Search results for: Magnetic resonance imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2660

Search results for: Magnetic resonance imaging

380 Performance Evaluation and Kinetics of Artocarpus heterophyllus Seed for the Purification of Paint Industrial Wastewater by Coagulation-Flocculation Process

Authors: Ifeoma Maryjane Iloamaeke, Kelvin Obazie, Mmesoma Offornze, Chiamaka Marysilvia Ifeaghalu, Cecilia Aduaka, Ugomma Chibuzo Onyeije, Claudine Ifunanaya Ogu, Ngozi Anastesia Okonkwo

Abstract:

This work investigated the effects of pH, settling time, and coagulant dosages on the removal of color, turbidity, and heavy metals from paint industrial wastewater using the seed of Artocarpus heterophyllus (AH) by the coagulation-flocculation process. The paint effluent was physicochemically characterized, while AH coagulant was instrumentally characterized by Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and X-ray diffraction (XRD). A Jar test experiment was used for the coagulation-flocculation process. The result showed that paint effluent was polluted with color, turbidity (36000 NTU), mercury (1.392 mg/L), lead (0.252 mg/L), arsenic (1.236 mg/L), TSS (63.40mg/L), and COD (121.70 mg/L). The maximum color removal efficiency was 94.33% at the dosage of 0.2 g/L, pH 2 at a constant time of 50 mins, and 74.67% at constant pH 2, coagulant dosage of 0.2 g/L and 50 mins. The highest turbidity removal efficiency was 99.94% at 0.2 g/L and 50 mins at constant pH 2 and 96.66% at pH 2 and 0.2 g/L at constant time of 50 mins. The mercury removal efficiency of 99.29% was achieved at the optimal condition of 0.8 g/L coagulant dosage, pH 8, and constant time of 50 mins and 99.57% at coagulant dosage of 0.8 g/L, time of 50 mins constant pH 8. The highest lead removal efficiency was 99.76% at a coagulant dosage of 10 g/L, time of 40 mins at constant pH 10, and 96.53% at pH 10, coagulant dosage of 10 g/L and constant time of 40 mins. For arsenic, the removal efficiency is 75.24 % at 0.8 g/L coagulant dosage, time of 40 mins, and constant pH of 8. XRD imaging before treatment showed that Artocarpus heterophyllus coagulant was crystalline and changed to amorphous after treatment. The SEM and FTIR results of the AH coagulant and sludge suggested there were changes in the surface morphology and functional groups before and after treatment. The reaction kinetics were modeled best in the second order.

Keywords: Artocarpus heterophyllus, coagulation-flocculation, coagulant dosages, setting time, paint effluent

Procedia PDF Downloads 62
379 Automatic Near-Infrared Image Colorization Using Synthetic Images

Authors: Yoganathan Karthik, Guhanathan Poravi

Abstract:

Colorizing near-infrared (NIR) images poses unique challenges due to the absence of color information and the nuances in light absorption. In this paper, we present an approach to NIR image colorization utilizing a synthetic dataset generated from visible light images. Our method addresses two major challenges encountered in NIR image colorization: accurately colorizing objects with color variations and avoiding over/under saturation in dimly lit scenes. To tackle these challenges, we propose a Generative Adversarial Network (GAN)-based framework that learns to map NIR images to their corresponding colorized versions. The synthetic dataset ensures diverse color representations, enabling the model to effectively handle objects with varying hues and shades. Furthermore, the GAN architecture facilitates the generation of realistic colorizations while preserving the integrity of dimly lit scenes, thus mitigating issues related to over/under saturation. Experimental results on benchmark NIR image datasets demonstrate the efficacy of our approach in producing high-quality colorizations with improved color accuracy and naturalness. Quantitative evaluations and comparative studies validate the superiority of our method over existing techniques, showcasing its robustness and generalization capability across diverse NIR image scenarios. Our research not only contributes to advancing NIR image colorization but also underscores the importance of synthetic datasets and GANs in addressing domain-specific challenges in image processing tasks. The proposed framework holds promise for various applications in remote sensing, medical imaging, and surveillance where accurate color representation of NIR imagery is crucial for analysis and interpretation.

Keywords: computer vision, near-infrared images, automatic image colorization, generative adversarial networks, synthetic data

Procedia PDF Downloads 15
378 Osteoarticular Ultrasound for Diagnostic Purposes in the Practice of the Rheumatologist

Authors: A. Ibovi Mouondayi, S. Zaher, K. Nassar, S. Janani

Abstract:

Introduction: Osteoarticular ultrasound has become an essential tool for the investigation and monitoring of osteoarticular pathologies for rheumatologists. It is performed in the clinic, cheap to access than other imaging technics. Important anatomical sites of inflammation in inflammatory diseases such as synovium, tendon sheath, and enthesis are easily identifiable on ultrasound. Objective: The objective of this study was to evaluate the importance of ultrasound for rheumatologists in the development of diagnoses of inflammatory rheumatism in cases of uncertain clinical presentation. Material and Methods: This is a retrospective study conducted in our department and carried out over a period of 30 months from January 2020 to June 2022. We included all patients with inflammatory arthralgia without clinical arthritis. Patients' data were collected through a patient operating system. Results: A total of 35 patients were identified, made up of 4 men and 31 women, with a sex ratio M/F of 0.12. The average age of the patients was 48.8 years, with extremes ranging from 17 years to 83 years. All patients had inflammatory polyarthralgia for an average of 9.3 years. Only two patients had suspicious synovitis on clinical examination. 91.43% of patients had a positive inflammatory assessment with an average CRP of 22.2 mg/L. Rheumatoid factor (RF) was present in 45.7% of patients and anti-CCP in 48.57%, with respective averages of 294.43 and 314.63 international units/mL. Radiographic lesions were found in 54% of patients. Osteoarticular ultrasound was performed in all these patients. Subclinical synovitis was found in 60% of patients, including 23% Doppler positive. Tenosynovitis was found in 11% of patients. Enthesitis was objectified in 3% of patients. Rheumatoid arthritis (RA) was retained in 40% of patients; psoriatic arthritis in 6% of patients, hydroxyapatite arthritis, and osteoarthritis in 3% each. Conclusion: Osteoarticular ultrasound has been an essential tool in the practice of rheumatology in recent years. It is for diagnostic purposes in chronic inflammatory rheumatism as well as in degenerative rheumatism and crystal induced arthropathies, but also essential in the follow-up of patients in rheumatology.

Keywords: ultrasound, skeletal, rheumatoid arthritis, arthralgia

Procedia PDF Downloads 90
377 Marker-Controlled Level-Set for Segmenting Breast Tumor from Thermal Images

Authors: Swathi Gopakumar, Sruthi Krishna, Shivasubramani Krishnamoorthy

Abstract:

Contactless, painless and radiation-free thermal imaging technology is one of the preferred screening modalities for detection of breast cancer. However, poor signal to noise ratio and the inexorable need to preserve edges defining cancer cells and normal cells, make the segmentation process difficult and hence unsuitable for computer-aided diagnosis of breast cancer. This paper presents key findings from a research conducted on the appraisal of two promising techniques, for the detection of breast cancer: (I) marker-controlled, Level-set segmentation of anisotropic diffusion filtered preprocessed image versus (II) Segmentation using marker-controlled level-set on a Gaussian-filtered image. Gaussian-filtering processes the image uniformly, whereas anisotropic filtering processes only in specific areas of a thermographic image. The pre-processed (Gaussian-filtered and anisotropic-filtered) images of breast samples were then applied for segmentation. The segmentation of breast starts with initial level-set function. In this study, marker refers to the position of the image to which initial level-set function is applied. The markers are generally placed on the left and right side of the breast, which may vary with the breast size. The proposed method was carried out on images from an online database with samples collected from women of varying breast characteristics. It was observed that the breast was able to be segmented out from the background by adjustment of the markers. From the results, it was observed that as a pre-processing technique, anisotropic filtering with level-set segmentation, preserved the edges more effectively than Gaussian filtering. Segmented image, by application of anisotropic filtering was found to be more suitable for feature extraction, enabling automated computer-aided diagnosis of breast cancer.

Keywords: anisotropic diffusion, breast, Gaussian, level-set, thermograms

Procedia PDF Downloads 355
376 Demographic Characteristics and Factors Affecting Mortality in Pediatric Trauma Patients Who Are Admitted to Emergency Service

Authors: Latif Duran, Erdem Aydin, Ahmet Baydin, Ali Kemal Erenler, Iskender Aksoy

Abstract:

Aim: In this retrospective study, we aim to contribute to the literature by presenting the proposals for taking measures to reduce the mortality by examining the demographic characteristics of the pediatric age group patients presenting with trauma and the factors that may cause mortality Material and Method: This study has been performed by retrospectively investigating the data obtained from the patient files and the hospital automation registration system of the pediatric trauma patients who applied to the Adult Emergency Department of the Ondokuz Mayıs University Medical Faculty between January 1, 2016, and December 31, 2016. Results: 289 of 415 patients involved in our study, were males. The median age was 11.3 years. The most common trauma mechanism was falling from the high. A significant statistical difference was found on the association between trauma mechanisms and gender. An increase in the number of trauma cases was found especially in the summer months. The study showed that thoracic and abdominal trauma was relevant to the increased mortality. Computerized tomography was the most common diagnostic imaging modality. The presence of subarachnoid hemorrhage has increased the risk of mortality by 62.3 fold. Eight of the patients (1.9%) died. Scoring systems were statistically significant to predict mortality. Conclusion: Children are vulnerable to trauma because of their unique anatomical and physiological differences compared to adult patient groups. It will be more successful in the mortality rate and in the post-traumatic healing process by administering the patient triage fast and most appropriate trauma centers in the prehospital period, management of the critical patients with the scoring systems and management with standard treatment protocols

Keywords: emergency service, pediatric patients, scoring systems, trauma, age groups

