Search results for: encrypted traffic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3374

Search results for: encrypted traffic classification

3164 Spatial Audio Player Using Musical Genre Classification

Authors: Jun-Yong Lee, Hyoung-Gook Kim

Abstract:

In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.

Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing

Procedia PDF Downloads 429
3163 Long-Term Modal Changes in International Traffic - Modelling Exercise

Authors: Tomasz Komornicki

Abstract:

The primary aim of the presentation is to try to model border traffic and, at the same time to explain on which economic variables the intensity of border traffic depended in the long term. For this purpose, long series of traffic data on the Polish borders were used. Models were estimated for three variants of explanatory variables: a) for total arrivals and departures (total movement of Poles and foreigners), b) for arrivals and departures of Poles, and c) for arrivals and departures of foreigners. Each of the defined explanatory variables in the models appeared as the logarithm of the natural number of persons. Data from 1994-2017 were used for modeling (for internal Schengen borders for the years 1994-2007). Information on the number of people arriving in and leaving Poland was collected for a total of 303 border crossings. On the basis of the analyses carried out, it was found that one of the main factors determining border traffic is generally differences in the level of economic development (GDP) and the condition of the economy (level of unemployment) and the degree of border permeability. Also statistically significant for border traffic are differences in the prices of goods (fuels, tobacco, and alcohol products) and services (mainly basic ones, e.g., hairdressing services). Such a relationship exists mainly on the eastern border (border traffic determined largely by differences in the prices of goods) and on the border with Germany (in the first analysed period, border traffic was determined mainly by the prices of goods, later - after Poland's accession to the EU and the Schengen area - also by the prices of services). The models also confirmed differences in the set of factors shaping the volume and structure of border traffic on the Polish borders resulting from general geopolitical conditions, with the year 2007 being an important caesura, after which the classical population mobility factors became visible. The results obtained were additionally related to changes in traffic that occurred as a result of the CPOVID-19 pandemic and as a result of the Russian aggression against Ukraine.

Keywords: border, modal structure, transport, Ukraine

Procedia PDF Downloads 116
3162 Highway Capacity and Level of Service

Authors: Kidist Mesfin Nguse

Abstract:

Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.

Keywords: capacity, level of service, traffic volume, free flow speed

Procedia PDF Downloads 52
3161 The Traffic Congestion in Biskra in Algeria

Authors: Selatnia Khaled Grine Ikram

Abstract:

The city of Biskra, like other Algerian cities, knows of urban traffic congestion. The concentration of investments especially in the secondary and tertiary sectors in the Wilaya has attracted a large rural population. The latter, combined with the high rate of natural growing, favored the imbalance of the spatial frame of wilayal system and consequently the traffic congestion of the primate city (Biskra). This urban disease is explained by a two-tier development. The capital of Wilaya growing faster than its others centers body and takes measurements of proportion to the whole. The consequences can only be negative. The pressure on the roads, the growth of the fleet, overloading of equipment and activities have become the characteristics of the city of Biskra, which can no longer meet the needs of its inhabitants. This research attempts to show the relationship between urban congestion of the primate city and the imbalance of the spatial structure of the micro-regional urban system.

Keywords: traffic congestion, spatial structure, pressure on the roads, equipment and activities

Procedia PDF Downloads 679
3160 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 522
3159 Secure Message Transmission Using Meaningful Shares

Authors: Ajish Sreedharan

Abstract:

Visual cryptography encodes a secret image into shares of random binary patterns. If the shares are exerted onto transparencies, the secret image can be visually decoded by superimposing a qualified subset of transparencies, but no secret information can be obtained from the superposition of a forbidden subset. The binary patterns of the shares, however, have no visual meaning and hinder the objectives of visual cryptography. In the Secret Message Transmission through Meaningful Shares a secret message to be transmitted is converted to grey scale image. Then (2,2) visual cryptographic shares are generated from this converted gray scale image. The shares are encrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. Two separate color images which are of the same size of the shares, taken as cover image of the respective shares to hide the shares into them. The encrypted shares which are covered by meaningful images so that a potential eavesdropper wont know there is a message to be read. The meaningful shares are transmitted through two different transmission medium. During decoding shares are fetched from received meaningful images and decrypted using A Chaos-Based Image Encryption Algorithm Using Wavelet Transform. The shares are combined to regenerate the grey scale image from where the secret message is obtained.

