their effects), and the industry. Centrally, the pricing strategy of "bundling" -deals for packages of drugs that combine older and newer patented products- reflect how state managers have instigated an “incentivization game” that is played by state and industry actors, including HTA professionals, over pharmaceutical products (both current and in development). Second, a protective context is described that is comprised of successive legislative-judicial responses to the strategic context and characterized by the regulation and the societalisation of commercial law. Third, within the policy, the achievement of increased pharmaceutical coverage (pharmaceutical “mix”) alongside contained spending is conceptualized as a state defence of a "social profit". As such, in contrast to scholarly expectations that political and economic cultures of neo-liberalism drive pharmaceutical policy-making processes, New Zealand's state elites' approach is shown to be antipathetic to neo-liberals within an overall capitalist economy. The paper contributes an analysis of state pricing strategies and how they are embedded in state regulatory structures. Additionally, through an analysis of the interconnections of state power and pharmaceutical value Abrahams's neo-liberal corporate bias model for pharmaceutical policy analysis is problematised.

Keywords: pharmaceutical governance, pharmaceutical bureaucracy, pricing strategies, state power, value theory

Procedia PDF Downloads 69
7166 The Effects of Continuous and Interval Aerobic Exercises with Moderate Intensity on Serum Levels of Glial Cell Line-Derived Neurotrophic Factor and Aerobic Capacity in Obese Children

Authors: Ali Golestani, Vahid Naseri, Hossein Taheri

Abstract:

Recently, some of studies examined the effect of exercise on neurotrophic factors influencing the growth, protection, plasticity and function in central and peripheral nerve cells. The aim of this study was to investigate the effects of continuous and interval aerobic exercises with moderate intensity on serum levels of glial cell line-derived neurotrophic factor (GDNF) and aerobic capacity in obese children. 21 obese students with an average age of 13.6 ± 0.5 height 171 ± 5 and BMI 32 ± 1.2 were divided randomly to control, continuous aerobic and interval aerobic groups. Training protocol included continuous or interval aerobic exercises with moderate intensity 50-65%MHR, three times per week for 10 weeks. 48 hours before and after executing of protocol, blood samples were taken from the participants and their GDNF serum levels were measured by ELISA. Aerobic power was estimated using Shuttle-run test. T-test results indicated a small increase in their GDNF serum levels, which was not statistically significant (p =0.11). In addition, the results of ANOVA did not show any significant difference between continuous and interval aerobic training on the serum levels of their GDNF but their aerobic capacity significantly increased (p =0.012). Although continuous and interval aerobic exercise improves aerobic power in obese children, they had no significant effect on their serum levels of GDNF.

Keywords: aerobic power, continuous aerobic training, glial cell line-derived neurotrophic factor (GDNF), interval aerobic training, obese children

Procedia PDF Downloads 176
7165 Optimization of MAG Welding Process Parameters Using Taguchi Design Method on Dead Mild Steel

Authors: Tadele Tesfaw, Ajit Pal Singh, Abebaw Mekonnen Gezahegn

Abstract:

Welding is a basic manufacturing process for making components or assemblies. Recent welding economics research has focused on developing the reliable machinery database to ensure optimum production. Research on welding of materials like steel is still critical and ongoing. Welding input parameters play a very significant role in determining the quality of a weld joint. The metal active gas (MAG) welding parameters are the most important factors affecting the quality, productivity and cost of welding in many industrial operations. The aim of this study is to investigate the optimization process parameters for metal active gas welding for 60x60x5mm dead mild steel plate work-piece using Taguchi method to formulate the statistical experimental design using semi-automatic welding machine. An experimental study was conducted at Bishoftu Automotive Industry, Bishoftu, Ethiopia. This study presents the influence of four welding parameters (control factors) like welding voltage (volt), welding current (ampere), wire speed (m/min.), and gas (CO2) flow rate (lit./min.) with three different levels for variability in the welding hardness. The objective functions have been chosen in relation to parameters of MAG welding i.e., welding hardness in final products. Nine experimental runs based on an L9 orthogonal array Taguchi method were performed. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the welding characteristics of dead mild steel plate and used in order to obtain optimum levels for every input parameter at 95% confidence level. The optimal parameters setting was found is welding voltage at 22 volts, welding current at 125 ampere, wire speed at 2.15 m/min and gas flow rate at 19 l/min by using the Taguchi experimental design method within the constraints of the production process. Finally, six conformations welding have been carried out to compare the existing values; the predicated values with the experimental values confirm its effectiveness in the analysis of welding hardness (quality) in final products. It is found that welding current has a major influence on the quality of welded joints. Experimental result for optimum setting gave a better hardness of welding condition than initial setting. This study is valuable for different material and thickness variation of welding plate for Ethiopian industries.