Procedia PDF Downloads 171
375 Track and Evaluate Cortical Responses Evoked by Electrical Stimulation

Authors: Kyosuke Kamada, Christoph Kapeller, Michael Jordan, Mostafa Mohammadpour, Christy Li, Christoph Guger

Abstract:

Cortico-cortical evoked potentials (CCEP) refer to responses generated by cortical electrical stimulation at distant brain sites. These responses provide insights into the functional networks associated with language or motor functions, and in the context of epilepsy, they can reveal pathological networks. Locating the origin and spread of seizures within the cortex is crucial for pre-surgical planning. This process can be enhanced by employing cortical stimulation at the seizure onset zone (SOZ), leading to the generation of CCEPs in remote brain regions that may be targeted for disconnection. In the case of a 24-year-old male patient suffering from intractable epilepsy, corpus callosotomy was performed as part of the treatment. DTI-MRI imaging, conducted using a 3T MRI scanner for fiber tracking, along with CCEP, is used as part of an assessment for surgical planning. Stimulation of the SOZ, with alternating monophasic pulses of 300µs duration and 15mA current intensity, resulted in CCEPs on the contralateral frontal cortex, reaching a peak amplitude of 206µV with a latency of 31ms, specifically in the left pars triangularis. The related fiber tracts were identified with a two-tensor unscented Kalman filter (UKF) technique, showing transversal fibers through the corpus callosum. The CCEPs were monitored through the progress of the surgery. Notably, the SOZ-associated CCEPs exhibited a reduction following the resection of the anterior portion of the corpus callosum, reaching the identified connecting fibers. This intervention demonstrated a potential strategy for mitigating the impact of intractable epilepsy through targeted disconnection of identified cortical regions.

Keywords: CCEP, SOZ, Corpus callosotomy, DTI

Procedia PDF Downloads 34
374 Rare Differential Diagnostic Dilemma

Authors: Angelis P. Barlampas

Abstract:

Theoretical background Disorders of fixation and rotation of the large intestine, result in the existence of its parts in ectopic anatomical positions. In case of symptomatology, the clinical picture is complicated by the possible symptomatology of the neighboring anatomical structures and a differential diagnostic problem arises. Target The purpose of this work is to demonstrate the difficulty of revealing the real cause of abdominal pain, in cases of anatomical variants and the decisive contribution of imaging and especially that of computed tomography. Methods A patient came to the emergency room, because of acute pain in the right hypochondrium. Clinical examination revealed tenderness in the gallbladder area and a positive Murphy's sign. An ultrasound exam depicted a normal gallbladder and the patient was referred for a CT scan. Results Flexible, unfixed ascending colon and cecum, located in the anatomical region of the right mesentery. Opacities of the surrounding peritoneal fat and a small linear concentration of fluid can be seen. There was an appendix of normal anteroposterior diameter with the presence of air in its lumen and without clear signs of inflammation. There was an impression of possible inflammatory swelling at the base of the appendix, (DD phenomenon of partial volume; e.t.c.). Linear opacities of the peritoneal fat in the region of the second loop of the duodenum. Multiple diverticula throughout the colon. Differential Diagnosis The differential diagnosis includes the following: Inflammation of the base of the appendix, diverticulitis of the cecum-ascending colon, a rare case of second duodenal loop ulcer, tuberculosis, terminal ileitis, pancreatitis, torsion of unfixed cecum-ascending colon, embolism or thrombosis of a vascular intestinal branch. Final Diagnosis There is an unfixed cecum-ascending colon, which is exhibiting diverticulitis.

Keywords: unfixed cecum-ascending colon, abdominal pain, malrotation, abdominal CT, congenital anomalies

Procedia PDF Downloads 34
373 Radiation Skin Decontamination Formulation

Authors: Navneet Sharma, Himanshu Ojha, Dharam Pal Pathak, Rakesh Kumar Sharma

Abstract:

Radio-nuclides decontamination is an important task because any extra second of deposition leads to deleterious health effects. We had developed and characterise nanoemulsion of p-tertbutylcalix[4]arens using phase inversion temperature (PIT) method and evaluate its decontamination efficacy (DE). The solubility of the drug was determined in various oils and surfactants. Nanoemulsion developed with an HLB value of 11 and different ratios of the surfactants 10% (7:3, w/w), oil (20%, w/w), and double distilled water (70%) were selected. Formulation was characterised by multi-photon spectroscopy and parameters like viscosity, droplet size distribution, zeta potential and stability were optimised. In vitro and Ex vivo decontamination efficacy (DE) was evaluated against Technetium-99m, Iodine-131, and Thallium-201 as radio-contaminants applied over skin of Sprague-Dawley rat and human tissue equivalent model. Contaminants were removed using formulation soaked in cotton swabs at different time intervals and whole body imaging and static counts were recorded using SPECT gamma camera before and after decontamination attempt. Data were analysed using one-way analysis of variance (ANOVA) and was found to be significant (p <0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arens was compared with placebo and recorded to be 88±5%, 90±3% and 89±3% for 99mTc, 131I and 201Tl respectively. Ex-vivo complexation study of p-tertbutylcalix[4]arene nanoemulsion with surrogate nuclides of radioactive thallium and Iodine, were performed on rat skin mounted on Franz diffusion cell using high-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). More than 90% complexation of the formulation with these nuclides was observed. Results demonstrate that the prepared nanoemulsion formulation was found efficacious for the decontamination of radionuclides from a large contaminated population.

