Search results for: suppression of hydrogen generation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4421

Search results for: suppression of hydrogen generation

4211 Screening of Ionic Liquids for Hydrogen Sulfide Removal Using COSMO-RS

Authors: Zulaika Mohd Khasiran

Abstract:

The capability of ionic liquids in various applications makes them attracted by many researchers. They have potential to be developed as “green” solvents for gas separation, especially H2S gas. In this work, it is attempted to predict the solubility of hydrogen sulfide (H2S) in ILs by COSMO-RS method. Since H2S is a toxic pollutant, it is difficult to work on it in the laboratory, therefore an appropriate model will be necessary in prior work. The COSMO-RS method is implemented to predict the Henry’s law constants and activity coefficient of H2S in 140 ILs with various combinations of cations and anions. It is found by the screening that more H2S can be absorbed in ILs with [Cl] and [Ac] anion. The solubility of H2S in ILs with different alkyl chain at the cations not much affected and with different type of cations are slightly influence H2S capture capacities. Even though the cations do not affect much in solubility of H2S, we still need to consider the effectiveness of cation in different way. The prediction results only show their physical absorption ability, but the absorption of H2S need to be consider chemically to get high capacity of absorption of H2S.

Keywords: H2S, hydrogen sulfide, ionic liquids, COSMO-RS

Procedia PDF Downloads 131
4210 Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites

Authors: Gayathri Devi V, Aravamudan Kannan, Amit Sircar

Abstract:

In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS.

Keywords: adsorption enthalpy, functionalized zeolites, hydrogen isotopes, nuclear fusion, physisorption

Procedia PDF Downloads 175
4209 The Existence of Beauveria bassiana in the Third Generation of Corn Seedling

Authors: Itji Diana Daud, Nuniek Widiayani

Abstract:

The fungus Beauveria bassiana can be endophytic in maize. The fungus was recovered in culture from stems, leaves and roots after a month planting. This phenomenon was shown until the third generation of the corn. The result from laboratory shows that B. bassiana appear in F1, F2 and F3 in order 70, 80 and 90% in the roots, 80% in the stems in all generation, 90, 80 and 70% in leaves. In CFU’s ml-1 of B. bassiana in corn seed, show F1 was 8.9 x 106, F2 was 8.1 x 106 and F3 was 7.8 x 106. The research showed that B. Bassiana as endophyte still remain to the third generation. Innovation to the corn seed which is endophyte seed is essential to protect from the attack of corn borer and to avoid the usage of insecticide.

Keywords: endophytic, recovered, third generation, Beauveria bassiana

Procedia PDF Downloads 272
4208 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 410
4207 Revolutionizing Mobility: Decoding Electric Vehicles (EVs) and Hydrogen Fuel Cell Vehicles (HFCVs)

Authors: Samarjeet Singh, Shubhank Arya, Shubham Chauhan

Abstract:

In recent years, the rise in carbon emissions and the widespread effects of global warming have brought new energy vehicles into the spotlight. Electric vehicles (EVs) and hydrogen fuel cell vehicles (HFCVs), both producing zero tailpipe emissions, are seen as promising alternatives. This paper examines the working, structural characteristics, and safety designs of EVs and HFCVs, comparing their carbon emissions, charging infrastructure, energy efficiency, and safety features. The analysis reveals that both EVs and HFCVs significantly reduce carbon emissions and enhance safety compared to traditional vehicles, with EVs showing greater emission reductions. Moreover, EVs are advancing more rapidly in terms of charging infrastructure compared to hydrogen energy vehicles. However, HFCVs exhibit lower energy efficiency than EVs. In terms of safety, both types surpass conventional vehicles, though EVs are more prone to overheating and fire hazards due to battery design issues. Current research suggests that EV technology and its supporting infrastructure are more comprehensive, cost-effective, and efficient in reducing carbon emissions. With continued investment in the development of new energy vehicles and potential advancements in hydrogen energy production, the future for HFCVs appears promising. The paper also expresses optimism for innovative solutions that could accelerate the growth of hydrogen energy vehicles.

