Search results for: intelligent programming tutors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1751

Search results for: intelligent programming tutors

1541 Credit Risk Evaluation Using Genetic Programming

Authors: Ines Gasmi, Salima Smiti, Makram Soui, Khaled Ghedira

Abstract:

Credit risk is considered as one of the important issues for financial institutions. It provokes great losses for banks. To this objective, numerous methods for credit risk evaluation have been proposed. Many evaluation methods are black box models that cannot adequately reveal information hidden in the data. However, several works have focused on building transparent rules-based models. For credit risk assessment, generated rules must be not only highly accurate, but also highly interpretable. In this paper, we aim to build both, an accurate and transparent credit risk evaluation model which proposes a set of classification rules. In fact, we consider the credit risk evaluation as an optimization problem which uses a genetic programming (GP) algorithm, where the goal is to maximize the accuracy of generated rules. We evaluate our proposed approach on the base of German and Australian credit datasets. We compared our finding with some existing works; the result shows that the proposed GP outperforms the other models.

Keywords: credit risk assessment, rule generation, genetic programming, feature selection

Procedia PDF Downloads 353
1540 Object Negotiation Mechanism for an Intelligent Environment Using Event Agents

Authors: Chiung-Hui Chen

Abstract:

With advancements in science and technology, the concept of the Internet of Things (IoT) has gradually developed. The development of the intelligent environment adds intelligence to objects in the living space by using the IoT. In the smart environment, when multiple users share the living space, if different service requirements from different users arise, then the context-aware system will have conflicting situations for making decisions about providing services. Therefore, the purpose of establishing a communication and negotiation mechanism among objects in the intelligent environment is to resolve those service conflicts among users. This study proposes developing a decision-making methodology that uses “Event Agents” as its core. When the sensor system receives information, it evaluates a user’s current events and conditions; analyses object, location, time, and environmental information; calculates the priority of the object; and provides the user services based on the event. Moreover, when the event is not single but overlaps with another, conflicts arise. This study adopts the “Multiple Events Correlation Matrix” in order to calculate the degree values of incidents and support values for each object. The matrix uses these values as the basis for making inferences for system service, and to further determine appropriate services when there is a conflict.

Keywords: internet of things, intelligent object, event agents, negotiation mechanism, degree of similarity

Procedia PDF Downloads 290
1539 Integer Programming-Based Generation of Difficulty Level for a Racing Game

Authors: Sangchul Kim, Dosaeng Park

Abstract:

It is one of the important design issues to provide various levels of difficulty in order to suit the skillfulness of an individual. In this paper we propose an integer programming-based method for selecting a mixture of challenges for a racing game that meet a given degree of difficulty. The proposed method can also be used to dynamically adjust the difficulty of the game during the progression of playing. By experiments, it is shown that our method performs well enough to generate games with various degrees of difficulty that match the perception of players.

Keywords: level generation, level adjustment, racing game, ip

Procedia PDF Downloads 374
1538 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 418
1537 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach

Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka

Abstract:

Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.

Keywords: welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank

Procedia PDF Downloads 166
1536 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 355
1535 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art

Procedia PDF Downloads 292
1534 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 446
1533 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic Interference Shielding: An Application of Intelligent Fabrics

Authors: Mourad Makhlouf, Meriem Boutamine, Hachemi Hichem, Zoubir Benmaamar, Didier Villemin

Abstract:

This study explores the use of intelligent textiles for electromagnetic shielding through the continuous dyeing of graphene and polyaniline onto cotton fabric. Graphene was obtained by recycling graphite from spent batteries, and polyaniline was obtained in situ using H2O2. Graphene and polyaniline were bottom-modified on the fiber surface to improve adhesion and achieve a uniform distribution. This study evaluated the effect of the specific gravity percentage on sheet performance and active shielding against electromagnetic interference (EMI). Results showed that the dyed fabrics of graphene, polyaniline, and graphene/polyaniline demonstrated higher conductivity and EMI SE values of 9 to 16 dB in the 8 to 9 GHz range of the X-band, with potential applications in electromagnetic shielding. The use of intelligent textiles offers a sustainable and effective approach to achieving EMI shielding, with the added benefits of recycling waste materials and improving the properties of cotton fabrics.