Keywords: p-tertbutylcalix[4]arens, skin decontamination, radiological emergencies, nanoemulsion, iodine-131, thallium-201

Procedia PDF Downloads 373
372 Comparison of Computed Tomography Dose Index, Dose Length Product and Effective Dose Among Male and Female Patients From Contrast Enhanced Computed Tomography Pancreatitis Protocol

Authors: Babina Aryal

Abstract:

Background: The diagnosis of pancreatitis is generally based on clinical and laboratory findings; however, Computed Tomography (CT) is an imaging technique of choice specially Contrast Enhanced Computed Tomography (CECT) shows morphological characteristic findings that allow for establishing the diagnosis of pancreatitis and determining the extent of disease severity which is done along with the administration of appropriate contrast medium. The purpose of this study was to compare Computed Tomography Dose Index (CTDI), Dose Length Product (DLP) and Effective Dose (ED) among male and female patients from Contrast Enhanced Computed Tomography (CECT) Pancreatitis Protocol. Methods: This retrospective study involved data collection based on clinical/laboratory/ultrasonography diagnosis of Pancreatitis and has undergone CECT Abdomen pancreatitis protocol. data collection involved detailed information about a patient's Age and Gender, Clinical history, Individual Computed Tomography Dose Index and Dose Length Product and effective dose. Results: We have retrospectively collected dose data from 150 among which 127 were males and 23 were females. The values obtained from the display of the CT screen were measured, calculated and compared to determine whether the CTDI, DLP and ED values were similar or not. CTDI for females was more as compared to males. The differences in CTDI values for females and males were 32.2087 and 37.1609 respectively. DLP values and Effective dose for both the genders did not show significant differences. Conclusion: This study concluded that there were no more significant changes in the DLP and ED values among both the genders however we noticed that female patients had more CTDI than males.

Keywords: computed tomography, contrast enhanced computed tomography, computed tomography dose index, dose length product, effective dose

Procedia PDF Downloads 77
371 Experimental Validation of Computational Fluid Dynamics Used for Pharyngeal Flow Patterns during Obstructive Sleep Apnea

Authors: Pragathi Gurumurthy, Christina Hagen, Patricia Ulloa, Martin A. Koch, Thorsten M. Buzug

Abstract:

Obstructive sleep apnea (OSA) is a sleep disorder where the patient suffers a disturbed airflow during sleep due to partial or complete occlusion of the pharyngeal airway. Recently, numerical simulations have been used to better understand the mechanism of pharyngeal collapse. However, to gain confidence in the solutions so obtained, an experimental validation is required. Therefore, in this study an experimental validation of computational fluid dynamics (CFD) used for the study of human pharyngeal flow patterns during OSA is performed. A stationary incompressible Navier-Stokes equation solved using the finite element method was used to numerically study the flow patterns in a computed tomography-based human pharynx model. The inlet flow rate was set to 250 ml/s and such that a flat profile was maintained at the inlet. The outlet pressure was set to 0 Pa. The experimental technique used for the validation of CFD of fluid flow patterns is phase contrast-MRI (PC-MRI). Using the same computed tomography data of the human pharynx as in the simulations, a phantom for the experiment was 3 D printed. Glycerol (55.27% weight) in water was used as a test fluid at 25°C. Inflow conditions similar to the CFD study were simulated using an MRI compatible flow pump (CardioFlow-5000MR, Shelley Medical Imaging Technologies). The entire experiment was done on a 3 T MR system (Ingenia, Philips) with 108 channel body coil using an RF-spoiled, gradient echo sequence. A comparison of the axial velocity obtained in the pharynx from the numerical simulations and PC-MRI shows good agreement. The region of jet impingement and recirculation also coincide, therefore validating the numerical simulations. Hence, the experimental validation proves the reliability and correctness of the numerical simulations.

Keywords: computational fluid dynamics, experimental validation, phase contrast-MRI, obstructive sleep apnea

Procedia PDF Downloads 292
370 Pneumoperitoneum Creation Assisted with Optical Coherence Tomography and Automatic Identification

Authors: Eric Yi-Hsiu Huang, Meng-Chun Kao, Wen-Chuan Kuo

Abstract:

For every laparoscopic surgery, a safe pneumoperitoneumcreation (gaining access to the peritoneal cavity) is the first and essential step. However, closed pneumoperitoneum is usually obtained by blind insertion of a Veress needle into the peritoneal cavity, which may carry potential risks suchas bowel and vascular injury.Until now, there remains no definite measure to visually confirm the position of the needle tip inside the peritoneal cavity. Therefore, this study established an image-guided Veress needle method by combining a fiber probe with optical coherence tomography (OCT). An algorithm was also proposed for determining the exact location of the needle tip through the acquisition of OCT images. Our method not only generates a series of “live” two-dimensional (2D) images during the needle puncture toward the peritoneal cavity but also can eliminate operator variation in image judgment, thus improving peritoneal access safety. This study was approved by the Ethics Committee of Taipei Veterans General Hospital (Taipei VGH IACUC 2020-144). A total of 2400 in vivo OCT images, independent of each other, were acquired from experiments of forty peritoneal punctures on two piglets. Characteristic OCT image patterns could be observed during the puncturing process. The ROC curve demonstrates the discrimination capability of these quantitative image features of the classifier, showing the accuracy of the classifier for determining the inside vs. outside of the peritoneal was 98% (AUC=0.98). In summary, the present study demonstrates the ability of the combination of our proposed automatic identification method and OCT imaging for automatically and objectively identifying the location of the needle tip. OCT images translate the blind closed technique of peritoneal access into a visualized procedure, thus improving peritoneal access safety.

Keywords: pneumoperitoneum, optical coherence tomography, automatic identification, veress needle

Procedia PDF Downloads 102
369 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique

Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki

Abstract:

Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.

Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector

Procedia PDF Downloads 302
368 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model

Authors: Bhenjamin Jordan L. Ona

Abstract:

Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.

Keywords: aerosol, CCN, IN, tropical cylone

Procedia PDF Downloads 268
367 Bacterial Interactions of Upper Respiratory Tract Microbiota

Authors: Sarah Almuhayya, Andrew Mcbain, Gavin Humphreys

Abstract:

Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups.

Keywords: nasal, microbiota, S.aureus, microbioal interaction

Procedia PDF Downloads 76
366 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 259
365 Enhancement of Critical Current Density of Liquid Infiltration Processed Y-Ba-Cu-O Bulk Superconductors Used for Flywheel Energy Storage System

Authors: Asif Mahmood, Yousef Alzeghayer

Abstract:

The size effects of a precursor Y2BaCuO5 (Y211) powder on the microstructure and critical current density (Jc) of liquid infiltration growth (LIG)-processed YBa2Cu3O7-y (Y123) bulk superconductors were investigated in terms of milling time (t). YBCO bulk samples having high Jc values have been selected for the flywheel energy storage system. Y211 powders were attrition-milled for 0-10 h in 2 h increments at a fixed rotation speed of 400 RPM. Y211 pre-forms were made by pelletizing the milled Y211 powders followed by subsequent sintering, after which an LIG process with top seeding was applied to the Y211/Ba3Cu5O8 (Y035) pre-forms. Spherical pores were observed in all LIG-processed Y123 samples, and the pore density gradually decreased as t increased from 0 h to 8 h. In addition to the reduced pore density, the Y211 particle size in the final Y123 products also decreased with increasing t. As t increased further to 10 h, unexpected Y211 coarsening and large pore evolutions were observed. The magnetic susceptibility-temperature curves showed that the onset superconducting transition temperature (Tc, onset) of all samples was the same (91.5 K), but the transition width became greater as t increased. The Jc of the Y123 bulk superconductors fabricated in this study was observed to correlate well with t of the Y211 precursor powder. The maximum Jc of 1.0×105 A cm-2 (at 77 K, 0 T) was achieved at t = 8 h, which is attributed to the reduction in pore density and Y211 particle size. The prolonged milling time of t = 10 h decreased the Jc of the LIG-processed Y123 superconductor owing to the evolution of large pores and exaggerated Y211 growth. YBCO bulk samples having high Jc (samples prepared using 8 h milled powders) have been used for the energy storage system in flywheel energy storage system.

Keywords: critical current, bulk superconductor, liquid infiltration, bioinformatics

Procedia PDF Downloads 189
364 Brain Stem Posterior Reversible Encephalopathy Syndrome in Nephrotic Syndrome

Authors: S. H. Jang

Abstract:

Posterior reversible encephalopathy syndrome (PRES) is characterized by acute neurologic symptoms (visual loss, headache, altered mentality and seizures) and by typical imaging findings (bilateral subcortical and cortical edema with predominatly posterior distribution). Nephrotic syndrome is a syndrome comprising signs of proteinuria, hypoalbuminemia, and edema. It is well known that hypertension predispose patient with nephrotic syndrome to PRES. A 45-year old male was referred for suddenly developed vertigo, disequilibrium. He had previous history of nephrotic syndrome. His medical history included diabetes controlled with medication. He was hospitalized because of generalized edema a few days ago. His vital signs were stable. On neurologic examination, his mental state was alert. Horizontal nystagmus to right side on return to primary position was observed. He showed good grade motor weakness and ataxia in right upper and lower limbs without other sensory abnormality. Brain MRI showed increased signal intensity in FLAIR image, decreased signal intensity in T1 image and focal enhanced lesion in T1 contrast image at whole midbrain, pons and cerebellar peduncle symmetrically, which was compatible with vasogenic edema. Laboratory findings showed severe proteinuria and hypoalbuminemia. He was given intravenous dexamethasone and diuretics to reduce vasogenic edema and raise the intra-vascular osmotic pressure. Nystagmus, motor weakness and limb ataxia improved gradually over 2 weeks; He recovered without any neurologic symptom and sign. Follow-up MRI showed decreased vasogenic edema fairly. We report a case of brain stem PRES in normotensive, nephrotic syndrome patient.