Keywords: electric vehicles, fuel cell electric vehicles, automotive engineering, energy transition

Procedia PDF Downloads 34
4206 Multilevel of Factors Affected Optimal Adherence to Antiretroviral Therapy and Viral Suppression amongst HIV-Infected Prisoners in South Ethiopia: A Prospective Cohort Study

Authors: Terefe Fuge, George Tsourtos , Emma Miller

Abstract:

Objectives: Maintaining optimal adherence and viral suppression in people living with HIV (PLWHA) is essential to ensure both preventative and therapeutic benefits of antiretroviral therapy (ART). Prisoners bear a particularly high burden of HIV infection and are highly likely to transmit to others during and after incarceration. However, the level of adherence and viral suppression, as well as its associated factors in incarcerated populations in low-income countries is unknown. This study aimed to determine the prevalence of non-adherence and viral failure, and contributing factors to this amongst prisoners in South Ethiopia. Methods: A prospective cohort study was conducted between June 1, 2019 and July 31, 2020 to compare the level of adherence and viral suppression between incarcerated and non-incarcerated PLWHA. The study involved 74 inmates living with HIV (ILWHA) and 296 non-incarcerated PLWHA. Background information including sociodemographic, socioeconomic, psychosocial, behavioural, and incarceration-related characteristics was collected using a structured questionnaire. Adherence was determined based on participants’ self-report and pharmacy refill records, and plasma viral load measurements which were undertaken within the study period were prospectively extracted to determine viral suppression. Various univariate and multivariate regression models were used to analyse data. Results: Self-reported dose adherence was approximately similar between ILWHA and non-incarcerated PLWHA (81% and 83% respectively), but ILWHA had a significantly higher medication possession ratio (MPR) (89% vs 75%). The prevalence of viral failure (VF) was slightly higher (6%) in ILWHA compared to non-incarcerated PLWHA (4.4%). The overall dose non-adherence (NA) was significantly associated with missing ART appointments, level of satisfaction with ART services, patient’s ability to comply with a specified medication schedule and types of methods used to monitor the schedule. In ILWHA specifically, accessing ART services from a hospital compared to a health centre, an inability to always attend clinic appointments, experience of depression and a lack of social support predicted NA. VF was significantly higher in males, people of age 31-35 years and in those who experienced social stigma, regardless of their incarceration status. Conclusions: This study revealed that HIV-infected prisoners in South Ethiopia were more likely to be non-adherent to doses and so to develop viral failure compared to their non-incarcerated counterparts. A multitude of factors was found to be responsible for this requiring multilevel intervention strategies focusing on the specific needs of prisoners.

Keywords: Adherence , Antiretroviral therapy, Incarceration, South Ethiopia, Viral suppression

Procedia PDF Downloads 129
4205 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 568
4204 Hydrogen Storage in Salt Caverns: Rock Mechanical Design

Authors: Dirk Zapf, Bastian Leuger

Abstract:

For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.

Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations

Procedia PDF Downloads 104
4203 Bio-Oil Compounds Sorption Enhanced Steam Reforming

Authors: Esther Acha, Jose Cambra, De Chen

Abstract:

Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.

Keywords: CO2 sorbent, enhanced steam reforming, hydrogen

Procedia PDF Downloads 573
4202 Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)

Authors: Asadollah Bahrami

Abstract:

In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality.

Keywords: spectral radiative entropy generation, non-gray medium, correlated k(CK) model, heat source

Procedia PDF Downloads 91
4201 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 528
4200 Microwave-Assisted 3D Porous Graphene for Its Multi-Functionalities

Authors: Jung-Hwan Oh, Rajesh Kumar, Il-Kwon Oh

Abstract:

Porous graphene has extensive potential applications in variety of fields such as hydrogen storage, CO oxidation, gas separation, supercapacitors, fuel cells, nanoelectronics, oil adsorption, and so on. However, the generation of some carbon atoms vacancies for precise small holes have been not extensively studied to prevent the agglomerates of graphene sheets and to obtain porous graphene with high surface area. Recently, many research efforts have been presented to develop physical and chemical synthetic approaches for porous graphene. But physical method has very high cost of manufacture and chemical method consumes so many hours for porous graphene. Herein, we propose a porous graphene contained holes with atomic scale precision by embedding metal nano-particles through microwave irradiation for hydrogen storage and CO oxidation multi- functionalities. This proposed synthetic method is appropriate for fast and convenient production of three dimensional nanostructures, which have nanoholes on the graphene surface in consequence of microwave irradiation. The metal nanoparticles are dispersed quickly on the graphene surface and generated uniform nanoholes on the graphene nanosheets. The morphological and structural characterization of the porous graphene were examined by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM) and RAMAN spectroscopy, respectively. The metal nanoparticle-embedded porous graphene exhibits a microporous volume of 2.586cm3g-1 with an average pore radius of 0.75 nm. HR-TEM analysis was carried out to further characterize the microstructures. By investigating the RAMAN spectra, we can understand the structural changes of graphene. The results of this work demonstrate a possibility to produce a new class of porous graphene. Furthermore, the newly acquired knowledge for the diffusion into graphene can provide useful guidance for the development of the growth of nanostructure.