Keywords: 'ntelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling.

Procedia PDF Downloads 38
1532 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: balance control, speed control, intelligent controller, two wheel inverted pendulum

Procedia PDF Downloads 224
1531 A Study on Learning Styles and Academic Performance in Relation with Kinesthetic, Verbal and Visual Intelligences

Authors: Salina Budin, Nor Liawati Abu Othman, Shaira Ismail

Abstract:

This study attempts to determine kinesthetic, verbal and visual intelligences among mechanical engineering undergraduate students and explores any probable relation with students’ learning styles and academic performance. The questionnaire used in this study is based on Howard Gardner’s multiple intelligences theory comprising of five elements of learning style; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering. Additional questions on students’ perception of learning styles and their academic performance are included in the questionnaire. The results show that one third of the students are strongly dominant in the kinesthetic intelligent (33%), followed by a combination of kinesthetic and visual intelligences (29%) and 21% are strongly dominant in all three types of intelligences. There is a statistically significant correlation between kinesthetic, verbal and visual intelligences and students learning styles and academic performances. The ANOVA analysis supports that there is a significant relationship between academic performances and level of kinesthetic, verbal and visual intelligences. In addition, it has also proven a remarkable relationship between academic performances and kinesthetic, verbal and visual learning styles amongst the male and female students. Thus, it can be concluded that, academic achievements can be enhanced by understanding as well as capitalizing the students’ types of intelligences and learning styles.

Keywords: kinesthetic intelligent, verbal intelligent, visual intelligent, learning style, academic performances

Procedia PDF Downloads 299
1530 A User-Directed Approach to Optimization via Metaprogramming

Authors: Eashan Hatti

Abstract:

In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant.

Keywords: optimization, metaprogramming, logic programming, abstraction

Procedia PDF Downloads 87
1529 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search

Procedia PDF Downloads 268
1528 Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang

Abstract:

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure

Procedia PDF Downloads 501
1527 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: grey relational degree, multiple linear regression, membership function, nonlinear programming

Procedia PDF Downloads 299
1526 Adaptive Programming for Indigenous Early Learning: The Early Years Model

Authors: Rachel Buchanan, Rebecca LaRiviere

Abstract:

Context: The ongoing effects of colonialism continue to be experienced through paternalistic policies and funding processes that cause disjuncture between and across Indigenous early childhood programming on-reserve and in urban and Northern settings in Canada. While various educational organizations and social service providers have risen to address these challenges in the short, medium and long term, there continues to be a lack in nation-wide cohesive, culturally grounded, and meaningful early learning programming for Indigenous children in Canada. Indigenous-centered early learning programs tend to face one of two scaling dilemmas: their program goals are too prescriptive to enable the program to be meaningfully replicated in different cultural/ community settings, or their program goals are too broad to be meaningfully adapted to the unique cultural and contextual needs and desires of Indigenous communities (the “franchise approach”). There are over 600 First Nations communities in Canada representing more than 50 Nations and languages. Consequently, Indigenous early learning programming cannot be applied with a universal or “one size fits all” approach. Sustainable and comprehensive programming must be responsive to each community context, building upon existing strengths and assets to avoid program duplication and irrelevance. Thesis: Community-driven and culturally adapted early childhood programming is critical but cannot be achieved on a large scale within traditional program models that are constrained by prescriptive overarching program goals. Principles, rather than goals, are an effective way to navigate and evaluate complex and dynamic systems. Principles guide an intervention to be adaptable, flexible and scalable. The Martin Family Initiative (MFI) ’s Early Years program engages a principles-based approach to programming. As will be discussed in this paper, this approach enables the program to catalyze existing community-based strengths and organizational assets toward bridging gaps across and disjuncture between Indigenous early learning programs, as well as to scale programming in sustainable, context-responsive and dynamic ways. This paper argues that using a principles-driven and adaptive scaling approach, the Early Years model establishes important learnings for culturally adapted Indigenous early learning programming in Canada. Methodology: The Early Years has leveraged this approach to develop an array of programming with partner organizations and communities across the country. The Early Years began as a singular pilot project in one First Nation. In just three years, it has expanded to five different regions and community organizations. In each context, the program supports the partner organization through different means and to different ends, the extent to which is determined in partnership with each community-based organization: in some cases, this means supporting the organization to build home visiting programming from the ground-up; in others, it means offering organization-specific culturally adapted early learning resources to support the programming that already exists in communities. Principles underpin but do not define the practices of the program in each of these relationships. This paper will explore numerous examples of principles-based adaptability with the context of the Early Years, concluding that the program model offers theadaptability and dynamism necessary to respond to unique and ever-evolving community contexts and needs of Indigenous children today.

