Search results for: module based teaching and learning
31142 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries
Authors: Ram A. Giri, Amna Bedri, Abdou Niane
Abstract:
Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.Keywords: exclusion, inclusion, inclusive education, marginalization
Procedia PDF Downloads 23331141 Interliterariness: Teaching Dystopia in the Arab Classrooms
Authors: Firas Al-Jubouri
Abstract:
Literature has been a subject of studying English at secondary, university, and postgraduate levels in many countries and for several decades. One of the prominent literary genres, which is being increasingly used in the literature classrooms, is dystopian literature. However, since teachers usually address the educational requirements of teaching canonical English literature to meet the expected objectives of the particular 1organisation, and the learner’s needs in the non- Anglophone context, they must also negotiate the issues of cultural differences, aesthetic values, literary significance, and the rationale of storytelling. This paper examines how teaching certain dystopian themes in Aldous Huxley’s Brave New World (1932), an extremely influential dystopian canon, has to take into consideration the ideas, traditions, cultures, and means of literary interpretation inherent in the Arab Muslim world, with specific emphasis on the GCC region. It suggests the use of DionýzĎurišin’s (1929-1997) system of interliterariness in teaching world and comparative literature to help improve the interpretation of canonical literary texts in the international and inter-ethnic classrooms and contexts. Thus, this study helps to define a means of integrating global content and cross-cultural experiences into an effective teaching methodology that helps mitigate the major divides between the Anglophone text and the non-Anglophone readers.Keywords: anglophone, dystopia, brave new world, huxley, interliterariness
Procedia PDF Downloads 8131140 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 15031139 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University
Authors: Islam Elsayed Hussein
Abstract:
The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt
Procedia PDF Downloads 52831138 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning
Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile
Abstract:
This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.Keywords: higher education, mentoring, professional development, university teaching
Procedia PDF Downloads 18431137 A Review of Lortie’s Schoolteacher
Authors: Tsai-Hsiu Lin
Abstract:
Dan C. Lortie’s Schoolteacher: A sociological study is one of the best works on the sociology of teaching since W. Waller’s classic study. It is a book worthy of review. Following the tradition of symbolic interactionists, Lortie demonstrated the qualities who studied the occupation of teaching. Using several methods to gather effective data, Lortie has portrayed the ethos of the teaching profession. Therefore, the work is an important book on the teaching profession and teacher culture. Though outstanding, Lortie’s work is also flawed in that his perspectives and methodology were adopted largely from symbolic interactionism. First, Lortie in his work analyzed many points regarding teacher culture; for example, he was interested in exploring “sentiment,” “cathexis,” and “ethos.” Thus, he was more a psychologist than a sociologist. Second, symbolic interactionism led him to discern the teacher culture from a micro view, thereby missing the structural aspects. For example, he did not fully discuss the issue of gender and he ignored the issue of race. Finally, following the qualitative sociological tradition, Lortie employed many qualitative methods to gather data but only foucused on obtaining and presenting interview data. Moreover, he used measurement methods that were too simplistic for analyzing quantitative data fully.Keywords: education reform, teacher culture, teaching profession, Lortie’s Schoolteacher
Procedia PDF Downloads 23431136 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM
Procedia PDF Downloads 39031135 Enriching Interaction in the Classroom Based on Typologies of Experiments and Mathematization in Physics Teaching
Authors: Olga Castiblanco, Diego Vizcaíno
Abstract:
Changing the traditional way of using experimentation in science teaching is quite a challenge. This research results talk about the characterization of physics experiments, not because of the topic it deals with, nor depending on the material used in the assemblies, but related to the possibilities it offers to enrich interaction in the classroom and thereby contribute to the development of scientific thinking skills. It is an action-research of type intervention in the classroom, with four courses of Physics Teaching undergraduate students from a public university in Bogotá. This process allows characterizing typologies such as discrepant, homemade, illustrative, research, recreational, crucial, mental, and virtual experiments. Students' production and researchers' reports on each class were the most relevant data. Content analysis techniques let to categorize the information and obtain results on the richness that each typology of experiment offers when interacting in the classroom. Results show changes in the comprehension of new teachers' role, far from being the possessor and transmitter of the truth. Besides, they understand strategies to engage students effectively since the class advances extending ideas, reflections, debates, and questions, either towards themselves, their classmates, or the teacher.Keywords: physics teacher training, non-traditional experimentation, contextualized education, didactics of physics