Keywords: CO oxidation, hydrogen storage, nanocomposites, porous graphene

Procedia PDF Downloads 368
4199 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 347
4198 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 101
4197 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 378
4196 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid

Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah

Abstract:

Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.

Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid

Procedia PDF Downloads 490
4195 Investigating the Difference in Stability of Various Isomeric Hydrogen Bonded Dimers

Authors: Mohamed Ayoub

Abstract:

The structures and energetics of various isomeric hydrogen bonded dimers, such as (FH…OC, FH…CO), (FH…CNH, FH…NCH), (FH…N2O, FH…ON2), and (FH…NHCO, FH…OCNH) have been investigated using DFT B3LYP with aug-cc-pVTZ basis set and by natural bond orbital (NBO) analysis. For each isomeric pair we calculated: H-bond energy (ΔEB…H), charge-transfer (QCT), where B is atom bearing lone-pairs in CO, CNH, NCH, N2O, and NHCO, H-bond distances (RB…H), the elongation of HF bond (ΔRHF) and the red-shift of HF stretching frequency (ΔVHF). We conclude that the principle difference in the relative stability between each isomeric pair is attributed to distinctive interaction of carbon and oxygen lone pairs of CO, carbon and nitrogen lone-pairs of CNH and NCH, and nitrogen and oxygen lone pairs of N2O and NHCO into the unfilled antibond on HF (σ*HF).

Keywords: charge transfer, computational chemistry, isomeric hydrogen bond, natural bond orbital

Procedia PDF Downloads 236
4194 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 154
4193 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes

Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang

Abstract:

Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.

Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment

Procedia PDF Downloads 527
4192 Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures

Authors: Talal Hasan, Akram Mohammad

Abstract:

Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity.

Keywords: laminar burning velocity, ammonia, hydrogen, combustion

Procedia PDF Downloads 100
4191 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 87
4190 Investigations into the Efficiencies of Steam Conversion in Three Reactor Chemical Looping

Authors: Ratnakumar V. Kappagantula, Gordon D. Ingram, Hari B. Vuthaluru

Abstract:

This paper analyzes a three reactor chemical looping process for hydrogen production from natural gas, allowing for carbon dioxide capture through chemical looping technology. An oxygen carrier is circulated to separate carbon dioxide, to reduce steam for hydrogen production and to supply oxygen for combustion. In this study, the emphasis is placed on the steam conversion in the steam reactor by investigating the hydrogen efficiencies of the complete system at steam conversions of 15.8% and 50%. An Aspen Plus model was developed for a Three Reactor Chemical Looping process to study the effects of operational parameters on hydrogen production is investigated. Maximum hydrogen production was observed under stoichiometric conditions. Different conversions in the steam reactor, which was modelled as a Gibbs reactor, were found when Gibbs-identified products and user identified products were chosen. Simulations were performed for different oxygen carriers, which consist of an active metal oxide on an inert support material. For the same metal oxide mass flowrate, the fuel reactor temperature decreased for different support materials in the order: aluminum oxide (Al2O3) > magnesium aluminate (MgAl2O4) > zirconia (ZrO2). To achieve the same fuel reactor temperature for the same oxide mass flow rate, the inert mass fraction was found to be 0.825 for ZrO2, 0.7 for MgAl2O4 and 0.6 for Al2O3. The effect of poisoning of the oxygen carrier was also analyzed. With 3000 ppm sulfur-based impurities in the feed gas, the hydrogen product energy rate of the process were found to decrease by 0.4%.

