Search results for: finite volume algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8046

Search results for: finite volume algorithm

5616 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
5615 Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling

Authors: Buğra Sinmez

Abstract:

In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection.

Keywords: geosynthetics, geogrid, railway, transportation

Procedia PDF Downloads 181
5614 Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents

Authors: Ying Zhao, Xingyan Bin

Abstract:

Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data.

Keywords: semi-supervised clustering, hierarchical agglomerative clustering, reference trees, distance constraints

Procedia PDF Downloads 547
5613 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm

Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan

Abstract:

With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.

Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization

Procedia PDF Downloads 324
5612 Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing

Authors: G. Rajeshwari, V. D. M. Jabez Daniel

Abstract:

Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this.

Keywords: antenna, anti-collision protocols, data management system, reader, reading enhancement, tag

Procedia PDF Downloads 306
5611 Optimisation of Intermodal Transport Chain of Supermarkets on Isle of Wight, UK

Authors: Jingya Liu, Yue Wu, Jiabin Luo

Abstract:

This work investigates an intermodal transportation system for delivering goods from a Regional Distribution Centre to supermarkets on the Isle of Wight (IOW) via the port of Southampton or Portsmouth in the UK. We consider this integrated logistics chain as a 3-echelon transportation system. In such a system, there are two types of transport methods used to deliver goods across the Solent Channel: one is accompanied transport, which is used by most supermarkets on the IOW, such as Spar, Lidl and Co-operative food; the other is unaccompanied transport, which is used by Aldi. Five transport scenarios are studied based on different transport modes and ferry routes. The aim is to determine an optimal delivery plan for supermarkets of different business scales on IOW, in order to minimise the total running cost, fuel consumptions and carbon emissions. The problem is modelled as a vehicle routing problem with time windows and solved by genetic algorithm. The computing results suggested that accompanied transport is more cost efficient for small and medium business-scale supermarket chains on IOW, while unaccompanied transport has the potential to improve the efficiency and effectiveness of large business scale supermarket chains.

Keywords: genetic algorithm, intermodal transport system, Isle of Wight, optimization, supermarket

Procedia PDF Downloads 369
5610 2D Hexagonal Cellular Automata: The Complexity of Forms

Authors: Vural Erdogan

Abstract:

We created two-dimensional hexagonal cellular automata to obtain complexity by using simple rules same as Conway’s game of life. Considering the game of life rules, Wolfram's works about life-like structures and John von Neumann's self-replication, self-maintenance, self-reproduction problems, we developed 2-states and 3-states hexagonal growing algorithms that reach large populations through random initial states. Unlike the game of life, we used six neighbourhoods cellular automata instead of eight or four neighbourhoods. First simulations explained that whether we are able to obtain sort of oscillators, blinkers, and gliders. Inspired by Wolfram's 1D cellular automata complexity and life-like structures, we simulated 2D synchronous, discrete, deterministic cellular automata to reach life-like forms with 2-states cells. The life-like formations and the oscillators have been explained how they contribute to initiating self-maintenance together with self-reproduction and self-replication. After comparing simulation results, we decided to develop the algorithm for another step. Appending a new state to the same algorithm, which we used for reaching life-like structures, led us to experiment new branching and fractal forms. All these studies tried to demonstrate that complex life forms might come from uncomplicated rules.

Keywords: hexagonal cellular automata, self-replication, self-reproduction, self- maintenance

Procedia PDF Downloads 152
5609 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 161
5608 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 357
5607 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446
5606 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 197
5605 Relationship of Mean Platelets Volume with Ischemic Cerebrovascular Stroke

Authors: Pritam Kitey

Abstract:

Platelets play a key role in the development of atherothrombosis, a major contributor of cardiovascular evevts. The contributor of platelets to cardiovascular events has been noted for decades. Mean paltelets volume [MPV] is a marker of platelets size that is easily determined on routine automated haemograms and routinely available at low cost. Subjects with higher MPV have larger platelets that are metabolically and enzamatically more active and have greater prothombotic potential than smaller platelets. In fact several studies have demonstrated a significant association between higher MPV and an increased incidence of cerebrovascular events and all-cause mortality.

Keywords: mean paltelets volume (MPV), platelets, cerebrovascular stroke, cardiovascular events

Procedia PDF Downloads 185
5604 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
5603 Sinusoidal Roughness Elements in a Square Cavity

Authors: Muhammad Yousaf, Shoaib Usman

Abstract:

Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm basedon a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 103 to 106 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was16.66 percent at Ra number 105.