Keywords: posterior reversible encephalopathy syndrome, MRI, nephrotic syndrome, vasogenic brain edema

Procedia PDF Downloads 252
363 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 343
362 Prostatic Cyst in Suprapubic Ultrasound Examination

Authors: Angelis P. Barlampas, Ghita Bianca-Andreea

Abstract:

A case of a prostatic midline cyst is presented, which was found during a routine general ultrasound examination in an otherwise healthy young man. The incidence of prostatic cysts discovered in suprapubic ultrasound examination has constantly been rising over the previous decades. Despite the fact that the majority of them are benign, a significant amount is related to symptoms, such as pain, dysuria, infertility, and even cancer. The wide use of ultrasound examination and the increasing availability of high-resolution ultrasound systems have rendered new diagnostic challenges. Once upon a time a suprapubic ultrasound was only useful for measuring only the size and the dimensions of the prostatic gland. It did not have the ability to analyze and resolve structures such as cystic or solid nodules. The current machine equipment has managed to depict the imaging characteristics of lesions with high acuity that compares of an intrarectal ultrasound. But the last one is a specialized examination, which demands expertise and good knowledge. Maybe the time has come for the general radiologist and, especially the one who uses suprapubic ultrasound, to pay more attention to the examination of the prostate gland and to take advantage of the superb abilities and the high resolution of the new ultrasound systems. That is exactly, what this case is emphasizing. The incidental discovery of prostatic cysts, and the relatively little available literature about managing them turns them into an interesting theme for exploring and studying. The prostatic cysts are further divided into midline and paramidline cysts, with the first being usually utricle cysts. A more precise categorization is as follows: A midline cystic lesion usually regards a Mullerian duct cyst, a prostatic utricle cyst, an ejaculatory duct cyst, a prostatic cystadenoma, a ductus deferens cyst, and a TURP. On the other hand, a lateral cystic lesion usually refers to a cystic degeneration of benign prostatic hyperplasia, a prostatic retention cyst, a seminal vesicle cyst, diverticular prostatitis, a prostatic abscess, cavitatory prostatitis from chronic prostatitis, a parasitic prostatic cyst, a cystic prostatic carcinoma, e.t.c.

Keywords: prostatic cyst, radiology, benign prostatic lesions, prostatic cancer, suprapubic prostatic ultrasound

Procedia PDF Downloads 33
361 Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach

Authors: Shyaka Eugene

Abstract:

The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment.

Keywords: expansion pressure, energy release rate, soundless chemical demolition agent, crack propagation

Procedia PDF Downloads 35
360 Pretherapy Initial Dosimetry Results in Prostat Cancer Radionuclide Therapy with Lu-177-PSMA-DOTA-617

Authors: M. Abuqebitah, H. Tanyildizi, N. Yeyin, I. Cavdar, M. Demir, L. Kabasakal

Abstract:

Aim: Targeted radionuclide therapy (TRT) is an increasingly used treatment modality for wide range of cancers. Presently dosimetry is highly required either to plan treatment or to ascertain the absorbed dose delivered to critical organs during treatment. Methods and Materials: The study comprised 7 patients suffered from prostate cancer with progressive disease and candidate to undergo Lu-177-DOTA-617 therapy following to PSMA- PET/CT imaging for all patients. (5.2±0.3 mCi) was intravenously injected. To evaluate bone marrow absorbed dose 2 cc blood samples were withdrawn in short variable times (3, 15, 30, 60, 180 minutes) after injection. Furthermore, whole body scans were performed using scintillation gama camera in 4, 24, 48, and 120 hours after injection and in order to quantify the activity taken up in the body, kidneys , liver, right parotid, and left parotid the geometric mean of anterior and posterior counts were determined through ROI analysis, after that background subtraction and attenuation correction were applied using patients PSMA- PET/CT images taking in a consideration: organ thickness, body thickness, and Hounsfield unites from CT scan. OLINDA/EXM dosimetry program was used for curve fitting, residence time calculation, and absorbed dose calculations. Findings: Absorbed doses of bone marrow, left kidney, right kidney, liver, left parotid, right parotid, total body were 1.28±0.52, 32.36±16.36, 32.7±13.68, 10.35±3.45, 38.67±21.29, 37.55±19.77, 2.25±0.95 (mGy/mCi), respectively. Conclusion: Our first results clarify that Lu-177-DOTA-617 is safe and reliable therapy as there were no complications seen. In the other hand, the observable variation in the absorbed dose of the critical organs among the patients necessitate patient-specific dosimetry approach to save body organs and particularly highly exposed kidneys and parotid gland.