Procedia PDF Downloads 9731134 A POX Controller Module to Collect Web Traffic Statistics in SDN Environment
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a new norm of networks. It is designed to facilitate the way of managing, measuring, debugging and controlling the network dynamically, and to make it suitable for the modern applications. Generally, measurement methods can be divided into two categories: Active and passive methods. Active measurement method is employed to inject test packets into the network in order to monitor their behaviour (ping tool as an example). Meanwhile the passive measurement method is used to monitor the traffic for the purpose of deriving measurement values. The measurement methods, both active and passive, are useful for the collection of traffic statistics, and monitoring of the network traffic. Although there has been a work focusing on measuring traffic statistics in SDN environment, it was only meant for measuring packets and bytes rates for non-web traffic. In this study, a feasible method will be designed to measure the number of packets and bytes in a certain time, and facilitate obtaining statistics for both web traffic and non-web traffic. Web traffic refers to HTTP requests that use application layer; while non-web traffic refers to ICMP and TCP requests. Thus, this work is going to be more comprehensive than previous works. With a developed module on POX OpenFlow controller, information will be collected from each active flow in the OpenFlow switch, and presented on Command Line Interface (CLI) and wireshark interface. Obviously, statistics that will be displayed on CLI and on wireshark interfaces include type of protocol, number of bytes and number of packets, among others. Besides, this module will show the number of flows added to the switch whenever traffic is generated from and to hosts in the same statistics list. In order to carry out this work effectively, our Python module will send a statistics request message to the switch requesting its current ports and flows statistics in every five seconds; while the switch will reply with the required information in a message called statistics reply message. Thus, POX controller will be notified and updated with any changes could happen in the entire network in a very short time. Therefore, our aim of this study is to prepare a list for the important statistics elements that are collected from the whole network, to be used for any further researches; particularly, those that are dealing with the detection of the network attacks that cause a sudden rise in the number of packets and bytes like Distributed Denial of Service (DDoS).Keywords: mininet, OpenFlow, POX controller, SDN
Procedia PDF Downloads 23931133 Bringing Thai Folk Song "Laos Duang Duen" to Teaching in Western Music
Authors: Wongwarit Nipitwittaya
Abstract:
The objectives of this research is bringing folk song with the teaching of Western music were to examine to investigate, to compare, develop the skill, technique, knowledge of Thai folk song and to preserve folk song of Thailand to be known more widely also learn Thai culture from Thai folk song. Study by bringing Thailand folk song is widely known for learning with Western music in course brass performance. Bringing the melody of Thai folk music and changing patterns to western music notes for appropriate on brass performance. A sample was selected from brass students, using research by assessment of knowledge from test after used Thai folk song lesson. The lesson focus for scales and key signature in western music by divided into two groups, the one study by used research tools and another one used simple lesson and a collection of research until testing. The results of the study were as follows: 1. There are good development skill form research method 2. Sound recognition can be even better. The study was a qualitative research and data collection by observation.Keywords: Thai folk song, brass instrument, key signature, western music
Procedia PDF Downloads 68331132 Inclusive Early Childhood Education and the Development of Children with Learning Disabilities in Ghana: Cultural-Historical Analysis
Authors: D. K. Kumador, E. A. Muthivhi
Abstract:
Historically, reforms in early childhood education in Ghana have focused narrowly on structural and pedagogical aspects with little attention paid to the broader sociocultural framework within which schooling and child development systems interact. This preliminary study investigates inclusive early childhood education within rapidly changing Ghanaian socio-cultural context, and its consequences for the development of children with learning disabilities. The study addresses an important topic, which is largely under-researched outside of Europe, North America, and Australasia. While inclusive education has been widely accepted globally at the level of policy, its implementation is uneven, as is shown in numerous studies across an array of countries and education systems. Despite this burgeoning area of research internationally, there have been far fewer studies conducted in African settings and fewer still that use cultural-historical activity theory as an investigative approach. More so, specific literature on the subject in the Ghanaian context is non-existent and, as such, coming to a deeper understanding of the sociocultural practices that shape, and possibly impede, inclusive early childhood education in an African country, Ghana, is a worthwhile research endeavour. Using cultural-historical activity theory as a methodological framework, this study employed classroom observations, and in-depth interviews and focus group discussions of preschool teachers in three kindergarten centres in the Greater Accra Region of Ghana to qualitatively explore inclusive early childhood education and the development of children with learning disabilities. The findings showed that literature from Ghana rarely discusses child informed consent as an on-going process that must be articulated throughout the research process from data collection to analysis, reporting and dissemination. Further, the study showed that the introduction and implementation of inclusive education framework – with its concomitant revisions in the curriculum, policies, and school rules, as well as enhanced community and parent involvement – into existing schooling practices, generated contradictions in inclusive teachers’ approaches to teaching and learning, and classroom management. Generally, contradictions in the understanding and acceptability of approaches to teaching and learning occur when a new way of doing things is incorporated into existing practices. These contradictions are thought to be a source of change and development. Thus, they guide teachers to unlearn outmoded practices, relearn or learn new approaches that are beneficial to the development of all children. Nonetheless, the findings of the current study showed that preschool teachers’ belief systems and perceptions of disabilities mediated the outcomes of such contradictions. Also, that was evidenced in the way they engaged children with learning disabilities compared to their typically developing counterparts, showing disregard for what was prescribed by new policies and school rules. The findings have implications for research with young children and the development outcomes of children with learning disabilities in inclusive early childhood education settings.Keywords: CHAT, classroom management, cultural-historical activity theory, ghana, inclusive early childhood education, schooling practices, young children with learning disabilities
Procedia PDF Downloads 13131131 Comparative Analysis of Teachers’ Performance in Private and Public Primary Schools in Oyo State, Nigeria
Authors: Oyetunji John Adenuga
Abstract:
This study on the comparative analysis of the performance of teachers in private and public schools was carried out in Ibadan North West Local Government Area of Oyo State. This study examined the justification for the claim that there is difference in the performance of teachers in private and public primary schools and at the same time identified factors responsible for the difference in the performance of these teachers. A descriptive survey research design was used for the study. Data generated were analysed using t-test and regression analysis. The findings of the study revealed that there is significant difference in the performance of teachers in private and private primary schools in Ibadan North West Local Government Area of Oyo State (t=64.09; df=459; p,.05). The findings also revealed that the method of teaching in private primary schools is significantly different from the method of teaching in public primary schools in Ibadan North West Local Government Area of Oyo State (t=73.08; df=459; p,.05). Findings revealed that school leadership and management have significant contribution on the performance of private and public primary school teachers in Ibadan North West Local Area of Oyo State. Based on the finding, the following recommendations were made: Primary school teachers need to be motivated and rewarded for excellent performance. Primary schools should be properly equipped with teaching-aid facilities, laboratories and libraries. Government should use the findings of this study to improve on teaching materials provided to the primary school teachers in Nigeria. Public primary schools should be designed by education planners, administrators and government. Headmasters, proprietors and teachers of primary schools should look inward and give a performance appraisal and evaluation of themselves form time to time based on subject they taught. Finally, school administrators should be conscious of the way they manage the teachers in schools not only in informal situations but also in formal settings.Keywords: private education, public education, school leadership, school management, teachers performance
