Search results for: corpus based approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36040

Search results for: corpus based approach

33730 The Significance of a Well-Defined Systematic Approach in Risk Management for Construction Projects within Oil Industry

Authors: Batool Ismaeel, Umair Farooq, Saad Mushtaq

Abstract:

Construction projects in the oil industry can be very complex, having unknown outcomes and uncertainties that cannot be easily predicted. Each project has its unique risks generated by a number of factors which, if not controlled, will impact the successful completion of the project mainly in terms of schedule, cost, quality, and safety. This paper highlights the historic risks associated with projects in the south and east region of Kuwait Oil Company (KOC) collated from the company’s lessons learned database. Starting from Contract Award through to handover of the project to the Asset owner, the gaps in project execution in terms of managing risk will be brought to discussion and where a well-defined systematic approach in project risk management reflecting many claims, change of scope, exceeding budget, delays in engineering phase as well as in the procurement and fabrication of long lead items should be adopted. This study focuses on a proposed feasible approach in risk management for engineering, procurement and construction (EPC) level projects including the various stakeholders involved in executing the works from International to local contractors and vendors in KOC. The proposed approach covers the areas categorized into organizational, design, procurement, construction, pre-commissioning, commissioning and project management in which the risks are identified and require management and mitigation. With the effective deployment and implementation of the proposed risk management system and the consideration of it as a vital key in achieving the project’s target, the outcomes will be more predictable in the future, and the risk triggers will be managed and controlled. The correct resources can be allocated on a timely basis for the company for avoiding any unpredictable outcomes during the execution of the project. It is recommended in this paper to apply this risk management approach as an integral part of project management and investigate further in the future, the effectiveness of this proposed system for newly awarded projects and compare the same with those projects of similar budget/complexity that have not applied this approach to risk management.

Keywords: construction, project completion, risk management, uncertainties

Procedia PDF Downloads 153
33729 Supporting Women's Economic Development in Rural Papua New Guinea

Authors: Katja Mikhailovich, Barbara Pamphilon

Abstract:

Farmer training in Papua New Guinea has focused mainly on technology transfer approaches. This has primarily benefited men and often excluded women whose literacy, low education and role in subsistence crops has precluded participation in formal training. The paper discusses an approach that uses both a brokerage model of agricultural extension to link smallholders with private sector agencies and an innovative family team’s approach that aims to support the economic empowerment of women in families and encourages sustainable and gender equitable farming and business practices.

Keywords: women, economic development, agriculture, training

Procedia PDF Downloads 391
33728 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 361
33727 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs

Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii

Abstract:

Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.

Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity

Procedia PDF Downloads 521
33726 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”

Authors: Cara DiGirolamo

Abstract:

In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.

Keywords: literature, speech acts, QUD, literary theory

Procedia PDF Downloads 10
33725 Satellite Multispectral Remote Sensing of Ozone Pollution

Authors: Juan Cuesta

Abstract:

Satellite observation is a fundamental component of air pollution monitoring systems, such as the large-scale Copernicus Programme. Next-generation satellite sensors, in orbit or programmed in the future, offer great potential to observe major air pollutants, such as tropospheric ozone, with unprecedented spatial and temporal coverage. However, satellite approaches developed for remote sensing of tropospheric ozone are based solely on measurements from a single instrument in a specific spectral range, either thermal infrared or ultraviolet. These methods offer sensitivity to tropospheric ozone located at the lowest at 3 or 4 km altitude above the surface, thus limiting their applications for ozone pollution analysis. Indeed, no current observation of a single spectral domain provides enough information to accurately measure ozone in the atmospheric boundary layer. To overcome this limitation, we have developed a multispectral synergism approach, called "IASI+GOME2", at the Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) laboratory. This method is based on the synergy of thermal infrared and ultraviolet observations of respectively the Infrared Atmospheric Sounding Interferometer (IASI) and the Global Ozone Monitoring Experiment-2 (GOME-2) sensors embedded in MetOp satellites that have been in orbit since 2007. IASI+GOME2 allowed the first satellite observation of ozone plumes located between the surface and 3 km of altitude (what we call the lowermost troposphere), as it offers significant sensitivity in this layer. This represents a major advance for the observation of ozone in the lowermost troposphere and its application to air quality analysis. The ozone abundance derived by IASI+GOME2 shows a good agreement with respect to independent observations of ozone based on ozone sondes (a low mean bias, a linear correlation larger than 0.8 and a mean precision of about 16 %) around the world during all seasons. Using IASI+GOME2, lowermost tropospheric ozone pollution plumes are quantified both in terms of concentrations and also in the amounts of ozone photo-chemically produced along transport and also enabling the characterization of the ozone pollution, such as what occurred during the lockdowns linked to the COVID-19 pandemic. The current paper will show the IASI+GOME2 multispectral approach to observe the lowermost tropospheric ozone from space and an overview of several applications on different continents and at a global scale.

