Search results for: trauma network
2849 Condition Assessment and Diagnosis for Aging Drinking Water Pipeline According to Scientific and Reasonable Methods
Authors: Dohwan Kim, Dongchoon Ryou, Pyungjong Yoo
Abstract:
In public water facilities, drinking water distribution systems have played an important role along with water purification systems. The water distribution network is one of the most expensive components of water supply infrastructure systems. To improve the reliability for the drinking rate of tap water, advanced water treatment processes such as granular activated carbon and membrane filtration were used by water service providers in Korea. But, distrust of the people for tap water are still. Therefore, accurate diagnosis and condition assessment for water pipelines are required to supply the clean water. The internal corrosion of water pipe has increased as time passed. Also, the cross-sectional areas in pipe are reduced by the rust, deposits and tubercles. It is the water supply ability decreases as the increase of hydraulic pump capacity is required to supply an amount of water, such as the initial condition. If not, the poor area of water supply will be occurred by the decrease of water pressure. In order to solve these problems, water managers and engineers should be always checked for the current status of the water pipe, such as water leakage and damage of pipe. If problems occur, it should be able to respond rapidly and make an accurate estimate. In Korea, replacement and rehabilitation of aging drinking water pipes are carried out based on the circumstances of simply buried years. So, water distribution system management may not consider the entire water pipeline network. The long-term design and upgrading of a water distribution network should address economic, social, environmental, health, hydraulic, and other technical issues. This is a multi-objective problem with a high level of complexity. In this study, the thickness of the old water pipes, corrosion levels of the inner and outer surface for water pipes, basic data research (i.e. pipe types, buried years, accident record, embedded environment, etc.), specific resistance of soil, ultimate tensile strength and elongation of metal pipes, samples characteristics, and chemical composition analysis were performed about aging drinking water pipes. Samples of water pipes used in this study were cement mortar lining ductile cast iron pipe (CML-DCIP, diameter 100mm) and epoxy lining steel pipe (diameter 65 and 50mm). Buried years of CML-DCIP and epoxy lining steel pipe were respectively 32 and 23 years. The area of embedded environment was marine reclamation zone since 1940’s. The result of this study was that CML-DCIP needed replacement and epoxy lining steel pipe was still useful.Keywords: drinking water distribution system, water supply, replacement, rehabilitation, water pipe
Procedia PDF Downloads 2622848 Criminal Psychology: The Relationship Between Posttraumatic Stress Disorder and Criminal Justice Involvement in Vietnam War Veterans
Authors: Danielle Page
Abstract:
Foregoing studies, statistics, and medical evaluations have established a relationship between Posttraumatic stress disorder (PTSD) and criminal justice involvement in Vietnam veterans. War is highly trauma inducing and can leave combat veterans with mental disorders ranging from psychopathic thoughts to suicidal ideation. The majority of those suffering are unaware that they have PTSD, and as a coping mechanism, they often turn to self isolation. Beyond isolation, many veterans with symptomatic PTSD turn to aggression and substance abuse to cope with their internal agony. The most common crimes committed by veterans with PTSD fall into the assault and drug/alcohol abuse categories. Thus, a relationship is established between veteran populations and the criminal justice system. This research aims to define the relationship between PTSD and criminal justice involvement in veterans, explore the mediating factors in this relationship, and analyze numerous court cases in this subject area. Further, it will examine the ways in which crime rates can be reduced for veterans with symptoms of PTSD. This ranges from the improvement of healthcare systems to the implementation of special courts to handle veteran cases. The contribution of this work to the field of forensic psychology will be significant, as it will analyze preexisting case studies and experimental data in an effort to improve the ways in which veteran cases are handled in the criminal justice system. Military personnel involved in the criminal justice system are a vulnerable population in need of healthcare and legislative attention, and this work will bring us one step closer to providing them with just that.Keywords: forensic psychology, psychotraumatology, PTSD, veterans
Procedia PDF Downloads 942847 The Aesthetic Manifestations of Nothingness in Contemporary Visual Arts Practice
Authors: Robyn Therese Munnick
Abstract:
This paper aims to report on a qualitative practice-based research study which explores the notion of nothingness and how it (nothingness) is the conceptual and theoretical foundation for artistic practice. Furthermore, this study explicates how the artist used their mother’s battle with cancer and the subsequent void it created as source material for the artistic expression of nothingness. The diagnosis which was followed by a physical and emotional absence of the matriarch of the artist family led to an emotional trauma that triggered a feeling of nothingness within the artist. The overarching problem in the study is thus: how this ‘nothingness’ could be expressed in visual art? Nothingness, as a product of expectation, is a notion which refers to where something used to be, should be or isn’t anymore, which attempts to grasp what is there by not being there. In attempting to express nothingness, the research aims to build on an exploration of various materials and modes utilized in order to underpin the research objectives. The primary mode of delivery for the art-making process is painting. However, through strengthening the messages and meaning of the hypothesis of nothingness within the art and research, the use of further modes and materials became pivotal. This involves the use of unconventional contrasting modes within a painting such as the cloth doily, thread, tubing, ceramics, food colour, spray paint, polyvinyl acetate paint, plaster, wooden boxes and fragments thereof. These materials and modes were vital in visualising and aestheticising the conceptual underpinnings of the research. As a result, this strengthened and emancipated the art from the traditional bounds of pure painting. Methods of data gathering took the form of artefacts, document analysis, and field notes in the form of photographic journaling. Ultimately the body of work and research validates that the idea of nothingness can be artistically explored.Keywords: conceptual, nothingness, modes, unconventional
Procedia PDF Downloads 1452846 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel
Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani
Abstract:
Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry
Procedia PDF Downloads 2752845 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks
Authors: Hyunsun Lee, Yi Zhu
Abstract:
Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles
Procedia PDF Downloads 1292844 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 952843 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: authentication, key-session, security, wireless sensors
Procedia PDF Downloads 3242842 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant
Procedia PDF Downloads 2962841 Soil Salinity Mapping using Electromagnetic Induction Measurements
Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri
Abstract:
Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinizationKeywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable
Procedia PDF Downloads 1902840 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3962839 Incidence and Causes of Elective Surgery Cancellations in Songklanagarind Hospital, Thailand
Authors: A. Kaeotawee, N. Bunmas, W. Chomthong
Abstract:
Background: The cancellation of elective surgery is a major indicator of poor operating room efficiency. Furthermore, it is recognized as a major cause of emotional trauma to patients as well as their families. This study was carried out to assess the incidence and causes of elective surgery cancellation in our setting and to find the appropriate solutions for better quality management. Objective: To determine the incidence and causes of elective surgery cancellations in Songklanagarind Hospital. Material and Method: A prospective survey was conducted from September to November 2012. All patients who had their scheduled elective operations cancelled were assessed. Data was collected on the following 2 components: (1) patient demographics;(2) main reasons for cancellations, which were grouped into patient-related factors and organizational-related factors. Data are reported as a percentage of patients whose operations were cancelled. The association between cancellation status and patient demographics was assessed using univariate logistic regression. Results: 2,395 patients were scheduled for elective surgery and of these 343 (14.3%) had their operations cancelled. Cardiothoracic surgery had the highest rate of cancellations (28.7%) while the least number of cancellations occurred in ophthalmology (10.1%). The main reasons for cancellations were related to the unit's organization (53.6%), due to the surgeon (48.4%). Patient related causes (46.4%), due to non medical reasons (32.1%). The most common cause of cancellation by the surgeon was lack of theater time (21.3%), by patients due to the patient’s nonappearance (25.1%). Cancellation was significantly associated with type of patient, health insurance, type of anesthesia and specialties (p<0.05). Conclusion: Surgery cancellations by surgeons relating to a lack of theater time was a significant problem in our setting. Appropriate solutions for better quality improvement are needed.Keywords: elective cases, surgery cancellation, quality management, appropriate solutions
Procedia PDF Downloads 2612838 Port Miami in the Caribbean and Mesoamerica: Data, Spatial Networks and Trends
Authors: Richard Grant, Landolf Rhode-Barbarigos, Shouraseni Sen Roy, Lucas Brittan, Change Li, Aiden Rowe
Abstract:
Ports are critical for the US economy, connecting farmers, manufacturers, retailers, consumers and an array of transport and storage operators. Port facilities vary widely in terms of their productivity, footprint, specializations, and governance. In this context, Port Miami is considered as one of the busiest ports providing both cargo and cruise services in connecting the wider region of the Caribbean and Mesoamerica to the global networks. It is considered as the “Cruise Capital of the World and Global Gateway of the Americas” and “leading container port in Florida.” Furthermore, it has also been ranked as one of the top container ports in the world and the second most efficient port in North America. In this regard, Port Miami has made significant investments in the strategic and capital infrastructure of about US$1 billion, including increasing the channel depth and other onshore infrastructural enhancements. Therefore, this study involves a detailed analysis of Port Miami’s network, using publicly available multiple years of data about marine vessel traffic, cargo, and connectivity and performance indices from 2015-2021. Through the analysis of cargo and cruise vessels to and from Port Miami and its relative performance at the global scale from 2015 to 2021, this study examines the port’s long-term resilience and future growth potential. The main results of the analyses indicate that the top category for both inbound and outbound cargo is manufactured products and textiles. In addition, there are a lot of fresh fruits, vegetables, and produce for inbound and processed food for outbound cargo. Furthermore, the top ten port connections for Port Miami are all located in the Caribbean region, the Gulf of Mexico, and the Southeast USA. About half of the inbound cargo comes from Savannah, Saint Thomas, and Puerto Plata, while outbound cargo is from Puerto Corte, Freeport, and Kingston. Additionally, for cruise vessels, a significantly large number of vessels originate from Nassau, followed by Freeport. The number of passenger's vessels pre-COVID was almost 1,000 per year, which dropped substantially in 2020 and 2021 to around 300 vessels. Finally, the resilience and competitiveness of Port Miami were also assessed in terms of its network connectivity by examining the inbound and outbound maritime vessel traffic. It is noteworthy that the most frequent port connections for Port Miami were Freeport and Savannah, followed by Kingston, Nassau, and New Orleans. However, several of these ports, Puerto Corte, Veracruz, Puerto Plata, and Santo Thomas, have low resilience and are highly vulnerable, which needs to be taken into consideration for the long-term resilience of Port Miami in the future.Keywords: port, Miami, network, cargo, cruise
Procedia PDF Downloads 832837 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2552836 First Aid Awareness Campaign for Two Undergraduate Nursing Cohorts
Authors: Mona Afifi, Yara Al Qahtani, Afnan Al Dosari, Amnah Hamdi
Abstract:
Background: First aid is the care provided outside the hospital. It is important in saving lives. Delay in helping the victims may result in serious complication or even death. Many people die in Saudi Arabia because they don’t get proper first aid interventions. According to Traffic Safety council in KSA (2012), in the year of 2011 there was 7153 deaths from car accident in KAS. Subjects and method: Quasi-experimental research design was utilized to assess the effect of a structured 45-minute educational session on 82 undergraduate nursing students’ knowledge about first aid. Two tools were developed for the purpose of the current study. First tool containing the sociodemographic data including age, gender, level, and previous participation in a first aid course, and 55 statements specific to different situations that requires first aid. Concept and Knowledge of First Aid has 9 questions, cardiopulmonary resuscitation has 12 questions, Bleeding and Shock have 7 questions, Road Traffic Accidents has 5 questions, Fracture and Trauma have 4 questions, wound has 5 questions, sunstroke has 4 questions, bits and stings has 4 questions and burn has 5 questions. The second tool was to evaluate the campaign session. Result: The overall knowledge score showed significant difference between the pre and post awareness session (59.58 and 93.00 respectively, p=.000). Mean score shows significant difference in pre-tests between third and fourth year nursing students indicating that knowledge of fourth year students is higher compared to third year students with the mean knowledge scores of 69.56 and 60.88 respectively (p=0.006). Conclusion: Results of the current study indicate that the level of the knowledge in the post test session was higher than in the pre session. Also results showed that the fourth year student`s knowledge in pre-test was better compared to previous year.Keywords: first aid, awareness campaign, undergraduate nursing students, knowledge
Procedia PDF Downloads 1742835 Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers
Authors: M. Sundaram, H. R. Sanath Kumar, A. Ramprakash
Abstract:
Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’.Keywords: operation costs, consumption of fuel and carbon footprint, implementation of a programmable logic controller (PLC) based ‘optimisation controller’, efficient SCADA based monitoring system
