Search results for: finite ring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2767

Search results for: finite ring

2557 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model

Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga

Abstract:

The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.

Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives

Procedia PDF Downloads 62
2556 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults

Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif

Abstract:

In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.

Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm

Procedia PDF Downloads 630
2555 Compressive Stresses near Crack Tip Induced by Thermo-Electric Field

Authors: Thomas Jin-Chee Liu

Abstract:

In this paper, the thermo-electro-structural coupled-field in a cracked metal plate is studied using the finite element analysis. From the computational results, the compressive stresses reveal near the crack tip. This conclusion agrees with the past reference. Furthermore, the compressive condition can retard and stop the crack growth during the Joule heating process.

Keywords: compressive stress, crack tip, Joule heating, finite element

Procedia PDF Downloads 379
2554 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 438
2553 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 319
2552 Excitation of Guided Waves in Finite Width Plates Using a Numerical Approach

Authors: Wenbo Duan, Hossein Habibi, Vassilios Kappatos, Cem Selcuk, Tat-Hean Gan

Abstract:

Ultrasonic guided waves are often used to remove ice or fouling in different structures, such as ship hulls, wind turbine blades and so on. To achieve maximum sound power output, it is important that multiple transducers are arranged in a particular way so that a desired mode can be excited. The objective of this paper is thus to provide a theoretical basis for generating a particular mode in a finite width rectangular plate which can be used for removing potential ice or fouling on the plate. The number of transducers and their locations with respect to a particular mode will be investigated, and the link between dispersion curves and practical applications will be explored. To achieve this, a semi-analytical finite element (SAFE) method is used to study the dispersion characteristics of all the modes in the ultrasonic frequency range. The detailed modal shapes will be revealed, and from the modal analysis, the particular mode with the strongest yet continuous transverse and axial displacements on the surfaces of the plate will be chosen for the purpose of removing potential ice or fouling on the plate. The modal analysis is followed by providing information on the number, location and amplitude of transducers needed to excite this particular mode. Modal excitation is then implemented in a standard finite element commercial package, namely COMSOL Multiphysics. Wave motion is visualized in COMSOL, and the mode shapes generated in SAFE is found to be consistent with the mode shapes generated in COMSOL.

Keywords: dispersion analysis, finite width plate, guided wave, modal excitation

Procedia PDF Downloads 442
2551 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: anisotropy, deep drawing, earing, finite element simulation

Procedia PDF Downloads 356
2550 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: axisymmetric problem, compressible Navier-Stokes equations, continuous finite elements, swirling flow

Procedia PDF Downloads 150
2549 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties

Procedia PDF Downloads 285
2548 Using Wearable Technology to Monitor Perinatal Health: Perspectives of Community Health Workers and Potential Use by Underserved Perinatal Women in California

Authors: Tamara Jimah, Priscilla Kehoe, Pamela Pimentel, Amir Rahmani, Nikil Dutt, Yuqing Guo

Abstract:

Ensuring equitable access to maternal health care is critical for public health. Particularly for underserved women, community health workers (CHWs) have been invaluable in providing support through health education and strategies for improved maternal self-care management. Our research aimed to assess the acceptance of technology by CHWs and perinatal women to promote healthy pregnancy and postpartum wellness. This pilot study was conducted at a local community organization in Orange County, California, where CHWs play an important role in supporting low-income women through home visitations. Questionnaires were administered to 14 CHWs and 114 pregnant and postpartum women, literate in English and/or Spanish. CHWs tested two wearable devices (Galaxy watch and Oura ring) and shared their user experience, including potential reception by the perinatal women they served. In addition, perinatal women provided information on access to a smart phone and the internet, as well as their interest in using wearable devices to self-monitor personal health with guidance from a CHW. Over 85% of CHWs agreed that it was useful to track pregnancy with the smart watch and ring. The majority of perinatal women owned a smartphone (97.4%), had access to the internet (80%) and unlimited data plans (78%), expressed interest in using the smart wearable devices to self-monitor health, and were open to receiving guidance from a CHW (87%). Community health workers and perinatal women embraced the use of wearable technology to monitor maternal health. These preliminary findings have formed the basis of an ongoing research study that integrates CHW guidance and technology (i.e., smart watch, smart ring, and a mobile phone app) to promote self-efficacy and self-management among underserved perinatal women.