Keywords: ozone pollution, multispectral synergism, satellite, air quality

Procedia PDF Downloads 81
33724 Academic Knowledge Transfer Units in the Western Balkans: Building Service Capacity and Shaping the Business Model

Authors: Andrea Bikfalvi, Josep Llach, Ferran Lazaro, Bojan Jovanovski

Abstract:

Due to the continuous need to foster university-business cooperation in both developed and developing countries, some higher education institutions face the challenge of designing, piloting, operating, and consolidating knowledge and technology transfer units. University-business cooperation has different maturity stages worldwide, with some higher education institutions excelling in these practices, but with lots of others that could be qualified as intermediate, or even some situated at the very beginning of their knowledge transfer adventure. These latter face the imminent necessity to formally create the technology transfer unit and to draw its roadmap. The complexity of this operation is due to various aspects that need to align and coordinate, including a major change in mission, vision, structure, priorities, and operations. Qualitative in approach, this study presents 5 case studies, consisting of higher education institutions located in the Western Balkans – 2 in Albania, 2 in Bosnia and Herzegovina, 1 in Montenegro- fully immersed in the entrepreneurial journey of creating their knowledge and technology transfer unit. The empirical evidence is developed in a pan-European project, illustratively called KnowHub (reconnecting universities and enterprises to unleash regional innovation and entrepreneurial activity), which is being implemented in three countries and has resulted in at least 15 pilot cooperation agreements between academia and business. Based on a peer-mentoring approach including more experimented and more mature technology transfer models of European partners located in Spain, Finland, and Austria, a series of initial lessons learned are already available. The findings show that each unit developed its tailor-made approach to engage with internal and external stakeholders, offer value to the academic staff, students, as well as business partners. The latest technology underpinning KnowHub services and institutional commitment are found to be key success factors. Although specific strategies and plans differ, they are based on a general strategy jointly developed and based on common tools and methods of strategic planning and business modelling. The main output consists of providing good practice for designing, piloting, and initial operations of units aiming to fully valorise knowledge and expertise available in academia. Policymakers can also find valuable hints on key aspects considered vital for initial operations. The value of this contribution is its focus on the intersection of three perspectives (service orientation, organisational innovation, business model) since previous research has only relied on a single topic or dual approaches, most frequently in the business context and less frequently in higher education.

Keywords: business model, capacity building, entrepreneurial education, knowledge transfer

Procedia PDF Downloads 141
33723 Big Classes, Bigger Ambitions: A Participatory Approach to the Multiple-Choice Exam

Authors: Melanie Adrian, Elspeth McCulloch, Emily-Jean Gallant

Abstract:

