Search results for: VSS (Vector Space Similarity)
2842 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4882841 Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination
Authors: Amaraja Taur, Pankaj Doshi, Hak Koon Yeoh
Abstract:
The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams shows the changes in the transitions between the different dripping modes for different nozzle inclination angle θ is constructed in the dimensionless (Q, µ) space.Keywords: dripping, inclined nozzle, phase diagram, satellite
Procedia PDF Downloads 2892840 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 1702839 Probing Language Models for Multiple Linguistic Information
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.Keywords: language models, probing task, text presentation, linguistic information
Procedia PDF Downloads 1102838 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1642837 Investigation of the Excitotoxicity Pathways in Neuroblastoma Cells
Authors: Merve Colak, Gizem Donmez Yalcin
Abstract:
Glutamate has many neurological functions in the central nervous system and is found at high concentrations in the brain. Increased levels of glutamate in the neuronal space are toxic, causing neuron damage and death. This is called glutamate-induced excitotoxicity. Excitotoxicity is among the causes of many neurological diseases such as trauma, cerebral ischemia, epilepsy, Parkinson's Disease, Alzheimer's Disease. Since neuroblastoma cells are known to be excitotoxic, we propose that excitotoxicity can be studied in neuroblastoma cells. Excitotoxicity can be induced using kainic acid in neuroblastoma cells. Measuring the secretion of glutamate, excitotoxicity can be analyzed in neuroblastoma cells.Keywords: glutamate, excitotoxicity, kainic acid, Sirt4
Procedia PDF Downloads 1582836 Health Outcomes and Economic Growth Nexus: Testing for Long-run Relationships and Causal Links in Nigeria
Authors: Haruna Modibbo Usman, Mustapha Muktar, Nasiru Inuwa
Abstract:
This paper examined the long run relationship between health outcomes and economic growth in Nigeria from 1961 to 2012. Using annual time series data, Augmented Dickey-Fuller (ADF) test is conducted to check the stochastic properties of the variables. Also, the long run relationship among the variables is confirmed based on Johansen Multivariate Cointegration approach whereas the long run and short run dynamics are observed using Vector Error Correction Mechanism (VECM). In addition, VEC Granger causality test is employed to examine the direction of causality among the variables. On the whole, the results obtained revealed the existence of a long run relationship between health outcomes and economic growth in Nigeria and that both life expectancy and crude death rate as measures of health are found to have a long run negative and statistically significant impact on the economic growth over the study period. This is further buttressed by the results of Granger causality test which indicated the existence of unidirectional causality running from life expectancy and crude death rate to economic growth. The study therefore, calls for governments at various levels to create preconditions for health improvements in Nigeria in order to boost the level of health outcomes.Keywords: cointegration, economic growth, Granger causality, health outcomes, VECM
Procedia PDF Downloads 4902835 Image Multi-Feature Analysis by Principal Component Analysis for Visual Surface Roughness Measurement
Authors: Wei Zhang, Yan He, Yan Wang, Yufeng Li, Chuanpeng Hao
Abstract:
Surface roughness is an important index for evaluating surface quality, needs to be accurately measured to ensure the performance of the workpiece. The roughness measurement based on machine vision involves various image features, some of which are redundant. These redundant features affect the accuracy and speed of the visual approach. Previous research used correlation analysis methods to select the appropriate features. However, this feature analysis is independent and cannot fully utilize the information of data. Besides, blindly reducing features lose a lot of useful information, resulting in unreliable results. Therefore, the focus of this paper is on providing a redundant feature removal approach for visual roughness measurement. In this paper, the statistical methods and gray-level co-occurrence matrix(GLCM) are employed to extract the texture features of machined images effectively. Then, the principal component analysis(PCA) is used to fuse all extracted features into a new one, which reduces the feature dimension and maintains the integrity of the original information. Finally, the relationship between new features and roughness is established by the support vector machine(SVM). The experimental results show that the approach can effectively solve multi-feature information redundancy of machined surface images and provides a new idea for the visual evaluation of surface roughness.Keywords: feature analysis, machine vision, PCA, surface roughness, SVM
Procedia PDF Downloads 2122834 A Decision Support System to Detect the Lumbar Disc Disease on the Basis of Clinical MRI
Authors: Yavuz Unal, Kemal Polat, H. Erdinc Kocer
Abstract:
In this study, a decision support system comprising three stages has been proposed to detect the disc abnormalities of the lumbar region. In the first stage named the feature extraction, T2-weighted sagittal and axial Magnetic Resonance Images (MRI) were taken from 55 people and then 27 appearance and shape features were acquired from both sagittal and transverse images. In the second stage named the feature weighting process, k-means clustering based feature weighting (KMCBFW) proposed by Gunes et al. Finally, in the third stage named the classification process, the classifier algorithms including multi-layer perceptron (MLP- neural network), support vector machine (SVM), Naïve Bayes, and decision tree have been used to classify whether the subject has lumbar disc or not. In order to test the performance of the proposed method, the classification accuracy (%), sensitivity, specificity, precision, recall, f-measure, kappa value, and computation times have been used. The best hybrid model is the combination of k-means clustering based feature weighting and decision tree in the detecting of lumbar disc disease based on both sagittal and axial MR images.Keywords: lumbar disc abnormality, lumbar MRI, lumbar spine, hybrid models, hybrid features, k-means clustering based feature weighting
Procedia PDF Downloads 5202833 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method
Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park
Abstract:
3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)
Procedia PDF Downloads 2342832 The Evolution of Architecture through Digital: A Survey on Fashion Catwalk Becoming Digital
Authors: Valeria Minucciani, Maria Maddalena Margaria
Abstract:
While mathematical tools that make digital architecture possible are very sophisticated and advanced, theoretical development of digital architecture (intended as a discipline that integrates or replaces the real architecture) is not. The fashion show, that involves interiors architecture, exhibit design and scenography, has been exploiting for ten years the opportunities offered by digital technologies. To gain greater visibility and to reach a wider audience, high-level experimentations have been performed. The aim of this paper is in investigating, through the analysis of some cases of virtual fashion shows, the 'architectural' impact of the virtual conception of interior space.Keywords: digital interiors, exhibit, fashion catwalk, architectural theory
Procedia PDF Downloads 4272831 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3572830 Children’s Experience of the Built Environment in the Initial Stages of a Settlement Formation: Case Study of Shahid-Keshvari New Settlement, Isfahan, Iran
Authors: Hassan Sheikh, Mehdi Nilipour, Amiraslan Fila
Abstract:
Many conventional town planning processes do little to give children and young people a voice on what is important about the urban environment. As a result of paying little attention to the children, their physical, social and mental needs are hardly met in urban environments. Therefore, urban spaces are impotent to attract children, while their recreational space has been confined to home or virtual spaces. Since children are just taking the first steps to learn the world beyond house borders, their living environment will profoundly influence almost all aspects of their lives. This puts a great deal of responsibility on the shoulders of planners, who need to balance a number of different issues in urban design to make places more child-friendly. The main purpose of present research is to analyze and plan a child-friendly environment in an on-going urban settlement development for the benefit of all residents. Assessing children’s needs and regard them in development strategies and policies will help to “plan for children”. Following this purpose, based on child-friendly environment studies, indicators of child-friendly environments were collected. Then three distinct characteristics of case study, which are being under-construction, lack of social ties between dwellers and high-rise building, determined seven indicators included basic services, Urban and environmental qualities, Family, kin, peers and community, Sense of belonging and continuity, participation, Safety, security and freedom of movement and human scale. With the survey, Informal observation and participation in small communities, essential data has been collected and analyzed by SPSS software. The field study is Shahid-Keshvari town in Isfahan, Iran. Eighty-six middle childhood, children (ages 8-13) participated. The results show Children's satisfaction is correlated with basic services and the quality of the environment, social environment and the safety and security. The considerable number of children and youth (55%) like to live somewhere other than the town. Satisfaction and sense of belonging and continuity have a strong inverse correlation with age. In other words, as age increases, satisfaction and consequently a sense of belonging will be reduced; thus children and youth consider their future somewhere out of the town. The main reason for dissatisfaction was the basic services and social environment. More than half of children (55%) expressed their wish to develop basic services in terms of availability, hierarchy, and quality. Among all recreational places, children showed more interest to the parks. About three-quarters (76%) considered building a park as a crucial item for residents. The significant number of children (54%) want to have a relationship with more friends. This could be due to the serious shortage of the leisure spaces such as parks or playgrounds. Also, the space around the house or space between the apartments has not been designed for play or children’s activities. Moreover, the presence of strangers and construction workers have a negative impact on children's sense of peace and security; 60% of children are afraid of theft and 36% of children found strangers as a menace. The analysis of children’s issues and suggestions provides an insight to plan and design of child-friendly environment in new towns.Keywords: child-friendly city (CFC), child-friendly environment, child participation, under-construction environment, Isfahan Shahid-Keshvari Town
Procedia PDF Downloads 3752829 Analysis of Reflection Coefficients of Reflected and Transmitted Waves at the Interface Between Viscous Fluid and Hygro-Thermo-Orthotropic Medium