Keywords: community health workers, health promotion and education, health equity, maternal and child health, technology

Procedia PDF Downloads 125
2547 Stress Concentration Trend for Combined Loading Conditions

Authors: Aderet M. Pantierer, Shmuel Pantierer, Raphael Cordina, Yougashwar Budhoo

Abstract:

Stress concentration occurs when there is an abrupt change in geometry, a mechanical part under loading. These changes in geometry can include holes, notches, or cracks within the component. The modifications create larger stress within the part. This maximum stress is difficult to determine, as it is directly at the point of the minimum area. Strain gauges have yet to be developed to analyze stresses at such minute areas. Therefore, a stress concentration factor must be utilized. The stress concentration factor is a dimensionless parameter calculated solely on the geometry of a part. The factor is multiplied by the nominal, or average, stress of the component, which can be found analytically or experimentally. Stress concentration graphs exist for common loading conditions and geometrical configurations to aid in the determination of the maximum stress a part can withstand. These graphs were developed from historical data yielded from experimentation. This project seeks to verify a stress concentration graph for combined loading conditions. The aforementioned graph was developed using CATIA Finite Element Analysis software. The results of this analysis will be validated through further testing. The 3D modeled parts will be subjected to further finite element analysis using Patran-Nastran software. The finite element models will then be verified by testing physical specimen using a tensile testing machine. Once the data is validated, the unique stress concentration graph will be submitted for publication so it can aid engineers in future projects.

Keywords: stress concentration, finite element analysis, finite element models, combined loading

Procedia PDF Downloads 402
2546 Silicon-Photonic-Sensor System for Botulinum Toxin Detection in Water

Authors: Binh T. T. Nguyen, Zhenyu Li, Eric Yap, Yi Zhang, Ai-Qun Liu

Abstract:

Silicon-photonic-sensor system is an emerging class of analytical technologies that use evanescent field wave to sensitively measure the slight difference in the surrounding environment. The wavelength shift induced by local refractive index change is used as an indicator in the system. These devices can be served as sensors for a wide variety of chemical or biomolecular detection in clinical and environmental fields. In our study, a system including a silicon-based micro-ring resonator, microfluidic channel, and optical processing is designed, fabricated for biomolecule detection. The system is demonstrated to detect Clostridium botulinum type A neurotoxin (BoNT) in different water sources. BoNT is one of the most toxic substances known and relatively easily obtained from a cultured bacteria source. The toxin is extremely lethal with LD50 of about 0.1µg/70kg intravenously, 1µg/ 70 kg by inhalation, and 70µg/kg orally. These factors make botulinum neurotoxins primary candidates as bioterrorism or biothreat agents. It is required to have a sensing system which can detect BoNT in a short time, high sensitive and automatic. For BoNT detection, silicon-based micro-ring resonator is modified with a linker for the immobilization of the anti-botulinum capture antibody. The enzymatic reaction is employed to increase the signal hence gains sensitivity. As a result, a detection limit to 30 pg/mL is achieved by our silicon-photonic sensor within a short period of 80 min. The sensor also shows high specificity versus the other type of botulinum. In the future, by designing the multifunctional waveguide array with fully automatic control system, it is simple to simultaneously detect multi-biomaterials at a low concentration within a short period. The system has a great potential to apply for online, real-time and high sensitivity for the label-free bimolecular rapid detection.

Keywords: biotoxin, photonic, ring resonator, sensor

Procedia PDF Downloads 93
2545 Analytical Study Of Holographic Polymer Dispersed Liquid Crystals Using Finite Difference Time Domain Method

Authors: N. R. Mohamad, H. Ono, H. Haroon, A. Salleh, N. M. Z. Hashim

Abstract:

In this research, we have studied and analyzed the modulation of light and liquid crystal in HPDLCs using Finite Domain Time Difference (FDTD) method. HPDLCs are modeled as a mixture of polymer and liquid crystals (LCs) that categorized as an anisotropic medium. FDTD method is directly solves Maxwell’s equation with less approximation, so this method can analyze more flexible and general approach for the arbitrary anisotropic media. As the results from FDTD simulation, the highest diffraction efficiency occurred at ±19 degrees (Bragg angle) using p polarization incident beam to Bragg grating, Q > 10 when the pitch is 1µm. Therefore, the liquid crystal is assumed to be aligned parallel to the grating constant vector during these parameters.