Resources -financial, physical, and human- are increasingly constrained in higher education. University classes are getting bigger, and the concomitant grading burden on faculty is growing rapidly. Multiple-choice exams are seen by some as one solution to these changes. How much students retain, however, and what their testing experience is, continues to be debated. Are multiple-choice exams serving students well, or are they bearing the burden of these developments? Is there a way to address both the resource constraints and make these types of exams more meaningful? In short, how do we engender evaluation methods for large-scale classes that provide opportunities for heightened student learning and enrichment? The following article lays out a testing approach we have employed in four iterations of the same third-year law class. We base our comments in this paper on our initial observations as well as data gathered from an ethics-approved study looking at student experiences. This testing approach provides students with multiple opportunities for revision (thus increasing chances for long term retention), is both individually and collaboratively driven (thus reflecting the individual effort and group effort) and is automatically graded (thus draining limited institutional resources). We found that overall students appreciated the approach and found it more ‘humane’, that it notably reduced pre-exam and intra-exam stress levels, increased ease, and lowered nervousness.

Keywords: exam, higher education, multiple-choice, law

Procedia PDF Downloads 128
33722 Low-Power Digital Filters Design Using a Bypassing Technique

Authors: Thiago Brito Bezerra

Abstract:

This paper presents a novel approach to reduce power consumption of digital filters based on dynamic bypassing of partial products in their multipliers. The bypassing elements incorporated into the multiplier hardware eliminate redundant signal transitions, which appear within the carry-save adders when the partial product is zero. This technique reduces the power consumption by around 20%. The circuit implementation was made using the AMS 0.18 um technology. The bypassing technique applied to the circuits is outlined.

Keywords: digital filter, low-power, bypassing technique, low-pass filter

Procedia PDF Downloads 382
33721 An Enhanced MEIT Approach for Itemset Mining Using Levelwise Pruning

Authors: Tanvi P. Patel, Warish D. Patel

Abstract:

Association rule mining forms the core of data mining and it is termed as one of the well-known methodologies of data mining. Objectives of mining is to find interesting correlations, frequent patterns, associations or casual structures among sets of items in the transaction databases or other data repositories. Hence, association rule mining is imperative to mine patterns and then generate rules from these obtained patterns. For efficient targeted query processing, finding frequent patterns and itemset mining, there is an efficient way to generate an itemset tree structure named Memory Efficient Itemset Tree. Memory efficient IT is efficient for storing itemsets, but takes more time as compare to traditional IT. The proposed strategy generates maximal frequent itemsets from memory efficient itemset tree by using levelwise pruning. For that firstly pre-pruning of items based on minimum support count is carried out followed by itemset tree reconstruction. By having maximal frequent itemsets, less number of patterns are generated as well as tree size is also reduced as compared to MEIT. Therefore, an enhanced approach of memory efficient IT proposed here, helps to optimize main memory overhead as well as reduce processing time.

Keywords: association rule mining, itemset mining, itemset tree, meit, maximal frequent pattern

Procedia PDF Downloads 372
33720 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
33719 Socio-Technical Systems: Transforming Theory into Practice

Authors: L. Ngowi, N. H. Mvungi

Abstract:

This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.

Keywords: socio-technical systems, human centered design, software engineering, cognitive engineering, soft systems, systems engineering

Procedia PDF Downloads 286
33718 Main Chaos-Based Image Encryption Algorithm

Authors: Ibtissem Talbi

Abstract:

During the last decade, a variety of chaos-based cryptosystems have been investigated. Most of them are based on the structure of Fridrich, which is based on the traditional confusion-diffusion architecture proposed by Shannon. Compared with traditional cryptosystems (DES, 3DES, AES, etc.), the chaos-based cryptosystems are more flexible, more modular and easier to be implemented, which make them suitable for large scale-data encyption, such as images and videos. The heart of any chaos-based cryptosystem is the chaotic generator and so, a part of the efficiency (robustness, speed) of the system depends greatly on it. In this talk, we give an overview of the state of the art of chaos-based block ciphers and we describe some of our schemes already proposed. Also we will focus on the essential characteristics of the digital chaotic generator, The needed performance of a chaos-based block cipher in terms of security level and speed of calculus depends on the considered application. There is a compromise between the security and the speed of the calculation. The security of these block block ciphers will be analyzed.