Procedia PDF Downloads 4232834 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings
Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium
Abstract:
Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.Keywords: advocacy, education, global surgery, InciSioN, student network
Procedia PDF Downloads 1772833 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 1252832 Introduction of Mass Rapid Transit System and Its Impact on Para-Transit
Authors: Khalil Ahmad Kakar
Abstract:
In developing countries increasing the automobile and low capacity public transport (para-transit) which are creating congestion, pollution, noise, and traffic accident are the most critical quandary. These issues are under the analysis of assessors to break down the puzzle and propose sustainable urban public transport system. Kabul city is one of those urban areas that the inhabitants are suffering from lack of tolerable and friendly public transport system. The city is the most-populous and overcrowded with around 4.5 million population. The para-transit is the only dominant public transit system with a very poor level of services and low capacity vehicles (6-20 passengers). Therefore, this study after detailed investigations suggests bus rapid transit (BRT) system in Kabul City. It is aimed to mitigate the role of informal transport and decreases congestion. The research covers three parts. In the first part, aggregated travel demand modelling (four-step) is applied to determine the number of users for para-transit and assesses BRT network based on higher passenger demand for public transport mode. In the second part, state preference (SP) survey and binary logit model are exerted to figure out the utility of existing para-transit mode and planned BRT system. Finally, the impact of predicted BRT system on para-transit is evaluated. The extracted outcome based on high travel demand suggests 10 km network for the proposed BRT system, which is originated from the district tenth and it is ended at Kabul International Airport. As well as, the result from the disaggregate travel mode-choice model, based on SP and logit model indicates that the predicted mass rapid transit system has higher utility with the significant impact regarding the reduction of para-transit.Keywords: BRT, para-transit, travel demand modelling, Kabul City, logit model
Procedia PDF Downloads 1912831 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks
Procedia PDF Downloads 1502830 In silico Analysis towards Identification of Host-Microbe Interactions for Inflammatory Bowel Disease Linked to Reactive Arthritis
Authors: Anukriti Verma, Bhawna Rathi, Shivani Sharda
Abstract:
Reactive Arthritis (ReA) is a disorder that causes inflammation in joints due to certain infections at distant sites in the body. ReA begins with stiffness, pain, and inflammation in these areas especially the ankles, knees, and hips. It gradually causes several complications such as conjunctivitis in the eyes, skin lesions in hand, feet and nails and ulcers in the mouth. Nowadays the diagnosis of ReA is based upon a differential diagnosis pattern. The parameters for differentiating ReA from other similar disorders include physical examination, history of the patient and a high index of suspicion. There are no standard lab tests or markers available for ReA hence the early diagnosis of ReA becomes difficult and the chronicity of disease increases with time. It is reported that enteric disorders such as Inflammatory Bowel Disease (IBD) that is inflammation in gastrointestinal tract namely Crohn’s Disease (CD) and Ulcerative Colitis (UC) are reported to be linked with ReA. Several microorganisms are found such as Campylobacter, Salmonella, Shigella and Yersinia causing IBD leading to ReA. The aim of our study was to perform the in-silico analysis in order to find interactions between microorganisms and human host causing IBD leading to ReA. A systems biology approach for metabolic network reconstruction and simulation was used to find the essential genes of the reported microorganisms. Interactomics study was used to find the interactions between the pathogen genes and human host. Genes such as nhaA (pathogen), dpyD (human), nagK (human) and kynU (human) were obtained that were analysed further using the functional, pathway and network analysis. These genes can be used as putative drug targets and biomarkers in future for early diagnosis, prevention, and treatment of IBD leading to ReA.Keywords: drug targets, inflammatory bowel disease, reactive arthritis, systems biology
Procedia PDF Downloads 2772829 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1102828 An Amended Method for Assessment of Hypertrophic Scars Viscoelastic Parameters
Authors: Iveta Bryjova
Abstract:
Recording of viscoelastic strain-vs-time curves with the aid of the suction method and a follow-up analysis, resulting into evaluation of standard viscoelastic parameters, is a significant technique for non-invasive contact diagnostics of mechanical properties of skin and assessment of its conditions, particularly in acute burns, hypertrophic scarring (the most common complication of burn trauma) and reconstructive surgery. For elimination of the skin thickness contribution, usable viscoelastic parameters deduced from the strain-vs-time curves are restricted to the relative ones (i.e. those expressed as a ratio of two dimensional parameters), like grosselasticity, net-elasticity, biological elasticity or Qu’s area parameters, in literature and practice conventionally referred to as R2, R5, R6, R7, Q1, Q2, and Q3. With the exception of parameters R2 and Q1, the remaining ones substantially depend on the position of inflection point separating the elastic linear and viscoelastic segments of the strain-vs-time curve. The standard algorithm implemented in commercially available devices relies heavily on the experimental fact that the inflection time comes about 0.1 sec after the suction switch-on/off, which depreciates credibility of parameters thus obtained. Although the Qu’s US 7,556,605 patent suggests a method of improving the precision of the inflection determination, there is still room for nonnegligible improving. In this contribution, a novel method of inflection point determination utilizing the advantageous properties of the Savitzky–Golay filtering is presented. The method allows computation of derivatives of smoothed strain-vs-time curve, more exact location of inflection and consequently more reliable values of aforementioned viscoelastic parameters. An improved applicability of the five inflection-dependent relative viscoelastic parameters is demonstrated by recasting a former study under the new method, and by comparing its results with those provided by the methods that have been used so far.Keywords: Savitzky–Golay filter, scarring, skin, viscoelasticity
Procedia PDF Downloads 3052827 Body-Worn Camera Use in the Emergency Department: Patient and Provider Satisfaction
Authors: Jeffrey Ho, Scott Joing, Paul Nystrom, William Heegaard, Danielle Hart, David Plummer, James Miner
Abstract:
Body-Worn Cameras (BWCs) are used in public safety to record encounters. They are shown to enhance the accuracy of documentation in virtually every situation. They are not widely used in medical encounters in part because of concern for patient acceptance. The goal of this pilot study was to determine if BWC use is acceptable to the patient. This was a prospective, observational study of the AXON Flex BWC (TASER International, Scottsdale, AZ) conducted at an urban, Level 1 Trauma Center Emergency Department (ED). The BWC was worn by Emergency Physicians (EPs) on their shifts during a 30-day period. The BWC was worn at eye-level mounted on a pair of clear safety glasses. Patients seen by the EP were enrolled in the study by a trained research associate. Patients who were <18 years old, who were with other people in the exam room, did not speak English, were critically ill, had chief complaints involving genitalia or sexual assault, were considered to be vulnerable adults, or with an altered mental status were excluded. Consented patients were given a survey after the encounter to determine their perception of the BWC. The questions asked involved the patients’ perceptions of a BWC being present during their interaction with their EP. Data were analyzed with descriptive statistics. There were 417 patients enrolled in the study. 3/417 (0.7%) patients were intimidated by the BWC, 1/417 (0.2%) was nervous because of the BWC, 0/417 (0%) were inhibited from telling the EP certain things because of the BWC, 57/417 (13.7%) patients did not notice the device, and 305/417 (73.1%) patients were had a favorable perception about the BWC being used during their encounter. The use of BWCs appears feasible in the ED, with largely favorable perceptions and acceptance of the device by the patients. Further study is needed to determine the best use and practices of BWCs during ED patient encounters.Keywords: body-worn camera, documentation, patient satisfaction, video
Procedia PDF Downloads 3792826 Canine Neonatal Mortality at the São Paulo State University Veterinary Hospital, Botucatu, São Paulo, Brazil – Preliminary Data
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, João C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
The neonatal mortality rates in dogs are considered high, varying between 5.7 and 21.2% around the world, and the causes of the deaths are often unknown. Data regarding canine neonatal mortality are scarce in Brazil. This study aims at describing the neonatal mortality rates in dogs, as well as the main causes of death. The study included 152 litters and 669 neonates admitted to the São Paulo State University (UNESP) Veterinary Hospital, Botucatu, São Paulo, Brazil between January 2018 and September 2019. The overall mortality rate was 16.7% (112/669), with 40% (61/152) of the litters presenting at least one case of stillbirth or neonatal mortality. The rate of stillbirths was 7.7% (51/669), while the neonatal mortality rate was 9% (61/669). The early mortality rate (0 to 2 days) was 13.7% (92/669), accounting for 82.1% (92/112) of all deaths. The late mortality rate (3 to 30 days) was 2.7% (18/669), accounting for 16% (18/112) of all deaths. Infection was the causa mortis in 51.8% (58/112) of the newborns, of which 30.3% (34/112) were caused by bacterial sepsis, and 21.4% (24/112) were caused by other bacterial, viral or parasite infections. Other causes of death included congenital malformations (15.2%, 17/112), of which 5.3% (6/112) happened through euthanasia due to malformations incompatible with life; asphyxia/hypoxia by dystocia (9.8%, 11/112); wasting syndrome in debilitated newborns (6.2%, 7/112); aspiration pneumonia (3.6%, 4/112); agalactia (2.7%, 3/112); trauma (1.8%, 2/112); administration of contraceptives to the mother (1.8%, 2/112) and unknown causes (7.1%, 8/112). The neonatal mortality rate was considered high, but they may be even higher in locations without adequate care for the mothers and neonates. Therefore, prenatal examinations and early neonatal care are of utmost importance for the survival of these patients.Keywords: neonate dogs, puppies, mortality rate, neonatal death