Keywords: Lattice Boltzmann method, natural convection, nusselt number, rayleigh number, roughness

Procedia PDF Downloads 527
5602 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network

Authors: Gloria Patricia Manurung

Abstract:

Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.

Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization

Procedia PDF Downloads 229
5601 Intrusion Detection and Prevention System (IDPS) in Cloud Computing Using Anomaly-Based and Signature-Based Detection Techniques

Authors: John Onyima, Ikechukwu Ezepue

Abstract:

Virtualization and cloud computing are among the fast-growing computing innovations in recent times. Organisations all over the world are moving their computing services towards the cloud this is because of its rapid transformation of the organization’s infrastructure and improvement of efficient resource utilization and cost reduction. However, this technology brings new security threats and challenges about safety, reliability and data confidentiality. Evidently, no single security technique can guarantee security or protection against malicious attacks on a cloud computing network hence an integrated model of intrusion detection and prevention system has been proposed. Anomaly-based and signature-based detection techniques will be integrated to enable the network and its host defend themselves with some level of intelligence. The anomaly-base detection was implemented using the local deviation factor graph-based (LDFGB) algorithm while the signature-based detection was implemented using the snort algorithm. Results from this collaborative intrusion detection and prevention techniques show robust and efficient security architecture for cloud computing networks.

Keywords: anomaly-based detection, cloud computing, intrusion detection, intrusion prevention, signature-based detection

Procedia PDF Downloads 307
5600 Automatic Identification of Pectoral Muscle

Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina

Abstract:

Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.

Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle

Procedia PDF Downloads 350
5599 Design an Development of an Agorithm for Prioritizing the Test Cases Using Neural Network as Classifier

Authors: Amit Verma, Simranjeet Kaur, Sandeep Kaur

Abstract:

Test Case Prioritization (TCP) has gained wide spread acceptance as it often results in good quality software free from defects. Due to the increase in rate of faults in software traditional techniques for prioritization results in increased cost and time. Main challenge in TCP is difficulty in manually validate the priorities of different test cases due to large size of test suites and no more emphasis are made to make the TCP process automate. The objective of this paper is to detect the priorities of different test cases using an artificial neural network which helps to predict the correct priorities with the help of back propagation algorithm. In our proposed work one such method is implemented in which priorities are assigned to different test cases based on their frequency. After assigning the priorities ANN predicts whether correct priority is assigned to every test case or not otherwise it generates the interrupt when wrong priority is assigned. In order to classify the different priority test cases classifiers are used. Proposed algorithm is very effective as it reduces the complexity with robust efficiency and makes the process automated to prioritize the test cases.

Keywords: test case prioritization, classification, artificial neural networks, TF-IDF

Procedia PDF Downloads 397
5598 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 485
5597 A Mixture Vine Copula Structures Model for Dependence Wind Speed among Wind Farms and Its Application in Reactive Power Optimization

Authors: Yibin Qiu, Yubo Ouyang, Shihan Li, Guorui Zhang, Qi Li, Weirong Chen

Abstract:

This paper aims at exploring the impacts of high dimensional dependencies of wind speed among wind farms on probabilistic optimal power flow. To obtain the reactive power optimization faster and more accurately, a mixture vine Copula structure model combining the K-means clustering, C vine copula and D vine copula is proposed in this paper, through which a more accurate correlation model can be obtained. Moreover, a Modified Backtracking Search Algorithm (MBSA), the three-point estimate method is applied to probabilistic optimal power flow. The validity of the mixture vine copula structure model and the MBSA are respectively tested in IEEE30 node system with measured data of 3 adjacent wind farms in a certain area, and the results indicate effectiveness of these methods.

Keywords: mixture vine copula structure model, three-point estimate method, the probability integral transform, modified backtracking search algorithm, reactive power optimization

Procedia PDF Downloads 248
5596 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 140
5595 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345
5594 Inverse Mode Shape Problem of Hand-Arm Vibration (Humerus Bone) for Bio-Dynamic Response Using Varying Boundary Conditions

Authors: Ajay R, Rammohan B, Sridhar K S S, Gurusharan N

Abstract:

The objective of the work is to develop a numerical method to solve the inverse mode shape problem by determining the cross-sectional area of a structure for the desired mode shape via the vibration response study of the humerus bone, which is in the form of a cantilever beam with anisotropic material properties. The humerus bone is the long bone in the arm that connects the shoulder to the elbow. The mode shape is assumed to be a higher-order polynomial satisfying a prescribed set of boundary conditions to converge the numerical algorithm. The natural frequency and the mode shapes are calculated for different boundary conditions to find the cross-sectional area of humerus bone from Eigenmode shape with the aid of the inverse mode shape algorithm. The cross-sectional area of humerus bone validates the mode shapes of specific boundary conditions. The numerical method to solve the inverse mode shape problem is validated in the biomedical application by finding the cross-sectional area of a humerus bone in the human arm.