Keywords: chaos-based cryptosystems, chaotic generator, security analysis, structure of Fridrich

Procedia PDF Downloads 684
33717 Buddhist Cognitive Behavioral Therapy to Address Depression Among Elderly Population: Multi-cultural Model of Buddhist Based Cognitive Behavioral Therapy to Address Depression Among Elderly Population

Authors: Ashoke Priyadarshana Premananda

Abstract:

As per the suggestions of previously conducted research in Counseling Psychology, the necessity of forming culture- friendly approaches has been strongly emphasized by a number of scholars in the field. In response to that, Multicultural-model of Buddhist Based Cognitive Behavioral Therapy (MMBCBT) has been formed as a culture-friendly therapeutic approach to address psychological disturbances (depression) in late adulthood. Elderly population in the world is on the rise by leaps and bounds, and forming a culture-based therapeutic model which is blended with Buddhist teachings has been the major objective of the study. Buddhist teachings and cultural applications, which were mapped onto Cognitive Behavioral Therapy (CBT) in the West, ultimately resulted in MMBCBT. Therefore, MMBCBT is a blend of cultural therapeutic techniques and the essence of certain Buddhist teachings extracted from five crucial suttas, which include CBT principles. In the process of mapping, MeghiyaSutta, GirimānandaSutta, SallekhaSutta, DvedhāvitakkaSutta, and Vitakka- SaṇṭhānaSutta have been taken into consideration mainly because of their cognitive behavioral content. The practical components of Vitakka- Saṇṭhānasutta (Aññanimittapabbaṃ) and Sallekhasutta (SallekhaPariyāya and CittuppādaPariyāya) have been used in the model while mindfulness of breathing was also carried out with the participants. Basically, multi-cultural therapeutic approaches of MMBCBT aim at modifying behavior (behavioral modification), whereas the rest is centered to the cognitive restructuring process. Therefore, MMBCBT is endowed with Behavioral Therapy (BT) and Cognitive Therapy(CT). In order to find out the validation of MMBCBT as a newly formed approach, it was then followed by mixed research (quantitative and qualitative research) with a sample selected from the elderly population following the purposive sampling technique. 40 individuals were selected from three elderly homes as per the purposive sampling technique. Elderly people identified to be depressed via Geriatric Depression Scale underwent MMBCBT for two weeks continuously while action research was being conducted simultaneously. Additionally, a Focus Group interview was carried out to support the action research. As per the research findings, people who identified depressed prior to the exposure to MMBCBT were found to be showing positive changes after they were exposed to the model. “Paired Sample t test” showed that the Multicultural Model of Buddhist based Cognitive Behavioral Therapy reduced depression of elderly people (The mean value (x̄) of the sample (level of depression) before the model was 10.7 whereas the mean value after the model was 7.5.). Most importantly, MMBCBT has been found to be effectively used with people from all walks of life despite religious diversities.

Keywords: buddhist psychotherapy, cognitive behavioral therapy in buddhism, counseling in cultural context, gerontology, and buddhism

Procedia PDF Downloads 108
33716 A Recommender System for Dynamic Selection of Undergraduates' Elective Courses

Authors: Adewale O. Ogunde, Emmanuel O. Ajibade

Abstract:

The task of selecting a few elective courses from a variety of available elective courses has been a difficult one for many students over the years. In many higher institutions, guidance and counselors or level advisers are usually employed to assist the students in picking the right choice of courses. In reality, these counselors and advisers are most times overloaded with too many students to attend to, and sometimes they do not have enough time for the students. Most times, the academic strength of the student based on past results are not considered in the new choice of electives. Recommender systems implement advanced data analysis techniques to help users find the items of their interest by producing a predicted likeliness score or a list of top recommended items for a given active user. Therefore, in this work, a collaborative filtering-based recommender system that will dynamically recommend elective courses to undergraduate students based on their past grades in related courses was developed. This approach employed the use of the k-nearest neighbor algorithm to discover hidden relationships between the related courses passed by students in the past and the currently available elective courses. Real students’ results dataset was used to build and test the recommendation model. The developed system will not only improve the academic performance of students, but it will also help reduce the workload on the level advisers and school counselors.