Keywords: culturally adapted programming, indigenous early learning, principles-based approach, program scaling

Procedia PDF Downloads 186
1525 Organisationmatcher: An Organisation Ranking System for Student Placement Using Preference Weights

Authors: Nor Sahida Ibrahim, Ruhaila Maskat, Aishah Ahmad

Abstract:

Almost all tertiary-level students will undergo some form of training in organisations prior to their graduation. This practice provides the necessary exposure and experience to allow students to cope with actual working environment and culture in the future. Nevertheless, a particular degree of “matching” between what is expected and what can be offered between students and organisations underpins how effective and enriching the experience is. This matching of students and organisations is challenging when preferences from both parties must be satisfied. This work developed a web-based system, namely the OrganisationMatcher, which leverage on the use of preference weights to score each organisation and rank them based on “suitability”. OrganisationMatcher has been implemented on a relational database, designed using object-oriented methods and developed using PHP programming language for browser front-end access. We outline the challenges and limitations of our system and discuss future improvements to the system, specifically in the utilisation of intelligent methods.

Keywords: student industrial placement, information system, web-based, ranking

Procedia PDF Downloads 279
1524 Apply Commitment Method in Power System to Minimize the Fuel Cost

Authors: Mohamed Shaban, Adel Yahya

Abstract:

The goal of this paper study is to schedule the power generation units to minimize fuel consumption cost based on a model that solves unit commitment problems. This can be done by utilizing forward dynamic programming method to determine the most economic scheduling of generating units. The model was applied to a power station, which consists of four generating units. The obtained results show that the applications of forward dynamic programming method offer a substantial reduction in fuel consumption cost. The fuel consumption cost has been reduced from $116,326 to $102,181 within a 24-hour period. This means saving about 12.16 % of fuel consumption cost. The study emphasizes the importance of applying modeling schedule programs to the operation of power generation units. As a consequence less consumption of fuel, less loss of power and less pollution

Keywords: unit commitment, forward dynamic, fuel cost, programming, generation scheduling, operation cost, power system, generating units

Procedia PDF Downloads 611
1523 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: absorption chillers (AC), turbine inlet air cooling (TIC), power purchase agreement (PPA), multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution (CDDE)

Procedia PDF Downloads 310
1522 Examining a Volunteer-Tutoring Program for Students with Special Education Needs

Authors: David Dean Hampton, William Morrison, Mary Rizza, Jan Osborn

Abstract:

This evaluation examined the effects of a supplemental reading intervThis evaluation examined the effects of a supplemental reading intervention for students with specific learning disabilities in reading who were presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4. ntion for students with specific learning disabilities in reading who presented with below grade level on fall benchmark scores on DIBELS 6th ed. Revised. Participants consisted of a condition group, those who received supplemental reading instruction in addition to core + special education services and a comparison group of students who were at grade level in their fall benchmark scores. The students in the condition group received 26 weeks of Project MORE instruction delivered multiple times each week from trained volunteer tutors. Using a regression-discontinuity design, condition and comparison groups were compared on reading development growth using DIBELS ORF. Significant findings were reported for grade 2, 3, and 4.