Keywords: aspen plus, chemical looping combustion, inert support balls, oxygen carrier

Procedia PDF Downloads 319
4189 Towards the Inhibition Mechanism of Lysozyme Fibrillation by Hydrogen Sulfide

Authors: Indra Gonzalez Ojeda, Tatiana Quinones, Manuel Rosario, Igor Lednev, Juan Lopez Garriga

Abstract:

Amyloid fibrils are stable aggregates of misfolded protein associated with many neurodegenerative disorders. It has been shown that hydrogen sulfide (H2S), inhibits the fibrillation of lysozyme through the formation of trisulfide (S-S-S) bonds. However, the overall mechanism remains elusive. Here, the concentration dependence of H2S effect was investigated using Atomic force microscopy (AFM), non-resonance Raman spectroscopy, Deep-UV Raman spectroscopy and circular dichroism (CD). It was found that small spherical aggregates with trisulfide bonds and a unique secondary structure were formed instead of amyloid fibrils when adding concentrations of 25 mM and 50 mM of H2S. This could indicate that H2S might serve as a protecting agent for the protein. However, further characterization of these aggregates and their trisulfide bonds is needed to fully unravel the function H2S has on protein fibrillation.

Keywords: amyloid fibrils, hydrogen sulfide, protein folding, raman spectroscopy

Procedia PDF Downloads 210
4188 Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface

Authors: Mingjun Xu, Shouxiang Lu

Abstract:

Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature.

Keywords: droplet impact, fire suppression, hot surface, water spray

Procedia PDF Downloads 233
4187 Bilingual Experience Influences Different Components of Cognitive Control: Evidence from fMRI Study

Authors: Xun Sun, Le Li, Ce Mo, Lei Mo, Ruiming Wang, Guosheng Ding

Abstract:

Cognitive control plays a central role in information processing, which is comprised of various components including response suppression and inhibitory control. Response suppression is considered to inhibit the irrelevant response during the cognitive process; while inhibitory control to inhibit the irrelevant stimulus in the process of cognition. Both of them undertake distinct functions for the cognitive control, so as to enhance the performances in behavior. Among numerous factors on cognitive control, bilingual experience is a substantial and indispensible factor. It has been reported that bilingual experience can influence the neural activity of cognitive control as whole. However, it still remains unknown how the neural influences specifically present on the components of cognitive control imposed by bilingualism. In order to explore the further issue, the study applied fMRI, used anti-saccade paradigm and compared the cerebral activations between high and low proficient Chinese-English bilinguals. Meanwhile, the study provided experimental evidence for the brain plasticity of language, and offered necessary bases on the interplay between language and cognitive control. The results showed that response suppression recruited the middle frontal gyrus (MFG) in low proficient Chinese-English bilinguals, but the inferior patrietal lobe in high proficient Chinese-English bilinguals. Inhibitory control engaged the superior temporal gyrus (STG) and middle temporal gyrus (MTG) in low proficient Chinese-English bilinguals, yet the right insula cortex was more active in high proficient Chinese-English bilinguals during the process. These findings illustrate insights that bilingual experience has neural influences on different components of cognitive control. Compared with low proficient bilinguals, high proficient bilinguals turn to activate advanced neural areas for the processing of cognitive control. In addition, with the acquisition and accumulation of language, language experience takes effect on the brain plasticity and changes the neural basis of cognitive control.

Keywords: bilingual experience, cognitive control, inhibition control, response suppression

Procedia PDF Downloads 480
4186 The Psychological Effect of Emotional Demands and Discrimination, and the Role of Job Resources among Asian Immigrant Microbusiness Owners

Authors: Il-Ho Kim, Samuel Noh, Kwame McKenzie, Cyu-Chul Choi

Abstract:

Many members of immigrant minorities choose to operate microbusinesses that involve emotionally taxing interactions with customers and discriminatory exposures in the workplace. This study investigated the psychological risks of emotional demands and discrimination as well as the buffering roles of two types of job resources (job autonomy and job security) among immigrant microbusiness owners (MBOs). Data were derived from a cross-sectional survey of 550 Korean immigrant MBOs, aged 30 to 70, living in Toronto and its surrounding areas. Face-to-face interviews were conducted between March and November 2013. Results showed that emotional suppression and discrimination were positively associated with depressive symptoms. However, the direct effect of positive emotional demands was insignificant. For job resources, the beneficial effect of job security on depressive symptom was apparent, but the effect of job autonomy was trivial. Regarding the moderating effect, job security buffered the psychological harm of both emotional suppression and workplace discrimination. Although job autonomy buffered the link between discrimination and depressive symptoms, the buffering effect of job autonomy on the emotional suppression-depression link was insignificant. This study’s finding implies that emotional demands and workplace discrimination seem to be important factors in contributing to occupational psychological problems, but the psychological impact can differ according to the types of emotional demands and job resources among immigrant MBOs.