Keywords: collaborative filtering, elective courses, k-nearest neighbor algorithm, recommender systems

Procedia PDF Downloads 164
33715 An Exploratory Study on the Impact of Climate Change on Design Rainfalls in the State of Qatar

Authors: Abdullah Al Mamoon, Niels E. Joergensen, Ataur Rahman, Hassan Qasem

Abstract:

Intergovernmental Panel for Climate Change (IPCC) in its fourth Assessment Report AR4 predicts a more extreme climate towards the end of the century, which is likely to impact the design of engineering infrastructure projects with a long design life. A recent study in 2013 developed new design rainfall for Qatar, which provides an improved design basis of drainage infrastructure for the State of Qatar under the current climate. The current design standards in Qatar do not consider increased rainfall intensity caused by climate change. The focus of this paper is to update recently developed design rainfalls in Qatar under the changing climatic conditions based on IPCC's AR4 allowing a later revision to the proposed design standards, relevant for projects with a longer design life. The future climate has been investigated based on the climate models released by IPCC’s AR4 and A2 story line of emission scenarios (SRES) using a stationary approach. Annual maximum series (AMS) of predicted 24 hours rainfall data for both wet (NCAR-CCSM) scenario and dry (CSIRO-MK3.5) scenario for the Qatari grid points in the climate models have been extracted for three periods, current climate 2010-2039, medium term climate (2040-2069) and end of century climate (2070-2099). A homogeneous region of the Qatari grid points has been formed and L-Moments based regional frequency approach is adopted to derive design rainfalls. The results indicate no significant changes in the design rainfall on the short term 2040-2069, but significant changes are expected towards the end of the century (2070-2099). New design rainfalls have been developed taking into account climate change for 2070-2099 scenario and by averaging results from the two scenarios. IPCC’s AR4 predicts that the rainfall intensity for a 5-year return period rain with duration of 1 to 2 hours will increase by 11% in 2070-2099 compared to current climate. Similarly, the rainfall intensity for more extreme rainfall, with a return period of 100 years and duration of 1 to 2 hours will increase by 71% in 2070-2099 compared to current climate. Infrastructure with a design life exceeding 60 years should add safety factors taking the predicted effects from climate change into due consideration.

Keywords: climate change, design rainfalls, IDF, Qatar

Procedia PDF Downloads 393
33714 Scientific Recommender Systems Based on Neural Topic Model

Authors: Smail Boussaadi, Hassina Aliane

Abstract:

With the rapid growth of scientific literature, it is becoming increasingly challenging for researchers to keep up with the latest findings in their fields. Academic, professional networks play an essential role in connecting researchers and disseminating knowledge. To improve the user experience within these networks, we need effective article recommendation systems that provide personalized content.Current recommendation systems often rely on collaborative filtering or content-based techniques. However, these methods have limitations, such as the cold start problem and difficulty in capturing semantic relationships between articles. To overcome these challenges, we propose a new approach that combines BERTopic (Bidirectional Encoder Representations from Transformers), a state-of-the-art topic modeling technique, with community detection algorithms in a academic, professional network. Experiences confirm our performance expectations by showing good relevance and objectivity in the results.

Keywords: scientific articles, community detection, academic social network, recommender systems, neural topic model

Procedia PDF Downloads 97
33713 A Memetic Algorithm Approach to Clustering in Mobile Wireless Sensor Networks

Authors: Masood Ahmad, Ataul Aziz Ikram, Ishtiaq Wahid

Abstract:

Wireless sensor network (WSN) is the interconnection of mobile wireless nodes with limited energy and memory. These networks can be deployed formany critical applications like military operations, rescue management, fire detection and so on. In flat routing structure, every node plays an equal role of sensor and router. The topology may change very frequently due to the mobile nature of nodes in WSNs. The topology maintenance may produce more overhead messages. To avoid topology maintenance overhead messages, an optimized cluster based mobile wireless sensor network using memetic algorithm is proposed in this paper. The nodes in this network are first divided into clusters. The cluster leaders then transmit data to that base station. The network is validated through extensive simulation study. The results show that the proposed technique has superior results compared to existing techniques.