Keywords: Weld quality, metal active gas welding, dead mild steel plate, orthogonal array, analysis of variance, Taguchi method

Procedia PDF Downloads 479
7164 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint

Authors: Attaullah Khawaja, Amna Shabbir

Abstract:

Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.

Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity

Procedia PDF Downloads 526
7163 To Assess Variables Related to Self-Efficacy for Increasing Physical Activity in Advanced-Stage Cancer Patients

Authors: S. Nikpour, S. Vahidi, H. Haghani

Abstract:

Introduction: Exercise has mental and physical health benefits for patients with advanced stage cancer who actively receive chemotherapy, yet little is known about patients’ levels of interest in becoming more active or their confidence in increasing their activity level. Methods and materials: A convenience sample of 200 patients with advanced-stage cancer who were receiving chemotherapy completed self-report measures assessing physical activity level, mood, and quality-of-life variables. Qualitative data on patient-perceived benefits of, and barriers to, physical activity also were collected, coded by independent raters, and organized by predominant themes. Results: Current physical activity level, physical activity outcome expectations, and positive mood were significantly associated with self-efficacy. Fatigue was the most frequently listed barrier to physical activity; improved physical strength and health were the most commonly listed benefits. Participants identified benefits related to both general health and cancer-symptom management that were related to exercise. 59.5% of participants reported that they were seriously planning to increase or maintain their physical activity level, and over 40% reported having interest in receiving an intervention to become more active. Conclusion: These results suggested that many advanced-stage cancer patients who receive chemotherapy are interested in maintaining or increasing their physical activity level and in receiving professional support for exercise. In addition, these individuals identified general health and cancer-specific benefits of, and barriers to, physical activity. Future research will investigate how these findings may be incorporated into physical activity interventions for advanced-stage oncology patients receiving medical treatment.

Keywords: physical activity, cancer, self-efficacy

Procedia PDF Downloads 533
7162 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: multi-level gear oil, engine oil, viscosity, abrasion

Procedia PDF Downloads 317
7161 Vocational Education: A Synergy for Skills Acquisition and Global Learning in Colleges of Education in Ogun State, Nigeria

Authors: Raimi, Kehinde Olawuyi, Omoare Ayodeji Motunrayo

Abstract:

In the last two decades, there has been rising youth unemployment, restiveness, and social vices in Nigeria. The relevance of Vocational Education for skills acquisition, global learning, and national development to address these problems cannot be underestimated. Thus, the need to economically empower Nigerian youths to be able to develop the nation and meet up in the ever-changing global learning and economy led to the assessment of Vocational Education as Synergy for the Skills Acquisition and Global Learning in Ogun State, Nigeria. One hundred and twenty out of 1,500 students were randomly selected for this study. Data were obtained through a questionnaire and were analyzed with descriptive statistics and Chi-square. The results of the study showed that 59.2% of the respondents were between 20 – 24 years of age, 60.8% were male, and 65.8% had a keen interest in Vocational Education. Also, 90% of the respondents acquired skills in extension/advisory, 78.3% acquired skills in poultry production, and 69.1% acquired skills in fisheries/aquaculture. The major constraints to Vocational Education are inadequate resource personnel (χ² = 10.25, p = 0.02), inadequate training facilities (x̅ = 2.46) and unstable power supply (x̅ = 2.38). Results of Chi-square showed significance association between constraints and Skills Acquisition (χ² = 12.54, p = 0.00) at p < 0.05 level of significance. It was established that Vocational Education significantly contributed to students’ skills acquisition and global learning. This study, therefore, recommends that inadequate personnel should be looked into by the school authority in order not to over-stretch the available staff of the institution while the provision of alternative stable power supply (solar power) is also essential for effective teaching and learning process.

Keywords: vocational education, skills acquisition, national development, global learning

Procedia PDF Downloads 125
7160 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 123
7159 Exact Solutions for Steady Response of Nonlinear Systems under Non-White Excitation

Authors: Yaping Zhao

Abstract:

In the present study, the exact solutions for the steady response of quasi-linear systems under non-white wide-band random excitation are considered by means of the stochastic averaging method. The non linearity of the systems contains the power-law damping and the cross-product term of the power-law damping and displacement. The drift and diffusion coefficients of the Fokker-Planck-Kolmogorov (FPK) equation after averaging are obtained by a succinct approach. After solving the averaged FPK equation, the joint probability density function and the marginal probability density function in steady state are attained. In the process of resolving, the eigenvalue problem of ordinary differential equation is handled by integral equation method. Some new results are acquired and the novel method to deal with the problems in nonlinear random vibration is proposed.