Procedia PDF Downloads 34631130 Machine Learning Approach for Mutation Testing
Authors: Michael Stewart
Abstract:
Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing
Procedia PDF Downloads 20331129 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 9831128 Modern Human and His Needy to the Prophecy (Case Study of AyatuAllah Mottahari Views)
Authors: Mohsen Nouraei, Mohammad Molavi
Abstract:
Muslim scholars for a long time have tried to prove the necessity of prophecy through the Qur'an verses, Hadith's concepts, and rational arguments. According to them, the human being cannot find his welfare way based on wisdom only. They emphasize that divine teaching of the prophets accompanied by wisdom (reason) helps people to find the best way of life and consequently they achieve perfection. In contrast, some believe that mentioned necessity is helpful for primitive and ancient societies, and, matured man in the modern era has flourished his wisdom and reached the peak of maturity. Hence, the modern human can recognize good and evil rely on the individual and social wisdom and as a result they can reach to the perfection without revelation and prophetic teaching. The essay via descriptive-analytical method has attempted to analyze and critic this thought through the study of Mottahari's works as a modern prominent scholars. Findings show that AyatuAllah Mottahari believes that not only modern human intellectual development is not needless of prophecy, but also they need religion and revelation teaching exactly like primitive and ancient societies. Wisdom inherent limitations common between primitive and modern human are the main reason of AyatuAllah Mottahari.Keywords: wisdom, modernity, prophecy, AyatuAllah Mottahari
Procedia PDF Downloads 34831127 Time Series Forecasting (TSF) Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window
Procedia PDF Downloads 15931126 Challenges to Collaborative Learning in Architectural Education in the Middle East
Authors: Lizmol Mathew, Divya Thomas, Shiney Rajan
Abstract:
Educational paradigm all over the globe is undergoing significant reform today. Because of this, so-called flipped classroom model is becoming increasingly popular in higher education. Flipped classroom has proved to be more effective than traditional lecture based model as flipped classroom model promotes active learning by encouraging students to work on in collaborative tasks and peer-led learning during the class-time. However, success of flipped classrooms relies on students’ ability and their attitudes towards collaboration and group work. This paper examines: 1) Students’ attitudes towards collaborative learning; 2) Main challenges to successful collaboration from students’ experience and 3) Students’ perception of criteria for successful team work. 4) Recommendations for enhancing collaborative learning. This study’s methodology involves quantitative analysis of surveys collected from students enrolled in undergraduate Architecture program at Qatar University. Analysis indicates that in general students enrolled in the program do not have positive perceptions or experiences associated with group work. Positive and negative factors that influence collaborative learning in higher education have been identified. Recommendations for improving collaborative work experience have been proposed.Keywords: architecture, collaborative learning, female, group work, higher education, Middle East, Qatar, student experience
Procedia PDF Downloads 33231125 Inventory Policy with Continuous Price Reduction in Solar Photovoltaic Supply Chain
Authors: Xiangrong Liu, Chuanhui Xiong
Abstract:
With the concern of large pollution emissions from coal-fired power plants and new commitment to green energy, global solar power industry was emerging recently. Due to the advanced technology, the price of solar photovoltaic(PV) module was reduced at a fast rate, which arose an interesting but challenge question to solar supply chain. This research is modeling the inventory strategies for a PV supply chain with a PV manufacturer, an assembler and an end customer. Through characterizing the manufacturer's and PV assembler's optimal decision in decentralized and centralized situation, this study shed light on how to improve supply chain performance through parameters setting in the contract design. The results suggest the assembler to lower the optimal stock level gradually each period before price reduction and set up a newsvendor base-stock policy in all periods after price reduction. As to the PV module manufacturer, a non-stationary produce-up-to policy is optimal.Keywords: photovoltaic, supply chain, inventory policy, base-stock policy
Procedia PDF Downloads 35331124 The Use of Relaxation Training in Special Schools for Children With Learning Disabilities