Keywords: birefringence, diffraction efficiency, finite domain time difference, nematic liquid crystals

Procedia PDF Downloads 438
2544 Fluid Structure Interaction Study between Ahead and Angled Impact of AGM 88 Missile Entering Relatively High Viscous Fluid for K-Omega Turbulence Model

Authors: Abu Afree Andalib, Rafiur Rahman, Md Mezbah Uddin

Abstract:

The main objective of this work is to anatomize on the various parameters of AGM 88 missile anatomized using FSI module in Ansys. Computational fluid dynamics is used for the study of fluid flow pattern and fluidic phenomenon such as drag, pressure force, energy dissipation and shockwave distribution in water. Using finite element analysis module of Ansys, structural parameters such as stress and stress density, localization point, deflection, force propagation is determined. Separate analysis on structural parameters is done on Abacus. State of the art coupling module is used for FSI analysis. Fine mesh is considered in every case for better result during simulation according to computational machine power. The result of the above-mentioned parameters is analyzed and compared for two phases using graphical representation. The result of Ansys and Abaqus are also showed. Computational Fluid Dynamics and Finite Element analyses and subsequently the Fluid-Structure Interaction (FSI) technique is being considered. Finite volume method and finite element method are being considered for modelling fluid flow and structural parameters analysis. Feasible boundary conditions are also utilized in the research. Significant change in the interaction and interference pattern while the impact was found. Theoretically as well as according to simulation angled condition was found with higher impact.

Keywords: FSI (Fluid Surface Interaction), impact, missile, high viscous fluid, CFD (Computational Fluid Dynamics), FEM (Finite Element Analysis), FVM (Finite Volume Method), fluid flow, fluid pattern, structural analysis, AGM-88, Ansys, Abaqus, meshing, k-omega, turbulence model

Procedia PDF Downloads 443
2543 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method

Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a

Abstract:

The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.

Keywords: damage detection, finite element, tapered pipe, vibration characteristics

Procedia PDF Downloads 139
2542 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri

Abstract:

By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: bearing capacity, conic programming, finite elements, seismic forces

Procedia PDF Downloads 145
2541 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent

Authors: Faidon Kyriakou, William Dempster, David Nash

Abstract:

Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.

Keywords: AAA, efficiency, finite element analysis, stent deployment

Procedia PDF Downloads 168
2540 Modeling Revolution Shell Structures by MATLAB Programming-Axisymmetric and Nonaxisymmetric Shells

Authors: Hamadi Djamal, Labiodh Bachir, Ounis Abdelhafid, Chaalane Mourad

Abstract:

The objective of this work is setting numerically operational finite element CAXI_L for the axisymmetric and nonaxisymmetric shells. This element is based on the Reissner-Mindlin theory and mixed model formulation. The MATLAB language is used for the programming. In order to test the elaborated program, some applications are carried out.

Keywords: axisymmetric shells, nonaxisymmetric behaviour, finite element, MATLAB programming

Procedia PDF Downloads 282
2539 A Method for Modeling Flexible Manipulators: Transfer Matrix Method with Finite Segments

Authors: Haijie Li, Xuping Zhang

Abstract:

This paper presents a computationally efficient method for the modeling of robot manipulators with flexible links and joints. This approach combines the Discrete Time Transfer Matrix Method with the Finite Segment Method, in which the flexible links are discretized by a number of rigid segments connected by torsion springs; and the flexibility of joints are modeled by torsion springs. The proposed method avoids the global dynamics and has the advantage of modeling non-uniform manipulators. Experiments and simulations of a single-link flexible manipulator are conducted for verifying the proposed methodologies. The simulations of a three-link robot arm with links and joints flexibility are also performed.