Procedia PDF Downloads 2092825 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 3802824 Victim Witnesses of Human Trafficking: A Phenomenological Study
Authors: Jireh Reinor L. Vitto, Mylene S. Gumarao, Levy M. Fajanilan, Sheryll Ann M. Castillo, Leonardo B. Dorado, Miriam P. Narbarte
Abstract:
Human trafficking may happen to anyone. The study aimed to explore the experiences of victim witnesses of human trafficking. It utilized a qualitative phenomenological study design. Eighteen women, 15 to 46 years old, had experienced human trafficking (sex or labor trafficking), and with a filed case or not. An in-depth semi-structured, open-ended interview was employed to gather information. Guardians were also interviewed for triangulation purposes. Findings showed that the participants experienced fatigue and abuse for their physical aspect and gained negative feelings such as burdened, sad, scared (fear), stress, anger, trauma, depress and suicidal thoughts for their psychological aspect. For the spiritual aspect, the participants concluded to have enhanced spiritual life where they knew about God, became closer to God, and learned how to pray. They also faced challenges such as dysfunctional family, delinquent friends, exploitation, problems kept from the family, and poverty, which resulted in their becoming victims of human trafficking. To cope with the situation, they utilized family support, prayers, guts or courage (lakas ng loob), negotiation with their employer, and support from kababayans. Their practices and mechanisms to recover were the Blas Ople Center, rescue/entrapment operation, shelter, and embassy. After the incident, the participants shared that they earned to have thoughts of having a good life without going abroad/makabayan, knowledge of overseas Filipino workers, wise choice of friends, contentment, and value for the family.Keywords: victim-witnesses, human trafficking, lived experiences, challenges, coping strategies
Procedia PDF Downloads 1352823 The Perspectives of Preparing Psychology Practitioners in Armenian Universities
Authors: L. Petrosyan
Abstract:
The problem of psychologist training remains a key priority in Armenia. During the Soviet period, the notion of a psychologist was obscure not only in Armenia but also in other Soviet republics. The breakup of the Soviet Union triggered a gradual change in this area activating the cooperation with specialists from other countries. The need for recovery from the psychological trauma caused by the 1988 earthquake pushed forward the development of practical psychology in Armenia. This phenomenon led to positive changes in perception of and interest to a psychologist profession.Armenian universities started designing special programs for psychologists’ preparation. Armenian psychologists combined their efforts in the field of training relevant specialists. During the recent years, the Bologna educational system was introduced in Armenia which led to implementation of education quality improvement programs. Nevertheless, even today the issue of psychologists’ training is not yet settled in Armenian universities. So far graduate psychologists haven’t got a clear idea of personal and professional qualities of a psychologist. Recently, as a result of educational reforms, the psychology curricula underwent changes, but so far they have not led to a desired outcome. Almost all curricula in certain specialties are aimed to form professional competencies and strengthen practical skills. A survey conducted in Armenia aimed to identify what are the ideas of young psychology specialists on the image of a psychologist. The survey respondents were 45 specialists holding bachelor’s degree as well as 30 master degree graduates, who have not been working yet. The research reveals that we need to change the approach of preparing psychology practitioners in the universities of Armenia. Such an approach to psychologist training will make it possible to train qualified specialists for enhancement of modern psychology theory and practice.Keywords: practitioners, psychology degree, study, professional competencies
Procedia PDF Downloads 4562822 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7322821 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 2912820 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA
Authors: Catelyn Coyle, Helena Kwakwa
Abstract:
Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.Keywords: HCV, routine testing, linkage to care, community health centers
Procedia PDF Downloads 357