Keywords: WSN, routing, cluster based, meme, memetic algorithm

Procedia PDF Downloads 481
33712 A Configurational Approach to Understand the Effect of Organizational Structure on Absorptive Capacity: Results from PLS and fsQCA

Authors: Murad Ali, Anderson Konan Seny Kan, Khalid A. Maimani

Abstract:

Based on the theory of organizational design and the theory of knowledge, this study uses complexity theory to explain and better understand the causal impacts of various patterns of organizational structural factors stimulating absorptive capacity (ACAP). Organizational structure can be thought of as heterogeneous configurations where various components are often intertwined. This study argues that impact of the traditional variables which define a firm’s organizational structure (centralization, formalization, complexity and integration) on ACAP is better understood in terms of set-theoretic relations rather than correlations. This study uses a data sample of 347 from a multiple industrial sector in South Korea. The results from PLS-SEM support all the hypothetical relationships among the variables. However, fsQCA results suggest the possible configurations of centralization, formalization, complexity, integration, age, size, industry and revenue factors that contribute to high level of ACAP. The results from fsQCA demonstrate the usefulness of configurational approaches in helping understand equifinality in the field of knowledge management. A recent fsQCA procedure based on a modeling subsample and holdout subsample is use in this study to assess the predictive validity of the model under investigation. The same type predictive analysis is also made through PLS-SEM. These analyses reveal a good relevance of causal solutions leading to high level of ACAP. In overall, the results obtained from combining PLS-SEM and fsQCA are very insightful. In particular, they could help managers to link internal organizational structural with ACAP. In other words, managers may comprehend finely how different components of organizational structure can increase the level of ACAP. The configurational approach may trigger new insights that could help managers prioritize selection criteria and understand the interactions between organizational structure and ACAP. The paper also discusses theoretical and managerial implications arising from these findings.

Keywords: absorptive capacity, organizational structure, PLS-SEM, fsQCA, predictive analysis, modeling subsample, holdout subsample

Procedia PDF Downloads 330
33711 Methodological Proposal, Archival Thesaurus in Colombian Sign Language

Authors: Pedro A. Medina-Rios, Marly Yolie Quintana-Daza

Abstract:

Having the opportunity to communicate in a social, academic and work context is very relevant for any individual and more for a deaf person when oral language is not their natural language, and written language is their second language. Currently, in Colombia, there is not a specialized dictionary for our best knowledge in sign language archiving. Archival is one of the areas that the deaf community has a greater chance of performing. Nourishing new signs in dictionaries for deaf people extends the possibility that they have the appropriate signs to communicate and improve their performance. The aim of this work was to illustrate the importance of designing pedagogical and technological strategies of knowledge management, for the academic inclusion of deaf people through proposals of lexicon in Colombian sign language (LSC) in the area of archival. As a method, the analytical study was used to identify relevant words in the technical area of the archival and its counterpart with the LSC, 30 deaf people, apprentices - students of the Servicio Nacional de Aprendizaje (SENA) in Documentary or Archival Management programs, were evaluated through direct interviews in LSC. For the analysis tools were maintained to evaluate correlation patterns and linguistic methods of visual, gestural analysis and corpus; besides, methods of linear regression were used. Among the results, significant data were found among the variables socioeconomic stratum, academic level, labor location. The need to generate new signals on the subject of the file to improve communication between the deaf person, listener and the sign language interpreter. It is concluded that the generation of new signs to nourish the LSC dictionary in archival subjects is necessary to improve the labor inclusion of deaf people in Colombia.