Keywords: Cross-sectional area, Humerus bone, Inverse mode shape problem, Mode shape

Procedia PDF Downloads 128
5593 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 231
5592 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 201
5591 Numerical Study of Nonlinear Guided Waves in Composite Laminates with Delaminations

Authors: Reza Soleimanpour, Ching Tai Ng

Abstract:

Fibre-composites are widely used in various structures due to their attractive properties such as higher stiffness to mass ratio and better corrosion resistance compared to metallic materials. However, one serious weakness of this composite material is delamination, which is a subsurface separation of laminae. A low level of this barely visible damage can cause a significant reduction in residual compressive strength. In the last decade, the application of guided waves for damage detection has been a topic of significant interest for many researches. Among all guided wave techniques, nonlinear guided wave has shown outstanding sensitivity and capability for detecting different types of damages, e.g. cracks and delaminations. So far, most of researches on applications of nonlinear guided wave have been dedicated to isotropic material, such as aluminium and steel, while only a few works have been done on applications of nonlinear characteristics of guided waves in anisotropic materials. This study investigates the nonlinear interactions of the fundamental antisymmetric lamb wave (A0) with delamination in composite laminates using three-dimensional (3D) explicit finite element (FE) simulations. The nonlinearity considered in this study arises from interactions of two interfaces of sub-laminates at the delamination region, which generates contact acoustic nonlinearity (CAN). The aim of this research is to investigate the phenomena of CAN in composite laminated beams by a series of numerical case studies. In this study interaction of fundamental antisymmetric lamb wave with delamination of different sizes are studied in detail. The results show that the A0 lamb wave interacts with the delaminations generating CAN in the form of higher harmonics, which is a good indicator for determining the existence of delaminations in composite laminates.

Keywords: contact acoustic nonlinearity, delamination, fibre reinforced composite beam, finite element, nonlinear guided waves

Procedia PDF Downloads 204
5590 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper

Authors: Ahmed S. Afifi, Ahmed Magdy

Abstract:

Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.

Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster

Procedia PDF Downloads 106
5589 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 676
5588 Renovation Planning Model for a Shopping Mall

Authors: Hsin-Yun Lee

Abstract:

In this study, the pedestrian simulation VISWALK integration and application platform ant algorithms written program made to construct a renovation engineering schedule planning mode. The use of simulation analysis platform construction site when the user running the simulation, after calculating the user walks in the case of construction delays, the ant algorithm to find out the minimum delay time schedule plan, and add volume and unit area deactivated loss of business computing, and finally to the owners and users of two different positions cut considerations pick out the best schedule planning. To assess and validate its effectiveness, this study constructed the model imported floor of a shopping mall floor renovation engineering cases. Verify that the case can be found from the mode of the proposed project schedule planning program can effectively reduce the delay time and the user's walking mall loss of business, the impact of the operation on the renovation engineering facilities in the building to a minimum.

Keywords: pedestrian, renovation, schedule, simulation

Procedia PDF Downloads 413
5587 Performance Evaluation of MIMO-OFDM Communication Systems

Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO-OFDM communication system. MIMO system uses multiple transmitting and receiving antennas with different coding techniques to either enhance the transmission diversity or spatial multiplexing gain. Utilizing alamouti algorithm were the same information transmitted over multiple antennas at different time intervals and then collected again at the receivers to minimize the probability of error, combat fading and thus improve the received signal to noise ratio. While utilizing V-BLAST algorithm, the transmitted signals are divided into different transmitting channels and transferred over the channel to be received by different receiving antennas to increase the transmitted data rate and achieve higher throughput. The paper provides a study of different diversity gain coding schemes and spatial multiplexing coding for MIMO systems. A comparison of various channels' estimation and equalization techniques are given. The simulation is implemented using MATLAB, and the results had shown the performance of transmission models under different channel environments.

Keywords: MIMO communication, BER, space codes, channels, alamouti, V-BLAST

Procedia PDF Downloads 175