Authors: Birgit Heike Spohn
Abstract:
Several authors (e.g., Krowatschek & Reid, 2011; Winkler, 1998) pronounce themselves in favor of the use of relaxation techniques in school because those techniques could help children to cope with stress, improve power of concentration, learning, and social behavior as well as class climate. Children with learning disabilities might profit from those techniques in a special way because they contribute to improved learning behavior. There is no study addressing the frequency of the use of relaxation techniques in special schools for children with learning disabilities in German speaking countries. The paper presents a study in which all teachers of special schools for children with learning disabilities in a district of South Germany (n = 625) were questioned about the use of relaxation techniques in school using a standardized questionnaire. Variables addressed were the use of these techniques in the classroom, aspects of their use (kind of relaxation technique, frequency, and regularity of their use), and potential influencing factors. The results are discussed, and implications for further research are drawn.Keywords: special education, learning disabilities, relaxation training, concentration
Procedia PDF Downloads 11231123 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 16531122 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 16331121 Integrating Artificial Intelligence in Social Work Education: An Exploratory Study
Authors: Nir Wittenberg, Moshe Farhi
Abstract:
This mixed-methods study examines the integration of artificial intelligence (AI) tools in a first-year social work course to assess their potential for enhancing professional knowledge and skills. The incorporation of digital technologies, such as AI, in social work interventions, training, and research has increased, with the expectation that AI will become as commonplace as email and mobile phones. However, policies and ethical guidelines regarding AI, as well as empirical evaluations of its usefulness, are lacking. As AI is gradually being adopted in the field, it is prudent to explore AI thoughtfully in alignment with pedagogical goals. The outcomes assessed include professional identity, course satisfaction, and motivation. AI offers unique reflective learning opportunities through personalized simulations, feedback, and queries to complement face-to-face lessons. For instance, AI simulations provide low-risk practices for situations such as client interactions, enabling students to build skills with less stress. However, it is essential to recognize that AI alone cannot ensure real-world competence or cultural sensitivity. Outcomes related to student learning, experience, and perceptions will help to elucidate the best practices for AI integration, guiding faculty, and advancing pedagogical innovation. This strategic integration of selected AI technologies is expected to diversify course methodology, improve learning outcomes, and generate new evidence on AI’s educational utility. The findings will inform faculty seeking to thoughtfully incorporate AI into teaching and learning.Keywords: artificial intelligence (AI), social work education, students, developing a professional identity, ethical considerations
Procedia PDF Downloads 8431120 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach
Authors: Adeep Hande, Shubham Agarwal
Abstract:
This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.Keywords: large language models, semi-supervised learning, sexism detection, data sparsity
Procedia PDF Downloads 7231119 Cascade Multilevel Inverter-Based Grid-Tie Single-Phase and Three-Phase-Photovoltaic Power System Controlling and Modeling
Authors: Syed Masood Hussain
Abstract:
An effective control method, including system-level control and pulse width modulation for quasi-Z-source cascade multilevel inverter (qZS-CMI) based grid-tie photovoltaic (PV) power system is proposed. The system-level control achieves the grid-tie current injection, independent maximum power point tracking (MPPT) for separate PV panels, and dc-link voltage balance for all quasi-Z-source H-bridge inverter (qZS-HBI) modules. A recent upsurge in the study of photovoltaic (PV) power generation emerges, since they directly convert the solar radiation into electric power without hampering the environment. However, the stochastic fluctuation of solar power is inconsistent with the desired stable power injected to the grid, owing to variations of solar irradiation and temperature. To fully exploit the solar energy, extracting the PV panels’ maximum power and feeding them into grids at unity power factor become the most important. The contributions have been made by the cascade multilevel inverter (CMI). Nevertheless, the H-bridge inverter (HBI) module lacks boost function so that the inverter KVA rating requirement has to be increased twice with a PV voltage range of 1:2; and the different PV panel output voltages result in imbalanced dc-link voltages. However, each HBI module is a two-stage inverter, and many extra dc–dc