Keywords: archival, inclusion, deaf, thesaurus

Procedia PDF Downloads 278
33710 Volcanoscape Space Configuration Zoning Based on Disaster Mitigation by Utilizing GIS Platform in Mt. Krakatau Indonesia

Authors: Vega Erdiana Dwi Fransiska, Abyan Rai Fauzan Machmudin

Abstract:

Particularly, space configuration zoning is the very first juncture of a complete space configuration and region planning. Zoning is aimed to define discrete knowledge based on a local wisdom. Ancient predecessor scientifically study the sign of natural disaster towards ethnography approach by operating this knowledge. There are three main functions of space zoning, which are control function, guidance function, and additional function. The control function refers to an instrument for development control and as one of the essentials in controlling land use. Hence, the guidance function indicates as guidance for proposing operational planning and technical development or land usage. Any additional function is useful as a supplementary for region or province planning details. This phase likewise accredits to define boundary in an open space based on geographical appearance. Informant who is categorized as an elder lives in earthquake prone area, to be precise the area is the surrounding of Mount Krakatau. The collected data is one of method for analyzed with thematic model. Later on, it will be verified. In space zoning, long-range distance sensor is applied to determine visualization of the area, which will be zoned before the step of survey to validate the data. The data, which is obtained from long-range distance sensor and site survey, will be overlaid using GIS Platform. Comparing the knowledge based on a local wisdom that is well known by elderly in that area, some of it is relevant to the research, while the others are not. Based on the site survey, the interpretation of a long-range distance sensor, and determining space zoning by considering various aspects resulted in the pattern map of space zoning. This map can be integrated with disaster mitigation affected by volcano eruption.

Keywords: elderly, GIS platform, local wisdom, space zoning

Procedia PDF Downloads 255
33709 A Study on the Functional Safety Analysis of Stage Control System Based on International Electronical Committee 61508-2

Authors: Youn-Sung Kim, Hye-Mi Kim, Sang-Hoon Seo, Jaden Cha

Abstract:

This International standard IEC 61508 sets out a generic approach for all safety lifecycle activities for systems comprised of electrical/electronic/programmable electronic (E/E/PE) elements that are used to perform safety functions. The control unit in stage control system is safety related facilities to control state and speed for stage system running, and it performs safety-critical function by stage control system. The controller unit is part of safety loops corresponding to the IEC 61508 and classified as logic part in the safety loop. In this paper, we analyze using FMEDA (Failure Mode Effect and Diagnostic Analysis) to verification for fault tolerance methods and functional safety of control unit. Moreover, we determined SIL (Safety Integrity Level) for control unit according to the safety requirements defined in IEC 61508-2 based on an analyzed functional safety.

Keywords: safety function, failure mode effect, IEC 61508-2, diagnostic analysis, stage control system

Procedia PDF Downloads 278
33708 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 285
33707 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
33706 The Impact of Female Education on Fertility: A Natural Experiment from Egypt

Authors: Fatma Romeh, Shiferaw Gurmu

Abstract:

This paper examines the impact of female education on fertility, using the change in length of primary schooling in Egypt in 1988-89 as the source of exogenous variation in schooling. In particular, beginning in 1988, children had to attend primary school for only five years rather than six years. This change was applicable to all individuals born on or after October 1977. Using a nonparametric regression discontinuity approach, we compare education and fertility of women born just before and after October 1977. The results show that female education significantly reduces the number of children born per woman and delays the time until first birth. Applying a robust regression discontinuity approach, however, the impact of education on the number of children is no longer significant. The impact on the timing of first birth remained significant under the robust approach. Each year of female education postponed childbearing by three months, on average.