Keywords: visual cryptography, wavelet transform, meaningful shares, grey scale image

Procedia PDF Downloads 457
3158 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 334
3157 Autopsy-Based Study of Abdominal Traffic Trauma Death after Emergency Room Arrival

Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi

Abstract:

We experience the autopsy cases that the deceased was alive in emergency room on arrival. Bleeding is the leading cause of preventable death after injury. This retrospective study aimed to characterize opportunities for performance improvement identified in patients who died from traffic trauma and were considered by the quality improvement of education system. The Japan Advanced Trauma Evaluation and Care (JATEC) education program was introduced in 2002. We focused the abdominal traffic trauma injury. An autopsy-based cross-sectional study conducted. A purposive sampling technique was applied to select the study sample of 41 post-mortems of road traffic accident between April 1999 and March 2014 subjected to medico-legal autopsy at the department of Forensic Medicine, Shiga University of Medical Science. 16 patients (39.0%) were abdominal trauma injury. The mean period of survival after meet with accident was 13.5 hours, compared abdominal trauma death was 27.4 hours longer. In road traffic accidents, the most injured abdominal organs were liver followed by mesentery. We thought delayed treatment was associated with immediate diagnostic imaging, and so expected to expand trauma management examination.

Keywords: abdominal traffic trauma, preventable death, autopsy, emergency medicine

Procedia PDF Downloads 455
3156 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 485
3155 Nature of Traffic Robbery Victimisation Experience 2015-2023

Authors: Idenyi Goshen Peter, Oludayo Tade

Abstract:

Traffic robbery is a prevalent issue in Lagos State, impacting commuters and transport workers, necessitating an examination of victimization experiences and offender-victim dynamics. The research aim is to investigate the nature of traffic robbery victimization experiences, strategies employed by offenders, and the extent of the crime as reported in newspapers. Utilizing content analysis, the study examines 167 traffic robbery cases from 2015 to 2023 reported in five newspapers using the routine activity theory to understand the dynamics between offenders and victims. The research discusses the victimization experience and convergence of the offenders and victims, it documents the extent of the crime as captured by various newspapers (Vanguard, Punch. Tribune, Sun and Guardian ), and it also interrogates the strategies, methods deployed by traffic robbers. The study addresses the nature, strategies, and extent of traffic robbery victimization experiences, shedding light on the dynamics of the crime over an eight-year period. The paper implored secondary research from newspaper publications, and also content analysis for the research. Routine activity theory was used to explain the phenomenon that exists between the offender and the victim. Consequently, the common method used by offenders is dispossessing victims of their valuables, leading to fear-driven victim experiences, with spikes in incidents observed in June and December, particularly in Vanguard and Punch publications.

Keywords: traffic robbery, victimisation experience, offender, routine activity

Procedia PDF Downloads 27
3154 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji, Adeyemi Adedokun

Abstract:

Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.

Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions

Procedia PDF Downloads 235
3153 Sustainable Traffic Flow: The Case Study of Un-Signalized Pedestrian Crossing at Stationary Bottleneck and Its Impact on Traffic Flow

Authors: Imran Badshah

Abstract:

This paper study the impact of Un-signalized pedestrian on traffic flow at Stationary Bottleneck. The Highway Capacity Manual (HCM) analyze the methodology of level of service for Urban street segment but it does not include the impact of un-signalized pedestrian crossing at stationary bottleneck. The un-signalized pedestrian crossing in urban road segment causes conflict between vehicles and pedestrians. As a result, the average time taken by vehicle to travel along a road segment increased. The speed of vehicle and the level of service decreases as the running time of a segment increased. To analyze the delay, we need to determine the pedestrian speed while crossing the road at a stationary bottleneck. The objective of this research is to determine the speed of pedestrian and its impact on traffic flow at stationary bottleneck. In addition, the result of this study should be incorporated in the Urban Street Analysis Chapter of HCM.

Keywords: stationary bottleneck, traffic flow, pedestrian speed, HCM

Procedia PDF Downloads 92
3152 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul

Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt

Abstract:

Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.

Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow

Procedia PDF Downloads 368
3151 The Effects of Key Factors in Traffic-Oriented Road Alignment Adjustment for Low Emissions Profile: A Case Study in Norway

Authors: Gaylord K. Booto, Marinelli Giuseppe, Helge Brattebø, Rolf A. Bohne

Abstract:

Emissions reduction has emerged among the principal targets in the process of planning and designing road alignments today. Intelligent road design methods that can result in optimized alignment constitute concrete and innovative responses towards better alternatives and more sustainable road infrastructures. As the largest amount of emissions of road infrastructures occur in the operation stage, it becomes very important to consider traffic weight and distribution in alignment design process. This study analyzes the effects of four traffic factors (i.e. operating speed, vehicle category, technology and fuel type) on adjusting the vertical alignment of a given road, using optimization techniques. Further, factors’ effects are assessed qualitatively and quantitatively, and the emission profiles of resulting alignment alternatives are compared.