converters not only increase the complexity of the power circuit and control and the system cost, but also decrease the efficiency. Recently, the Z-source/quasi-Z-source cascade multilevel inverter (ZS/qZS-CMI)-based PV systems were proposed. They possess the advantages of both traditional CMI and Z-source topologies. In order to properly operate the ZS/qZS-CMI, the power injection, independent control of dc-link voltages, and the pulse width modulation (PWM) are necessary. The main contributions of this paper include: 1) a novel multilevel space vector modulation (SVM) technique for the single phase qZS-CMI is proposed, which is implemented without additional resources; 2) a grid-connected control for the qZS-CMI based PV system is proposed, where the all PV panel voltage references from their independent MPPTs are used to control the grid-tie current; the dual-loop dc-link peak voltage control.Keywords: Quzi-Z source inverter, Photo voltaic power system, space vector modulation, cascade multilevel inverter
Procedia PDF Downloads 55031118 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 14731117 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 11331116 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed
Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot
Abstract:
Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning
Procedia PDF Downloads 37431115 Recommender Systems for Technology Enhanced Learning (TEL)
Authors: Hailah Alballaa, Azeddine Chikh
Abstract:
Several challenges impede the adoption of Recommender Systems for Technology Enhanced Learning (TEL): to collect and identify possible datasets; to select between different recommender approaches; to evaluate their performances. The aim is of this paper is twofold: First, it aims to introduce a survey on the most significant work in this area. Second, it aims at identifying possible research directions.Keywords: datasets, content-based filtering, recommender systems, TEL
Procedia PDF Downloads 25131114 Influences Driving the Teachers’ Adoption of Mobile Learning
Authors: L. A. Alfarani, M. McPherson, N. Morris
Abstract:
The growth of mobile learning depends primarily on the participation of teachers and their belief in the possibilities that this technology has for enhancing learning. The need to integrate technology into education seems clear-cut, however, its acceptance in Saudi higher education remains low. Thus, determining the particular factors that affect faculty acceptance of technology is vital. This paper focuses on TAM which depends on two factors: perceived usefulness and perceived ease of use, this theory are used to predict faculty members’ behavioural intentions towards using mobile learning technology. 279 faculty members in one Saudi university have responded to the online questionnaire. The findings have revealed that there is a statistically significant difference in both usefulness and ease of using m-learning factors.Keywords: TAM theory, mobile learning technology acceptance, usefulness, ease of use
Procedia PDF Downloads 52931113 Optimizing University Administration in a Globalized World: Leveraging AI and ICT for Enhanced Governance and Sustainability in Higher Education
Authors: Ikechukwu Ogeze Ukeje, Chinyere Ori Elom, Chukwudum Collins Umoke
Abstract:
This study explores the challenges in the integration of Artificial Intelligence (AI) and Information and Communication Technology (ICT) practices in enhancing governance and sustainable solution modeling in higher education, focusing on Alex Ekwueme Federal University Ndufu-Alike (AE-FUNAI), Nigeria. In the context of a developing country like Nigeria, leveraging AI and ICT tools presents a unique opportunity to improve teaching, learning, administrative processes, and governance. The research aims to evaluate how AI and ICT technologies can contribute to sustainable educational practices, enhance decision-making processes, and improve engagement among key stakeholders: students, lecturers, and administrative staff. Students are involved to provide insights into their interactions with AI and ICT tools, particularly in learning and participation in governance. Lecturers’ perspectives will offer a view into how these technologies influence teaching, research, and curriculum development. Administrative staff will provide a crucial understanding of how AI and ICT tools can streamline operations, support data-driven governance, and enhance institutional efficiency. This study will use a mixed-method approach to collect both qualitative and quantitative data. The finding of this study is geared towards shaping the future of education in Nigeria and beyond by developing an Inclusive AI-governance Integration Framework (I-AIGiF) for enhanced performance in the system. Examining the roles of these stakeholder groups, this research could guide the development of policies for more effective AI and ICT integration, leading to sustainable educational innovation and governance.Keywords: university administration, AI, higher education governance, education sustainability, ICT challenges
Procedia PDF Downloads 29