Authors: Anand Kumar Yadav
Abstract:
Purpose – The purpose of this paper is to investigate the fluctuation of amplitude ratios of various transmitted and reflected waves. Design/methodology/approach – The reflection and transmission of plane waves on the interface between an orthotropic hygro-thermo-elastic half-space (OHTHS) and a viscous-fluid half-space (VFHS) were investigated in this study with reference to coupled hygro-thermo-elasticity. Findings – The interface, where y = 0, is struck by the principal (P) plane waves as they travel through the VFHS. Two waves are reflected in VFHS, and four waves are transmitted in OHTHS as a result namely longitudinal displacement, Pwave − , thermal diffusion TDwave − and moisture diffusion mDwave − and shear vertical SV wave. Expressions for the reflection and transmitted coefficient are developed for the incidence of a hygrothermal plane wave. It is noted that these ratios are graphically displayed and are observed under the influence of coupled hygro-thermo-elasticity. Research limitations/implications – There isn't much study on the model under consideration, which combines OHTHS and VFHS with coupled hygro-thermo-elasticity, according to the existing literature Practical implications – The current model can be applied in many different areas, such as soil dynamics, nuclear reactors, high particle accelerators, earthquake engineering, and other areas where linked hygrothermo-elasticity is important. In a range of technical and geophysical settings, wave propagation in a viscous fluid-thermoelastic medium with various characteristics, such as initial stress, magnetic field, porosity, temperature, etc., gives essential information regarding the presence of new and modified waves. This model may prove useful in modifying earthquake estimates for experimental seismologists, new material designers, and researchers. Social implications – Researchers may use coupled hygro-thermo-elasticity to categories the material, where the parameter is a new indication of its ability to conduct heat in interaction with diverse materials. Originality/value – The submitted text is the sole creation of the team of writers, and all authors equally contributed to its creation.Keywords: hygro-thermo-elasticity, viscous fluid, reflection coefficient, transmission coefficient, moisture concentration
Procedia PDF Downloads 662828 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 2882827 A Comparative Approach to the Concept of Incarnation of God in Hinduism and Christianity
Authors: Cemil Kutluturk
Abstract:
This is a comparative study of the incarnation of God according to Hinduism and Christianity. After dealing with their basic ideas on the concept of the incarnation of God, the main similarities and differences between each other will be examined by quoting references from their sacred texts. In Hinduism, the term avatara is used in order to indicate the concept of the incarnation of God. The word avatara is derived from ava (down) and tri (to cross, to save, attain). Thus avatara means to come down or to descend. Although an avatara is commonly considered as an appearance of any deity on earth, the term refers particularly to descents of Vishnu. According to Hinduism, God becomes an avatara in every age and entering into diverse wombs for the sake of establishing righteousness. On the Christian side, the word incarnation means enfleshment. In Christianity, it is believed that the Logos or Word, the Second Person of Trinity, presumed human reality. Incarnation refers both to the act of God becoming a human being and to the result of his action, namely the permanent union of the divine and human natures in the one Person of the Word. When the doctrines of incarnation and avatara are compared some similarities and differences can be found between each other. The basic similarity is that both doctrines are not bound by the laws of nature as human beings are. They reveal God’s personal love and concern, and emphasize loving devotion. Their entry into the world is generally accompanied by extraordinary signs. In both cases, the descent of God allows for human beings to ascend to God. On the other hand, there are some distinctions between two religious traditions. For instance, according to Hinduism there are many and repeated avataras, while Christ comes only once. Indeed, this is related to the respective cyclic and linear worldviews of the two religions. Another difference is that in Hinduism avataras are real and perfect, while in Christianity Christ is also real, yet imperfect; that is, he has human imperfections, except sin. While Christ has never been thought of as a partial incarnation, in Hinduism there are some partial and full avataras. The other difference is that while the purpose of Christ is primarily ultimate salvation, not every avatara grants ultimate liberation, some of them come only to save a devotee from a specific predicament.Keywords: Avatara, Christianity, Hinduism, incarnation
Procedia PDF Downloads 2562826 Octagon Shaped Wearable Antenna for Band at 4GHz
Authors: M. Khazini, M.Damou, Z. Souar
Abstract:
In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies.Keywords: ultra wideband, wearable antenna, slot antenna, liquid crystal polymer (LCP), CST studio
Procedia PDF Downloads 3602825 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 2402824 Bianchi Type- I Viscous Fluid Cosmological Models with Stiff Matter and Time Dependent Λ- Term
Authors: Rajendra Kumar Dubey
Abstract:
Einstein’s field equations with variable cosmological term Λ are considered in the presence of viscous fluid for Bianchi type I space time. Exact solutions of Einstein’s field equations are obtained by assuming cosmological term Λ Proportional to (R is a scale factor and m is constant). We observed that the shear viscosity is found to be responsible for faster removal of initial anisotropy in the universe. The physical significance of the cosmological models has also been discussed.Keywords: bianchi type, I cosmological model, viscous fluid, cosmological constant Λ
Procedia PDF Downloads 5282823 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 1742822 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT
Authors: R. R. Ramsheeja, R. Sreeraj
Abstract:
For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification
Procedia PDF Downloads 5092821 Application of Modulo-2 Arithmetic in Securing Communicated Messages throughout the Globe
Authors: Ejd Garba, Okike Benjamin
Abstract:
Today, the word encryption has become very popular even among non-computer professionals. There is no doubt that some works have been carried out in this area, but more works need to be done. Presently, most of the works on encryption is concentrated on the sender of the message without paying any attention to the message recipient. However, it is a good practice if any message sent to someone is received by the particular person whom the message is sent to. This work seeks to ensure that at the receiving end of the message, there is a security to ensure that the recipient computes a key that would enable the encrypted message to be accessed. This key would be in form of password. This would make it possible for a given message to be sent to several people at the same time. When this happens, it is only those people who computes the key correctly that would be given the opportunity to access even the encrypted message, which can in turn be decrypted using the appropriate key.Keywords: arithmetic, cyber space, modulo-2, information security
Procedia PDF Downloads 3202820 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1312819 Shaping of World-Class Delhi: Politics of Marginalization and Inclusion
Authors: Aparajita Santra
Abstract:
In the context of the government's vision of turning Delhi into a green, privatized and slum free city, giving it a world-class image at par with the global cities of the world, this paper investigates into the various processes and politics of things that went behind defining spaces in the city and attributing an aesthetic image to it. The paper will explore two cases that were forged primarily through the forces of one particular type of power relation. One would be to look at the modernist movement adopted by the Nehruvian government post-independence and the next case will look at special periods like Emergency and Commonwealth games. The study of these cases will help understand the ambivalence embedded in the different rationales of the Government and different powerful agencies adopted in order to build world-classness. Through the study, it will be easier to discern how city spaces were reconfigured in the name of 'good governance'. In this process, it also became important to analyze the double nature of law, both as a protector of people’s rights and as a threat to people. What was interesting to note through the study was that in the process of nation building and creating an image for the city, the government’s policies and programs were mostly aimed at the richer sections of the society and the poorer sections and people from lower income groups kept getting marginalized, subdued, and pushed further away (These marginalized people were pushed away even geographically!). The reconfiguration of city space and attributing an aesthetic character to it, led to an alteration not only in the way in which citizens perceived and engaged with these spaces, but also brought about changes in the way they envisioned their place in the city. Ironically, it was found that every attempt to build any kind of facility for the city’s elite in turn led to an inevitable removal of the marginalized sections of the society as a necessary step to achieve a clean, green and world-class city. The paper questions the claim made by the government for creating a just, equitable city and granting rights to all. An argument is put forth that in the politics of redistribution of space, the city that has been designed is meant for the aspirational middle-class and elite only, who are ideally primed to live in world-class cities. Thus, the aim is to study city spaces, urban form, the associated politics and power plays involved within and understand whether segmented cities are being built in the name of creating sensible, inclusive cities.Keywords: aesthetics, ambivalence, governmentality, power, World-class
Procedia PDF Downloads 1172818 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 622817 Molecular Dynamics Simulation of Irradiation-Induced Damage Cascades in Graphite
Authors: Rong Li, Brian D. Wirth, Bing Liu
Abstract:
Graphite is the matrix, and structural material in the high temperature gas-cooled reactor exhibits an irradiation response. It is of significant importance to analyze the defect production and evaluate the role of graphite under irradiation. A vast experimental literature exists for graphite on the dimensional change, mechanical properties, and thermal behavior. However, simulations have not been applied to the atomistic perspective. Remarkably few molecular dynamics simulations have been performed to study the irradiation response in graphite. In this paper, irradiation-induced damage cascades in graphite were investigated with molecular dynamics simulation. Statistical results of the graphite defects were obtained by sampling a wide energy range (1–30 KeV) and 10 different runs for every cascade simulation with different random number generator seeds to the velocity scaling thermostat function. The chemical bonding in carbon was described using the adaptive