Keywords: Egypt, female education, fertility, robust regression discontinuity

Procedia PDF Downloads 338
33705 Design of a Telemetry, Tracking, and Command Radio-Frequency Receiver for Small Satellites Based on Commercial Off-The-Shelf Components

Authors: A. Lovascio, A. D’Orazio, V. Centonze

Abstract:

From several years till now the aerospace industry is developing more and more small satellites for Low-Earth Orbit (LEO) missions. Such satellites have a low cost of making and launching since they have a size and weight smaller than other types of satellites. However, because of size limitations, small satellites need integrated electronic equipment based on digital logic. Moreover, the LEOs require telecommunication modules with high throughput to transmit to earth a big amount of data in a short time. In order to meet such requirements, in this paper we propose a Telemetry, Tracking & Command module optimized through the use of the Commercial Off-The-Shelf components. The proposed approach exploits the major flexibility offered by these components in reducing costs and optimizing the performance. The method has been applied in detail for the design of the front-end receiver, which has a low noise figure (1.5 dB) and DC power consumption (smaller than 2 W). Such a performance is particularly attractive since it allows fulfilling the energy budget stringent constraints that are typical for LEO small platforms.

Keywords: COTS, LEO, small-satellite, TT&C

Procedia PDF Downloads 131
33704 Re-Conceptualizing the Indigenous Learning Space for Children in Bangladesh Placing Built Environment as Third Teacher

Authors: Md. Mahamud Hassan, Shantanu Biswas Linkon, Nur Mohammad Khan

Abstract:

Over the last three decades, the primary education system in Bangladesh has experienced significant improvement, but it has failed to cope with different social and cultural aspects, which present many challenges for children, families, and the public school system. Neglecting our own contextual learning environment, it is a matter of sorrow that much attention has been paid to the more physical outcome-focused model, which is nothing but mere infrastructural development, and less subtle to the environment that suits the child's psychology and improves their social, emotional, physical, and moral competency. In South Asia, the symbol of education was never the little red house of colonial architecture but “A Guru sitting under a tree", whereas a responsive and inclusive design approach could help to create more innovative learning environments. Such an approach incorporates how the built, natural, and cultural environment shapes the learner; in turn, learners shape the learning. This research will be conducted to, i) identify the major issues and drawbacks of government policy for primary education development programs; ii) explore and evaluate the morphology of the conventional model of school, and iii) propose an alternative model in a collaborative design process with the stakeholders for maximizing the relationship between the physical learning environments and learners by treating “the built environment” as “the third teacher.” Based on observation, this research will try to find out to what extent built, and natural environments can be utilized as a teaching tool for a more optimal learning environment. It should also be evident that there is a significant gap in the state policy, predetermined educational specifications, and implementation process in response to stakeholders’ involvement. The outcome of this research will contribute to a people-place sensitive design approach through a more thoughtful and responsive architectural process.

Keywords: built environment, conventional planning, indigenous learning space, responsive design

Procedia PDF Downloads 107
33703 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 122
33702 Development of a French to Yorùbá Machine Translation System

Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky

Abstract:

A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.

Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language

Procedia PDF Downloads 77
33701 Multi-Layer Multi-Feature Background Subtraction Using Codebook Model Framework

Authors: Yun-Tao Zhang, Jong-Yeop Bae, Whoi-Yul Kim

Abstract:

Background modeling and subtraction in video analysis has been widely proved to be an effective method for moving objects detection in many computer vision applications. Over the past years, a large number of approaches have been developed to tackle different types of challenges in this field. However, the dynamic background and illumination variations are two of the most frequently occurring issues in the practical situation. This paper presents a new two-layer model based on codebook algorithm incorporated with local binary pattern (LBP) texture measure, targeted for handling dynamic background and illumination variation problems. More specifically, the first layer is designed by block-based codebook combining with LBP histogram and mean values of RGB color channels. Because of the invariance of the LBP features with respect to monotonic gray-scale changes, this layer can produce block-wise detection results with considerable tolerance of illumination variations. The pixel-based codebook is employed to reinforce the precision from the outputs of the first layer which is to eliminate false positives further. As a result, the proposed approach can greatly promote the accuracy under the circumstances of dynamic background and illumination changes. Experimental results on several popular background subtraction datasets demonstrate a very competitive performance compared to previous models.

Keywords: background subtraction, codebook model, local binary pattern, dynamic background, illumination change

Procedia PDF Downloads 217