Keywords: special education, evidence-based practices, curriculum, tutoring

Procedia PDF Downloads 66
1521 Optimal Placement of Phasor Measurement Units (PMU) Using Mixed Integer Programming (MIP) for Complete Observability in Power System Network

Authors: Harshith Gowda K. S, Tejaskumar N, Shubhanga R. B, Gowtham N, Deekshith Gowda H. S

Abstract:

Phasor measurement units (PMU) are playing an important role in the current power system for state estimation. It is necessary to have complete observability of the power system while minimizing the cost. For this purpose, the optimal location of the phasor measurement units in the power system is essential. In a bus system, zero injection buses need to be evaluated to minimize the number of PMUs. In this paper, the optimization problem is formulated using mixed integer programming to obtain the optimal location of the PMUs with increased observability. The formulation consists of with and without zero injection bus as constraints. The formulated problem is simulated using a CPLEX solver in the GAMS software package. The proposed method is tested on IEEE 30, IEEE 39, IEEE 57, and IEEE 118 bus systems. The results obtained show that the number of PMUs required is minimal with increased observability.

Keywords: PMU, observability, mixed integer programming (MIP), zero injection buses (ZIB)

Procedia PDF Downloads 164
1520 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 377
1519 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity

Authors: Jai Prakash Verma, Khushboo Verma

Abstract:

In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.

Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity

Procedia PDF Downloads 249
1518 Developing Serious Games to Improve Learning Experience of Programming: A Case Study

Authors: Shan Jiang, Xinyu Tang

Abstract:

Game-based learning is an emerging pedagogy to make the learning experience more effective, enjoyable, and fun. However, most games used in classroom settings have been overly simplistic. This paper presents a case study on a Python-based online game designed to improve the effectiveness in both teaching and research in higher education. The proposed game system not only creates a fun and enjoyable experience for students to learn various topics in programming but also improves the effectiveness of teaching in several aspects, including material presentation, helping students to recognize the importance of the subjects, and linking theoretical concepts to practice. The proposed game system also serves as an information cyber-infrastructure that automatically collects and stores data from players. The data could be useful in research areas including human-computer interaction, decision making, opinion mining, and artificial intelligence. They further provide other possibilities beyond these areas due to the customizable nature of the game.

Keywords: game-based learning, programming, research-teaching integration, Hearthstone

Procedia PDF Downloads 165
1517 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 589
1516 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming

Authors: Corey F. Fitzgerald

Abstract:

This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.

Keywords: sport science, applied biomechanics, strength and conditioning, applied research

Procedia PDF Downloads 60
1515 Adding Business Value in Enterprise Applications through Quality Matrices Using Agile

Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin

Abstract:

Nowadays the business condition is so quick paced that enhancing ourselves consistently has turned into a huge factor for the presence of an undertaking. We can check this for structural building and significantly more so in the quick-paced universe of data innovation and programming designing. The lithe philosophies, similar to Scrum, have a devoted advance in the process that objectives the enhancement of the improvement procedure and programming items. Pivotal to process enhancement is to pick up data that grants you to assess the condition of the procedure and its items. From the status data, you can design activities for the upgrade and furthermore assess the accomplishment of those activities. This investigation builds a model that measures the product nature of the improvement procedure. The product quality is dependent on the useful and auxiliary nature of the product items, besides the nature of the advancement procedure is likewise vital to enhance programming quality. Utilitarian quality covers the adherence to client prerequisites, while the auxiliary quality tends to the structure of the product item's source code with reference to its practicality. The procedure quality is identified with the consistency and expectedness of the improvement procedure. The product quality model is connected in a business setting by social occasion the information for the product measurements in the model. To assess the product quality model, we investigate the information and present it to the general population engaged with the light-footed programming improvement process. The outcomes from the application and the client input recommend that the model empowers a reasonable evaluation of the product quality and that it very well may be utilized to help the persistent enhancement of the advancement procedure and programming items.

Keywords: Agile SDLC Tools, Agile Software development, business value, enterprise applications, IBM, IBM Rational Team Concert, RTC, software quality, software metrics

Procedia PDF Downloads 174
1514 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 587
1513 Educase–Intelligent System for Pedagogical Advising Using Case-Based Reasoning

Authors: Elionai Moura, José A. Cunha, César Analide

Abstract:

This work introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.

Keywords: case-based reasoning, pedagogical advising, educational data-mining (EDM), machine learning

Procedia PDF Downloads 420
1512 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression

Procedia PDF Downloads 223