Keywords: Lu-177-PSMA, prostate cancer, radionuclide therapy

Procedia PDF Downloads 452
359 An Assessment of Floodplain Vegetation Response to Groundwater Changes Using the Soil & Water Assessment Tool Hydrological Model, Geographic Information System, and Machine Learning in the Southeast Australian River Basin

Authors: Newton Muhury, Armando A. Apan, Tek N. Marasani, Gebiaw T. Ayele

Abstract:

The changing climate has degraded freshwater availability in Australia that influencing vegetation growth to a great extent. This study assessed the vegetation responses to groundwater using Terra’s moderate resolution imaging spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). A hydrological model, SWAT, has been set up in a southeast Australian river catchment for groundwater analysis. The model was calibrated and validated against monthly streamflow from 2001 to 2006 and 2007 to 2010, respectively. The SWAT simulated soil water content for 43 sub-basins and monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) were applied in the machine learning tool, Waikato Environment for Knowledge Analysis (WEKA), using two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The assessment shows that different types of vegetation response and soil water content vary in the dry and wet seasons. The WEKA model generated high positive relationships (r = 0.76, 0.73, and 0.81) between NDVI values of all vegetation in the sub-basins against soil water content (SWC), the groundwater flow (GW), and the combination of these two variables, respectively, during the dry season. However, these responses were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively, in the wet season. Although the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for the growth of the grass vegetation type. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 68
358 A Comparative Study of Linearly Graded and without Graded Photonic Crystal Structure

Authors: Rajeev Kumar, Angad Singh Kushwaha, Amritanshu Pandey, S. K. Srivastava

Abstract:

Photonic crystals (PCs) have attracted much attention due to its electromagnetic properties and potential applications. In PCs, there is certain range of wavelength where electromagnetic waves are not allowed to pass are called photonic band gap (PBG). A localized defect mode will appear within PBG, due to change in the interference behavior of light, when we create a defect in the periodic structure. We can also create different types of defect structures by inserting or removing a layer from the periodic layered structure in two and three-dimensional PCs. We can design microcavity, waveguide, and perfect mirror by creating a point defect, line defect, and palanar defect in two and three- dimensional PC structure. One-dimensional and two-dimensional PCs with defects were reported theoretically and experimentally by Smith et al.. in conventional photonic band gap structure. In the present paper, we have presented the defect mode tunability in tilted non-graded photonic crystal (NGPC) and linearly graded photonic crystal (LGPC) using lead sulphide (PbS) and titanium dioxide (TiO2) in the infrared region. A birefringent defect layer is created in NGPC and LGPC using potassium titany phosphate (KTP). With the help of transfer matrix method, the transmission properties of proposed structure is investigated for transverse electric (TE) and transverse magnetic (TM) polarization. NGPC and LGPC without defect layer is also investigated. We have found that a photonic band gap (PBG) arises in the infrared region. An additional defect layer of KTP is created in NGPC and LGPC structure. We have seen that an additional transmission mode appers in PBG region. It is due to the addition of defect layer. We have also seen the effect, linear gradation in thickness, angle of incidence, tilt angle, and thickness of defect layer, on PBG and additional transmission mode. We have observed that the additional transmission mode and PBG can be tuned by changing the above parameters. The proposed structure may be used as channeled filter, optical switches, monochromator, and broadband optical reflector.

Keywords: defect modes, graded photonic crystal, photonic crystal, tilt angle

Procedia PDF Downloads 349
357 Neurological Complication of Bariatric Surgery: A Cross-sectional Study from Saudi Arabia

Authors: H. A. Algahtani, A. S. Khan, O. Alzahrani, N. Hussein, M. A. Khan, Loudhi Y. I. Soliman

Abstract:

Objective: To report on the Saudi experience (developing country) of neurological complications from bariatric surgery. The literature on the subject is reviewed. Method: This is a cross sectional study done in King Abdul Aziz Medical City Jeddah, WR, where we reviewed all charts of the patients who underwent bariatric surgery between January 1st, 2009 to December 31st , 2014. Personal and clinical data including age, sex, BMI, comorbidities, type of procedure, duration of stay in hospital, complications and postoperative follow up were collected. In addition follow up visit and remote complication if present were collected. All patients with neurological complications were reviewed in details including their clinical examination, laboratory and imaging results, treatment and prognosis. This report is essentially descriptive with no statistical analysis performed. Results: Fifteen cases were collected in this study (3%). Axonal polyneuropathy was the most frequent neurological complica¬tion, but cases of Wernicke syndrome, vitamin B12 deficiency, Guillain-Barre syndrome and cupper deficiency were also identified. Fourteen patients (93.3%) had full recovery from the neurological signs and symptoms but unfortunately one patient died. Conclusion: Bariatric surgery, a procedure that is continuously increasing in popularity, is not free of potential neurological complications. A clear education, guidelines and follow-up program should be planned and practiced. Facts should be clearly presented to the individual undergoing this type of surgery. Although a clear cause-effect relation cannot be established for the present cases, the cumulative literature on the subject makes it important to warn the patient of the potential risks of this procedure.