Keywords: flexible manipulator, transfer matrix method, linearization, finite segment method

Procedia PDF Downloads 407
2538 Electric Field Investigation in MV PILC Cables with Void Defect

Authors: Mohamed A. Alsharif, Peter A. Wallace, Donald M. Hepburn, Chengke Zhou

Abstract:

Worldwide, most PILC MV underground cables in use are approaching the end of their design life; hence, failures are likely to increase. This paper studies the electric field and potential distributions within the PILC insulted cable containing common void-defect. The finite element model of the performance of the belted PILC MV underground cable is presented. The variation of the electric field stress within the cable using the Finite Element Method (FEM) is concentrated. The effects of the void-defect within the insulation are given. Outcomes will lead to deeper understanding of the modeling of Paper Insulated Lead Covered (PILC) and electric field response of belted PILC insulted cable containing void defect.

Keywords: MV PILC cables, finite element model/COMSOL multiphysics, electric field stress, partial discharge degradation

Procedia PDF Downloads 461
2537 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 316
2536 Transformation of Glycals to Chiral Fused Aromatic Cores via Annulative π-Extension Reaction with Arynes

Authors: Nazar Hussain, Debaraj Mukherjee

Abstract:

Carbohydrate-derived chiral intermediates which contain arrays of defined stereocenters have found enormous applications in organic synthesis due to their inherent functional group, stereochemical and structural diversities as well as their ready availability. Stereodiversity of these classes of molecules has motivated synthetic organic chemistry over the years. One major challenge is control of relative configuration during construction of acyclic fragments. Here, we show that The Diels Alder addition of arynes to appropriately substituted vinyl/aryl glycals followed by π-extension via pyran ring opening smoothly furnished meta-disubstituted fused aromatic cores containing a stereo-defined orthogonally protected chiral side chain. The method is broad in terms of aryl homologation affording benzene, naphthalene, and phenanthrene derivatives. Base-induced deprotonation followed by cleavage of the allylic C-O bond appears to be the crucial steps leading to the development of aromaticity, which is the driving force behind the annulative π-extension process. The present protocol can be used for the synthesis of meta-disubstituted naphthalene aldehydes and substrates for aldolases.

Keywords: vinyl/C-2 aryl glycal, arynes, cyclization, ring opening

Procedia PDF Downloads 231
2535 Finite Element Modeling for Clamping Stresses Developed in Hot-Driven Steel Structural Riveted Connections

Authors: Jackeline Kafie-Martinez, Peter B. Keating

Abstract:

A three-dimensional finite element model is developed to capture the stress field generated in connected plates during the installation of hot-driven rivets. Clamping stress is generated when a steel rivet heated to approximately 1000 °C comes in contact with the material to be fastened at ambient temperature. As the rivet cools, thermal contraction subjects the rivet into tensile stress, while the material being fastened is subjected to compressive stress. Model characteristics and assumptions, as well as steel properties variation with respect to temperature are discussed. The thermal stresses developed around the rivet hole are assessed and reported. Results from the analysis are utilized to detect possible regions for fatigue crack propagation under cyclic loads.

Keywords: clamping stress, fatigue, finite elements, rivet, riveted railroad bridges

Procedia PDF Downloads 258
2534 Analysis of Thermal Effect on Functionally Graded Micro-Beam via Mixed Finite Element Method

Authors: Cagri Mollamahmutoglu, Ali Mercan, Aykut Levent

Abstract:

Studies concerning the microstructures are becoming more important as the utilization of various micro-electro mechanical systems (MEMS) are increasing. Thus in recent years, thermal buckling and vibration analysis of microstructures have been subject to many investigations that are utilizing different numerical methods. In this study, thermal effects on mechanical response of a functionally graded (FG) Timoshenko micro-beam are presented in the framework of a mixed finite element formulation. Size effects are taken into consideration via modified couple stress theory. The mixed formulation is based on a function which in turn is derived via Gateaux Differential scientifically. After the resolution of all field equations of the beam, a potential operator is carefully constructed. Then this operator is used for the manufacturing of the functional. Usual procedures of finite element approximation are utilized for the derivation of the mixed finite element equations once the potential is obtained. Resulting finite element formulation allows usage of C₀ type simple linear shape functions and avoids shear-locking phenomena, which is a common shortcoming of the displacement-based formulations of moderately thick beams. The developed numerical scheme is used to obtain the effects of thermal loads on the static bending, free vibration and buckling of FG Timoshenko micro-beams for different power-law parameters, aspect ratios and boundary conditions. The versatility of the mixed formulation is presented over other numerical methods such as generalized differential quadrature method (GDQM). Another attractive property of the formulation is that it allows direct calculation of the contribution of micro effects on the overall mechanical response.