Keywords: alignment adjustment, emissions reduction, optimization, traffic-oriented

Procedia PDF Downloads 371
3150 Assessment and Evaluation of Traffic Noise in Selected Government Healthcare Facilities at Birnin Kebbi, Kebbi State-Nigeria

Authors: Muhammad Naziru Yahaya, Buhari Samaila, Nasiru Abubakar

Abstract:

Noise pollution caused by vehicular movement in urban cities has reached alarming proportions due to continuous increases in vehicles and industrialization. Traffic noise causes deafness, annoyance, and other health challenges. According to World Health Organization recommends 60Db daytime sound levels and 40db night time sound levels in hospitals, schools, and other residential areas. Measurements of traffic noise were taken at six different locations of selected healthcare facilities at Birnin Kebbi (Sir Yahaya Memorial Hospital and Federal Medical Centre Birnin Kebbi). The data was collected in the vicinity of hospitals using the slow setting of the device and pointed at noise sources. An integrated multifunctional sound level GM1352, KK2821163 model, was used for measuring the emitted noise and temperatures. The data was measured and recorded at three different periods of the day 8 am – 12 pm, 3 pm – 6 pm, and 6 pm – 8:30 pm, respectively. The results show that a fair traffic flow producing an average sound level in the order of 38db – 64db was recorded at GOPDF, amenityF, and ante-natalF. Similarly, high traffic noise was observed at GOPDS, amenityS, and Fati-LamiS in the order of 52db – 78db unsatisfactory threshold for human hearing.

Keywords: amenities, healthcare, noise, hospital, traffic

Procedia PDF Downloads 119
3149 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 91
3148 Evaluating the Influence of Road Markings Retroreflectivity on Road Safety in Low Visibility Conditions

Authors: Darko Babic, Maja Modric, Dario Babic, Mario Fiolic

Abstract:

For road markings as a part of traffic control plan, it is considered to have a positive impact on road safety. Their importance is particularly evident in low visibility conditions when the field of vision and the driver's visual acuity are significantly reduced. The aim of this article is to analyze how road marking retroreflectivity affects the frequency of traffic accidents in low visibility conditions. For this purpose, 10,417.4 km single carriageway roads were analysed across Croatia in the period from 2012 to 2016. The research included accidents that may be significantly affected by marking retroreflectivity: head-on collisions, running off the road, hitting a stationary object on the road and hitting a stationary roadside object. The results have shown that the retroreflectivity level is negatively correlated to the total number of accidents and the number of casualties and injuries, which ultimately means that the risk of traffic accidents and deaths and/or injuries of participants will be lower with the increase of road markings retroreflectivity. These results may assist in defining minimum values of retroreflectivity that the markings must meet at any time as well as the suitable technologies and materials for their implementation.

Keywords: retroreflectivity, road markings, traffic accidents, traffic safety

Procedia PDF Downloads 155
3147 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 215
3146 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image

Procedia PDF Downloads 482
3145 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 341
3144 Development Process and Design Methods for Shared Spaces in Europe

Authors: Kazuyasu Yoshino, Keita Yamaguchi, Toshihiko Nishimura, Masashi Kawasaki

Abstract:

Shared Space, the planning and design concept that allows pedestrians and vehicles to coexist in a street space, has been advocated and developed according to the traffic conditions in each country in Europe. Especially in German/French-speaking countries, the "Meeting Zone," which is a traffic rule combining speed regulation (20km/h) and pedestrian priority, is often applied when designing shared spaces at intersections, squares, and streets in the city center. In this study, the process of establishment and development of the Meeting Zone in Switzerland, France, and Austria was chronologically organized based on the descriptions in the major discourse and guidelines in each country. Then, the characteristics of the spatial design were extracted by analyzing representative examples of Meeting Zone applications. Finally, the relationships between the different approaches to designing of Meeting Zone and traffic regulations in different countries were discussed.