Keywords: bariatric surgery, neurological complications, neuropathy, Wenicke syndrome

Procedia PDF Downloads 304
356 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces

Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic

Abstract:

Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

Keywords: contact time, impact dynamics, oscillation, pear-shape droplet

Procedia PDF Downloads 436
355 Women Writing Group as a Mean for Personal and Social Change

Authors: Michal Almagor, Rivka Tuval-Mashiach

Abstract:

This presentation will explore the main processes identified in women writing group, as an interdisciplinary field with personal and social effects. It is based on the initial findings of a Ph.D. research focus on the intersection of group processes with the element of writing, in the context of gender. Writing as a therapeutic mean has been recognized and found to be highly effective. Additionally, a substantial amount of research reveals the psychological impact of group processes. However, the combination of writing and groups as a therapeutic tool was hardly investigated; this is the contribution of this research. In the following qualitative-phenomenological study, the experiences of eight women participating in a 10-sessions structured writing group were investigated. We used the meetings transcripts, semi-structured interviews, and the texts to analyze and understand the experience of participating in the group. The two significant findings revealed were spiral intersubjectivity and archaic level of semiotic language. We realized that the content and the process are interwoven; participants are writing, reading and discussing their texts in a group setting that enhanced self-dialogue between the participants and their own narratives and texts, as well as dialogue with others. This process includes working through otherness within and between while discovering and creating a multiplicity of narratives. A movement of increasing shared circles from the personal to the group and to the social-cultural environment was identified, forming what we termed as spiral intersubjectivity. An additional layer of findings was revealed while we listened to the resonance of the group-texts, and discourse; during this process, we could trace the semiotic level in addition to the symbolic one. We were witness to the dominant presence of the body, and primal sensuality, expressed by rhythm, sound and movements, signs of pre-verbal language. Those findings led us to a new understanding of the semiotic function as a way to express the fullness of women experience and the enabling role of writing in reviving what was repressed. The poetic language serves as a bridge between the symbolic and the semiotic. Re-reading the group materials, exposed another layer of expression, an old-new language. This approach suggests a feminine expression of subjective experience with personal and social importance. It is a subversive move, encouraging women to write themselves, as a craft that every woman can use, giving voice to the silent and hidden, and experiencing the power of performing 'my story'. We suggest that women writing group is an efficient, powerful yet welcoming way to raise the awareness of researchers and clinicians, and more importantly of the participants, to the uniqueness of the feminine experience, and to gender-sensitive curative approaches.

Keywords: group, intersubjectivity, semiotic, writing

Procedia PDF Downloads 192
354 On-Chip Ku-Band Bandpass Filter with Compact Size and Wide Stopband

Authors: Jyh Sheen, Yang-Hung Cheng

Abstract:

This paper presents a design of a microstrip bandpass filter with a compact size and wide stopband by using 0.15-μm GaAs pHEMT process. The wide stop band is achieved by suppressing the first and second harmonic resonance frequencies. The slow-wave coupling stepped impedance resonator with cross coupled structure is adopted to design the bandpass filter. A two-resonator filter was fabricated with 13.5GHz center frequency and 11% bandwidth was achieved. The devices are simulated using the ADS design software. This device has shown a compact size and very low insertion loss of 2.6 dB. Microstrip planar bandpass filters have been widely adopted in various communication applications due to the attractive features of compact size and ease of fabricating. Various planar resonator structures have been suggested. In order to reach a wide stopband to reduce the interference outside the passing band, various designs of planar resonators have also been submitted to suppress the higher order harmonic frequencies of the designed center frequency. Various modifications to the traditional hairpin structure have been introduced to reduce large design area of hairpin designs. The stepped-impedance, slow-wave open-loop, and cross-coupled resonator structures have been studied to miniaturize the hairpin resonators. In this study, to suppress the spurious harmonic bands and further reduce the filter size, a modified hairpin-line bandpass filter with cross coupled structure is suggested by introducing the stepped impedance resonator design as well as the slow-wave open-loop resonator structure. In this way, very compact circuit size as well as very wide upper stopband can be achieved and realized in a Roger 4003C substrate. On the other hand, filters constructed with integrated circuit technology become more attractive for enabling the integration of the microwave system on a single chip (SOC). To examine the performance of this design structure at the integrated circuit, the filter is fabricated by the 0.15 μm pHEMT GaAs integrated circuit process. This pHEMT process can also provide a much better circuit performance for high frequency designs than those made on a PCB board. The design example was implemented in GaAs with center frequency at 13.5 GHz to examine the performance in higher frequency in detail. The occupied area is only about 1.09×0.97 mm2. The ADS software is used to design those modified filters to suppress the first and second harmonics.

Keywords: microstrip resonator, bandpass filter, harmonic suppression, GaAs

Procedia PDF Downloads 307
353 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 46
352 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 49
351 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing

Procedia PDF Downloads 149