intermolecular reactive empirical bond-order potential (AIREBO) potential coupled with the standard Ziegler–Biersack–Littmack (ZBL) potential to describe close-range pair interactions. This study focused on analyzing the number of defects, the final cascade morphology and the distribution of defect clusters in space, the length-scale cascade properties such as the cascade length and the range of primary knock-on atom (PKA), and graphite mechanical properties’ variation. It can be concluded that the number of surviving Frenkel pairs increased remarkably with the increasing initial PKA energy but did not exhibit a thermal spike at slightly lower energies in this paper. The PKA range and cascade length approximately linearly with energy which indicated that increasing the PKA initial energy will come at expensive computation cost such as 30KeV in this study. The cascade morphology and the distribution of defect clusters in space mainly related to the PKA energy meanwhile the temperature effect was relatively negligible. The simulations are in agreement with known experimental results and the Kinchin-Pease model, which can help to understand the graphite damage cascades and lifetime span under irradiation and provide a direction to the designs of these kinds of structural materials in the future reactors.Keywords: graphite damage cascade, molecular dynamics, cascade morphology, cascade distribution
Procedia PDF Downloads 1552816 Gender and Language: Exploring Sociolinguistic Differences
Authors: Marvelyn F. Carolino, Charlene R. Cunanan, Gellien Faith O. Masongsong, Berlinda A. Ofrecio
Abstract:
This study delves into the language usage differences among men, women, and individuals with other gender preferences. It specifically centers on the sociolinguistic aspects within the English majors at the College of Education of Rizal Technological University-Pasig, spanning from the first-year to fourth-year levels. The researchers employed a triangulation approach for data collection, utilizing a validated self-made questionnaire, interviews, and observations. The results revealed that language usage among different genders is influenced by a combination of cultural norms, social dynamics, and technological factors. Cultural norms significantly shape how respondents use language, as they conform to expected speech patterns based on their gender. Social factors, such as peer pressure, were found to impact language usage for individuals of all genders. This influence was viewed as constructive for personal development rather than inhibiting performance or communication. In terms of technological factors, respondents strongly agreed that the time spent on social media and educational applications influenced their language use. These platforms provided opportunities to expand and enhance their vocabulary. Additionally, the study employed hypothesis testing through the z-test formula to assess the impact of demographic profiles on language usage differences among genders. The results indicated that gender, economic status, locality, and ethnicity did not show statistically significant differences in language use. This lack of significant variation in findings was attributed to the relatively homogeneous demographic profile of respondents, primarily composed of females with low-income backgrounds and Tagalog ethnicity. This demographic similarity likely minimized the diversity of responses.Keywords: gender, language, sociolinguistics, differences
Procedia PDF Downloads 992815 Hub Traveler Guidance Signage Evaluation via Panoramic Visualization Using Entropy Weight Method and TOPSIS
Authors: Si-yang Zhang, Chi Zhao
Abstract:
Comprehensive transportation hubs are important nodes of the transportation network, and their internal signage the functions as guidance and distribution assistance, which directly affects the operational efficiency of traffic in and around the hubs. Reasonably installed signage effectively attracts the visual focus of travelers and improves wayfinding efficiency. Among the elements of signage, the visual guidance effect is the key factor affecting the information conveyance, whom should be evaluated during design and optimization process. However, existing evaluation methods mostly focus on the layout, and are not able to fully understand if signage caters travelers’ need. This study conducted field investigations and developed panoramic videos for multiple transportation hubs in China, and designed survey accordingly. Human subjects are recruited to watch panoramic videos via virtual reality (VR) and respond to the surveys. In this paper, Pudong Airport and Xi'an North Railway Station were studied and compared as examples due to their high traveler volume and relatively well-developed traveler service systems. Visual attention was captured by eye tracker and subjective satisfaction ratings were collected through surveys. Entropy Weight Method (EWM) was utilized to evaluate the effectiveness of signage elements and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to further rank the importance of the elements. The results show that the degree of visual attention of travelers significantly affects the evaluation results of guidance signage. Key factors affecting visual attention include accurate legibility, obstruction and defacement rates, informativeness, and whether signage is set up in a hierarchical manner.Keywords: traveler guidance signage, panoramic video, visual attention, entropy weight method, TOPSIS
Procedia PDF Downloads 692814 Geomatic Techniques to Filter Vegetation from Point Clouds
Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades
Abstract:
More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud
Procedia PDF Downloads 1542813 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 161