Keywords: shared space, traffic calming, meeting zone, street design

Procedia PDF Downloads 95
3143 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 350
3142 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
3141 Effect of On-Road Vehicular Traffic on Noise Pollution in Bhubaneswar City, Eastern India

Authors: Dudam Bharath Kumar, Harsh Kumar, Naveed Ahmed

Abstract:

Vehicular traffic on the road-side plays a significant role in affecting the noise pollution in most of the cities over the world. To assess the correlation of the road-traffic on noise pollution in the city environment, continuous measurements were carried out in an entire daytime starting from 8:00 AM IST to 6:00 PM IST at a single point for each 5 minutes (8:00-8:05, 9:00-9:05, 10:00-10:05 AM, ...) near the KIIT University campus road. Noise levels were observed using a mobile operated app of android cell phone and a handheld noise meter. Calibration analysis shows high correlation about 0.89 for the study location for the day time period. Results show diurnal variability of atmospheric noise pollution levels go hand-in and with the vehicular number which pass through a point of observation. The range of noise pollution levels in the daytime period is observed as 55 to 75 dB(A). As a day starts, sudden upsurge of noise levels is observed from 65 to 71 dB(A) in the early morning, 64 dB(A) in late morning, regains the same quantity 68-71 dB(A) in the afternoon, and rises 70 dB(A) in the early evening. Vehicular number of the corresponding noise levels exhibits 115-120, 150-160, and 140-160, respectively. However, this preliminary study suggests the importance of vehicular traffic on noise pollution levels in the urban environment and further to study population exposed to noise levels. Innovative approaches help curb the noise pollution through modelling the traffic noise pollution spatially and temporally over the city environments.

Keywords: noise pollution, vehicular traffic, urban environment, noise meter

Procedia PDF Downloads 298
3140 Statistical Wavelet Features, PCA, and SVM-Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the support-vectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: discrete wavelet transform, electroencephalogram, pattern recognition, principal component analysis, support vector machine

Procedia PDF Downloads 640
3139 Dynamic Network Approach to Air Traffic Management

Authors: Catia S. A. Sima, K. Bousson

Abstract:

Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.

Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains

Procedia PDF Downloads 134
3138 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble

Procedia PDF Downloads 494
3137 A Research Review of Cycling Suitability Assessment for Mountainous Cities

Authors: Xiaofeng Fu

Abstract:

This paper begins with the deconstruction of the localization of China's bicycle renaissance. Then think about how to scientifically plan bicycle traffic in a sustainable way in typed cities, especially in mountainous cities, because they need to respond to more serious geographical issues. Therefore, by sorting out the international research on bicycle traffic in mountainous cities, bike-ability is summarized as a prevalent qualitative analysis medium. Then this paper lists the influencing factors of likeability, the general research framework, and responds to the common problem of mountain cities, that is, the treatment of road longitudinal slopes, to assist urban managers in assessing whether the city's complex terrain is suitable for cycling and identifying possible improvements.

Keywords: traffic planning, bikeability, cycling suitability, mountainous cities

Procedia PDF Downloads 76
3136 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images

Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane

Abstract:

In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].

Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer

Procedia PDF Downloads 13
3135 Particulate Pollution and Its Effect on Respiratory Symptoms of Exposed Personnel's in Three Heavy Traffic Cities (Roads), Kathmandu, Nepal

Authors: Sujen Man Shrestha, Kanchan Thapa, Tista Prasai Joshi

Abstract:

Background: The present study was carried out to determine suspended particles and respirable particles of diameter less than 1 micrometers (PM1) on road side and some distance of outside from road; and to compare the respiratory symptoms between traffic police men and shop keepers directly 'exposed' to traffic fumes and office worker stay in 'protected' enclosed environment. Methods: Semi structured questionnaire was used to collect the data among case and control after getting verbal informed consent among the convenience sample of traffic police, shopkeepers and officials in three different locations in Kathmandu. Secondary data analysis of hospital data of three hospitals of Kathmandu was also performed. The data on air Particulate Matter was taken by Haz Dust. Results: The result showed air quality of road side traffic is unhealthy and there was increasing trends of respiratory illness in hospital outpatient department (OPD). The people who were exposed found to have more risk of developing respiratory diseases symptoms. Conclusions: The study concluded that air pollution level is strong contributing factor for respiratory diseases and further recommended strong, epidemiological studies with larger sample size, less bias, and also measuring other significant physical and chemicals parameters of air pollution.

Keywords: heavy traffic cities, Kathmandu, particulate pollution, respiratory symptoms

Procedia PDF Downloads 308