Keywords: random vibration, stochastic averaging method, FPK equation, transition probability density

Procedia PDF Downloads 502
7158 Stimulated Raman Scattering of Ultra Intense Hollow Gaussian Beam

Authors: Prerana Sharma

Abstract:

Effect of relativistic nonlinearity on stimulated Raman scattering of the propagating laser beam carrying null intensity in center (hollow Gaussian beam) by excited plasma wave are studied in a collisionless plasma. The construction of the equations is done employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The analysis is done using eikonal method. The phenonmenon of Stimulated Raman scattering is shown along with the excitation of seed plasma wave. The power of plasma wave and back reflectivity is observed for higher order of hollow Gaussian beam. Back reflectivity is studied numerically for various orders of HGLB with different value of plasma density, laser power and beam radius. Numerical analysis shows that these parameters play vital role on reflectivity characteristics.

Keywords: Hollow Gaussian beam, relativistic nonlinearity, plasma physics, Raman scattering

Procedia PDF Downloads 637
7157 A Constructionist View of Projects, Social Media and Tacit Knowledge in a College Classroom: An Exploratory Study

Authors: John Zanetich

Abstract:

Designing an educational activity that encourages inquiry and collaboration is key to engaging students in meaningful learning. Educational Information and Communications Technology (EICT) plays an important role in facilitating cooperative and collaborative learning in the classroom. The EICT also facilitates students’ learning and development of the critical thinking skills needed to solve real world problems. Projects and activities based on constructivism encourage students to embrace complexity as well as find relevance and joy in their learning. It also enhances the students’ capacity for creative and responsible real-world problem solving. Classroom activities based on constructivism offer students an opportunity to develop the higher–order-thinking skills of defining problems and identifying solutions. Participating in a classroom project is an activity for both acquiring experiential knowledge and applying new knowledge to practical situations. It also provides an opportunity for students to integrate new knowledge into a skill set using reflection. Classroom projects can be developed around a variety of learning objects including social media, knowledge management and learning communities. The construction of meaning through project-based learning is an approach that encourages interaction and problem-solving activities. Projects require active participation, collaboration and interaction to reach the agreed upon outcomes. Projects also serve to externalize the invisible cognitive and social processes taking place in the activity itself and in the student experience. This paper describes a classroom project designed to elicit interactions by helping students to unfreeze existing knowledge, to create new learning experiences, and then refreeze the new knowledge. Since constructivists believe that students construct their own meaning through active engagement and participation as well as interactions with others. knowledge management can be used to guide the exchange of both tacit and explicit knowledge in interpersonal interactions between students and guide the construction of meaning. This paper uses an action research approach to the development of a classroom project and describes the use of technology, social media and the active use of tacit knowledge in the college classroom. In this project, a closed group Facebook page becomes the virtual classroom where interaction is captured and measured using engagement analytics. In the virtual learning community, the principles of knowledge management are used to identify the process and components of the infrastructure of the learning process. The project identifies class member interests and measures student engagement in a learning community by analyzing regular posting on the Facebook page. These posts are used to foster and encourage interactions, reflect a student’s interest and serve as reaction points from which viewers of the post convert the explicit information in the post to implicit knowledge. The data was collected over an academic year and was provided, in part, by the Google analytic reports on Facebook and self-reports of posts by members. The results support the use of active tacit knowledge activities, knowledge management and social media to enhance the student learning experience and help create the knowledge that will be used by students to construct meaning.

Keywords: constructivism, knowledge management, tacit knowledge, social media

Procedia PDF Downloads 214
7156 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 121
7155 Larvicidal Activity of Azadirachtin and Essential Oils from Thymus capitatus against Prays oleae Bern (Lepidoptera, Yponomeutidae)

Authors: Imen Blibech, Mohiedine Ksantini, Mohamed Bouaziz

Abstract:

Prays oleae is a major insect of olive in the Mediterranean Region. In an effort to find effective and affordable ways of controlling this pest, larvicidal activity of essential oils from Tunisian Thymus capitatus were analyzed in comparison to Azadirachtin, a biologically active compound insecticide. The essential oils were extracted by hydrodistillation, and their chemical composition was determined by gas liquid-chromatography coupled with mass spectroscopy. The main components of chemical components were oxygenated monoterpenes (60.24%). The most abundant oxygenated monoterpenes were carvacrol (54.11%). Monoterpenes hydrocarbons were much more abundant and dominated by the o-cymene (16.68%). Both active compounds of Azadirachtin and Thymus capitatus oil extracts exhibited significant larvicidal activity against P. oleae with LC50 values 81.30 ppm and 52.49 ppm respectively. Dose-response relationships were established with almost 100% mortality when using the highest dose 100 ppm of T. capitatus oil extracts and 80 ppm of Azadirachtin. At the lowest dose (10 ppm), T. capitatus oil extracts and Azadirachtin caused 60% and 76% larval mortality in 48 hours respectively. The larval mortality rate greatly decreased with increases of the dilution of both oil extract compounds. Larval development duration appeared to be prolonged to about 12 days for larvae feeding on control diet. The maximum antifeedant activity was shown by both T. capitatus oil extract and Azadirachtin at LC90 values (47.5 and 50.1 ppm respectively). Tunisian T. capitatus oil extract used at low concentrations could be considered as eco-friendly promising insecticide similar to Azadirachtin that has significant potential for the biological control of P. oleae.

Keywords: Thymus capitatus, chemical composition, azadirachtin, larvicidal effects, antifeedant activity, Prays oleae

Procedia PDF Downloads 197
7154 Optimal Approach for Siewert Type Ⅱ Adenocarcinoma of the Esophagogastric Junction: A Systematic Review and Metanalysis

Authors: Maatouk Mohamed, Nouira Mariem

Abstract:

Background and aims: Healthcare-associated infections (HAI) represent a major public health problem worldwide. They represent one of the most serious adverse events in health care. The objectives of our study were to estimate the prevalence of HAI at the Charles Nicolle Hospital (CNH) and to identify the main associated factors as well as to estimate the frequency of antibiotic use. Methods: It was a cross sectional study at the CNH with a unique passage per department (OctoberDecember 2018). All patients present at the wards for more than 48 hours were included. All patients from outpatient consultations, emergency and dialysis departments were not included. The site definitions of infections proposed by the Centers for Disease Control and Prevention (CDC) were used. Only clinically and/or microbiologically confirmed active HAIs were included. Results: A total of 318 patients were included with a mean age of 52 years and a sex ratio (Female/Male) of 1.05. A total of 41 patients had one or more active HAIs, corresponding to a prevalence of 13.1% (95% CI: 9.3%-16.9%). The most frequent sites infections were urinary tract infections and pneumonia. Multivariate analysis among adult patients (>=18 years) (n=261), revealed that infection on admission (p=0.01), alcoholism (p=0.01), high blood pressure (p=0.008), having at least one invasive device inserted (p=0.004), and history of recent surgery (p=0.03), increased significantly the risk of HAIs. More than 1 of 3 patients (35.4%) were under antibiotics on the day of the survey, of which more than half (57.4%) were under 2 or more types of antibiotics. Conclusion: The prevalence of HAIs and antibiotic prescriptions at the CNH were considerably high. An infection prevention and control committee, as well as the development of an Antibiotic stewardship program with continuous monitoring using repeated prevalence surveys must be implemented to limit the frequency of these infections effectively.

Keywords: tumors, oesophagectomy, esophagogastric junction, systematic review

Procedia PDF Downloads 81
7153 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 129
7152 Estimating the Potential of Solar Energy: A Moroccan Case Study

Authors: Fakhreddin El Wali Elalaoui, Maatouk Mustapha

Abstract:

The problem of global climate change isbecoming more and more serious. Therefore, there is a growing interest in renewable energy sources to minimize the impact of this phenomenon. Environmental policies are changing in different countries, including Morocco, with a greater focus on the integration and development of renewable energy projects. The purpose of this paper is to evaluate the potential of solar power plants in Morocco based on two technologies: concentrated solar power (CSP) and photovoltaics (PV). In order to perform an accurate search, we must follow a certain method to select the correct criteria. Four selection criteria were retained: climate, topography, location, and water resources. AnalyticHierarchy Process (AHP) was used to calculate the weight/importance of each criterion. Once obtained, weights are applied to the map for each criterion to produce a final ranking that ranks regions according to their potential. The results show that Morocco has strong potential for both technologies, especially in the southern region. Finally, this work is the first in the field to include the whole of Morocco in the study area.

Keywords: PV, Csp, solar energy, GIS

Procedia PDF Downloads 92
7151 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors

Authors: Ye Ling, Ruan Haihui

Abstract:

Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.

Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8

Procedia PDF Downloads 48
7150 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission

Authors: V. Mentl, V. Koula, P. Mazal, J. Volák

Abstract:

Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.

Keywords: fatigue, crack growth rate, acoustic emission, material damage

Procedia PDF Downloads 370
7149 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting

Authors: A. Karimzad Ghavidel, M. Zadshakouyan

Abstract:

Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.

Keywords: dimensional accuracy, PMMA, CNTs, laser cutting

Procedia PDF Downloads 305