Keywords: micro-beam, functionally graded materials, thermal effect, mixed finite element method

Procedia PDF Downloads 106
2533 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 93
2532 A Numerical Study of Adherend Geometry on the Stress Distribution in Adhesively Lap Joint

Authors: Ahmet Calik

Abstract:

In present study, the effect of adherend geometry on the tensile strength of adhesively single lap aluminum structures joint, bonded was numerically studied using by three dimensional finite element model. Six joint model were investigated. Analyses were performed in ANSYS commercial software. The results shows that the adherends shape has the highest effect on peel and shear stresses.

Keywords: adhesive, adherend, single lap joints, finite element

Procedia PDF Downloads 269
2531 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 203
2530 Nonclassical Antifolates: Synthesis, Biological Evaluation and Molecular Modeling Study of Some New Quinazolin-4-One Analogues as Dihydrofolate Reductase Inhibitors

Authors: Yomna Ibrahim El-Gazzar, Hussien Ibrahim El-Subbagh, Hanan Hanaa Georgey, Ghada S. Hassan Hassan

Abstract:

Dihydrofolate reductase (DHFR) is an enzyme that has pivotal importance in biochemistry and medicinal chemistry. It catalyzes the reduction of dihydrofolate to tetrahydrofolate and intimately couples with thymidylate synthase. Thymidylate synthase is a crucial enzyme that catalyzes the reductive methylation of (dUMP) to (dTMP) utilizing N5, N10-methylenetetrahydrofolate as a cofactor. A new series of 2-substituted thio-quinazolin-4-one analogs was designed that possessed electron withdrawing or donating functional groups (Cl or OCH3) at position 6- or 7-, 4-methoxyphenyl function at position 3-.The thiol function is used to connect to either 1,2,4-triazole, or 1,3,4-thiadiazole via a methylene bridge. Most of the functional groups designed to be accommodated on the quinazoline ring such as thioether, alkyl to increase lipid solubility of polar compounds, a character very much needed in the nonclassical DHFR inhibitors. The target compounds were verified with spectral data and elemental analysis. DHFR inhibitions, as well as antitumor activity, were applied on three cell lines (MCF-7, CACO-2, HEPG-2).

Keywords: nonclassical antifolates, DHFR Inhibitors, antitumor activity, quinazoline ring

Procedia PDF Downloads 361
2529 Modal Analysis of Functionally Graded Materials Plates Using Finite Element Method

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of an FGM plate composed of Al2O3 ceramic phase and 304 stainless steel metal phases was performed in this paper by ABAQUS software with the assumption that the behavior of material is elastic and mechanical properties (Young's modulus and density) are variable in the thickness direction of the plate. Therefore, a sub-program was written in FORTRAN programming language and was linked with ABAQUS software. For modal analysis, a finite element analysis was carried out similar to the model of other researchers and the accuracy of results was evaluated after comparing the results. Comparison of natural frequencies and mode shapes reflected the compatibility of results and optimal performance of the program written in FORTRAN as well as high accuracy of finite element model used in this research. After validation of the results, it was evaluated the effect of material (n parameter) on the natural frequency. In this regard, finite element analysis was carried out for different values of n and in simply supported mode. About the effect of n parameter that indicates the effect of material on the natural frequency, it was observed that the natural frequency decreased as n increased; because by increasing n, the share of ceramic phase on FGM plate has decreased and the share of steel phase has increased and this led to reducing stiffness of FGM plate and thereby reduce in the natural frequency. That is because the Young's modulus of Al2O3 ceramic is equal to 380 GPa and Young's modulus of SUS304 steel is 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 367
2528 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers

Authors: Ali Osman Güney, Bahattin Kanber

Abstract:

In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.

Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method

Procedia PDF Downloads 318