Keywords: immigrant microbusiness owners, emotional demands, discrimination, job resources, depression

Procedia PDF Downloads 211
4185 Buoyant Gas Dispersion in a Small Fuel Cell Enclosure: A Comparison Study Using Plain and Pressed Louvre Vent Passive Ventilation Schemes

Authors: T. Ghatauray, J. Ingram, P. Holborn

Abstract:

The transition from a ‘carbon rich’ fossil fuel dependent to a ‘sustainable’ and ‘renewable’ hydrogen based society will see the deployment of hydrogen fuel cells (HFC) in transport applications and in the generation of heat and power for buildings, as part of a decentralised power network. Many deployments will be low power HFCs for domestic combined heat and power (CHP) and commercial ‘transportable’ HFCs for environmental situations, such as lighting and telephone towers. For broad commercialisation of small fuel cells to be achieved there needs to be significant confidence in their safety in both domestic and environmental applications. Low power HFCs are housed in protective steel enclosures. Standard enclosures have plain rectangular ventilation openings intended for thermal management of electronics and not the dispersion of a buoyant gas. Degradation of the HFC or supply pipework in use could lead to a low-level leak and a build-up of hydrogen gas in the enclosure. Hydrogen’s wide flammable range (4-75%) is a significant safety concern, with ineffective enclosure ventilation having the potential to cause flammable mixtures to develop with the risk of explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations, but drains HFC power and is vulnerable to failure. This is undesirable in low power and remote installations and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow, with the size, shape and position of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. With environmentally sited enclosures, ventilation openings with pressed horizontal and angled louvres are preferred to protect the HFC and electronics inside. There is an economic cost to adding louvres, but also a safety concern. A question arises over whether the use of pressed louvre vents impairs enclosure passive ventilation performance, when compared to same opening area plain vents. Comparison small enclosure (0.144m³) tests of same opening area pressed louvre and plain vents were undertaken. A displacement ventilation arrangement was incorporated into the enclosure with opposing upper and lower ventilation openings. A range of vent areas were tested. Helium (used as a safe analogue for hydrogen) was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak at leak rates from 1 to 10 lpm. Helium sensors were used to record concentrations at eight heights in the enclosure. The enclosure was otherwise empty. These tests determined that the use of pressed and angled louvre ventilation openings on the enclosure impaired the passive ventilation flow and increased helium concentrations in the enclosure. High-level stratified buoyant gas layers were also found to be deeper than with plain vent openings and were within the flammable range. The presence of gas within the flammable range is of concern, particularly as the addition of the fuel cell and electronics in the enclosure would further reduce the available volume and increase concentrations. The opening area of louvre vents would need to be greater than equivalent plain vents to achieve comparable ventilation flows or alternative schemes would need to be considered.

Keywords: enclosure, fuel cell, helium, hydrogen safety, louvre vent, passive ventilation

Procedia PDF Downloads 268
4184 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes

Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin

Abstract:

Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.

Keywords: agro-industrial waste, biomass, briquettes, combustion

Procedia PDF Downloads 204
4183 Screening of Metal Chloride Anion-based Ionic Liquids for Direct Conversion of Hydrogen Sulfide by COSMO-RS

Authors: Muhammad Syahir Aminuddin, Zakaria Man, Mohamad Azmi Bustam Khalil

Abstract:

In order to identify the best possible reaction media for performing H₂S conversion, a total number of 300 different ILs from a combination of 20 cations and 15 anions were screened via COSMO-RS model simulations. By COSMO-RS method, thermodynamic and physicochemical properties of 300 ILs, such as Henry's law constants, activity coefficient, selectivity, capacity, and performance index, are obtained and analyzed. Thus, by comparing the performance of ILs via COSMO-RS, a series of TSILs containing cation of [P66614] with metal chloride anions such as Fe, Ga, and Al were chosen and selected for synthesis based on their performance predicted by COSMO-RS and their economic values. Consequently, the physiochemical properties such as density, viscosity, thermal properties, as well as H₂S absorptive oxidation performances in those TSILs will be systematically investigated.

Keywords: conversion of hydrogen sulfide, hydrogen sulfide, H₂S, sour natural gas, task specific ionic liquids

Procedia PDF Downloads 145
4182 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 95