Search results for: forgery image
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2801

Search results for: forgery image

581 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings

Authors: Jude K. Safo

Abstract:

Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.

Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics

Procedia PDF Downloads 72
580 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 114
579 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 231
578 The Perspectives of Preparing Psychology Practitioners in Armenian Universities

Authors: L. Petrosyan

Abstract:

The problem of psychologist training remains a key priority in Armenia. During the Soviet period, the notion of a psychologist was obscure not only in Armenia but also in other Soviet republics. The breakup of the Soviet Union triggered a gradual change in this area activating the cooperation with specialists from other countries. The need for recovery from the psychological trauma caused by the 1988 earthquake pushed forward the development of practical psychology in Armenia. This phenomenon led to positive changes in perception of and interest to a psychologist profession.Armenian universities started designing special programs for psychologists’ preparation. Armenian psychologists combined their efforts in the field of training relevant specialists. During the recent years, the Bologna educational system was introduced in Armenia which led to implementation of education quality improvement programs. Nevertheless, even today the issue of psychologists’ training is not yet settled in Armenian universities. So far graduate psychologists haven’t got a clear idea of personal and professional qualities of a psychologist. Recently, as a result of educational reforms, the psychology curricula underwent changes, but so far they have not led to a desired outcome. Almost all curricula in certain specialties are aimed to form professional competencies and strengthen practical skills. A survey conducted in Armenia aimed to identify what are the ideas of young psychology specialists on the image of a psychologist. The survey respondents were 45 specialists holding bachelor’s degree as well as 30 master degree graduates, who have not been working yet. The research reveals that we need to change the approach of preparing psychology practitioners in the universities of Armenia. Such an approach to psychologist training will make it possible to train qualified specialists for enhancement of modern psychology theory and practice.

Keywords: practitioners, psychology degree, study, professional competencies

Procedia PDF Downloads 456
577 The Yak of Thailand: Folk Icons Transcending Culture, Religion, and Media

Authors: David M. Lucas, Charles W. Jarrett

Abstract:

In the culture of Thailand, the Yak serve as a mediated icon representing strength, power, and mystical protection not only for the Buddha, but for population of worshipers. Originating from the forests of China, the Yak continue to stand guard at the gates of Buddhist temples. The Yak represents Thai culture in the hearts of Thai people. This paper presents a qualitative study regarding the curious mix of media, culture, and religion that projects the Yak of Thailand as a larger than life message throughout the political, cultural, and religious spheres. The gate guardians, or gods as they are sometimes called, appear throughout the religious temples of Asian cultures. However, the Asian cultures demonstrate differences in artistic renditions (or presentations) of such sentinels. Thailand gate guards (the Yak) stand in front of many Buddhist temples, and these iconic figures display unique features with varied symbolic significance. The temple (or wat), plays a vital role in every community; and, for many people, Thailand’s temples are the country’s most endearing sights. The authors applied folk-nography as a methodology to illustrate the importance of the Thai Yak in serving as meaningful icons that transcend not only time, but the culture, religion, and mass media. The Yak represent mythical, religious, artistic, cultural, and militaristic significance for the Thai people. Data collection included interviews, focus groups, and natural observations. This paper summarizes the perceptions of the Thai people concerning their gate sentries and the relationship, communication, connection, and the enduring respect that Thai people hold for their guardians of the gates.

Keywords: communication, culture, folknography, icon, image, media, protection, religion, yak

Procedia PDF Downloads 403
576 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 393
575 Expounding the Evolution of the Proto-Femme Fatale and Its Correlation with the New Woman: A Close Study of David Mamet's Oleanna

Authors: Silvia Elias

Abstract:

The 'Femme Fatale' figure has become synonymous with a mysterious and seductive woman whose charms captivate her lovers into bonds of irresistible desire, often leading them to compromise or downfall. Originally, a Femme Fatale typically uses her beauty to lead men to their destruction but in modern literature, she represents a direct attack on traditional womanhood and the nuclear family as she refuses to abide by the pillars of mainstream society creating an image of a strong independent woman who defies the control of men and rejects the institution of the family. This research aims at discussing the differences and similarities between the femme fatale and the New Woman and how they are perceived by the audience. There is often confusion between the characteristics that define a New Woman and a Femme Fatale since both women desire independence, challenge typical gender role casting, push against the limits of the patriarchal society and take control of their sexuality. The study of the femme fatale remains appealing in modern times because the fear of gender equality gives life to modern femme fatale versions and post-modern literary works introduce their readers to new versions of the deadly seductress. One that does not fully depend on her looks to destroy men. The idea behind writing this paper was born from reading David Mamet's two-character play Oleanna (1992) and tracing the main female protagonist/antagonist's transformation from a helpless inarticulate girl into a powerful controlling negotiator who knows how to lead a bargain and maintain the upper hand.

Keywords: Circe, David, Eve, evolution, feminist, femme fatale, gender, Mamet, new, Odysseus, Oleanna, power, Salome, schema, seduction, temptress, woman

Procedia PDF Downloads 458
574 Experimental and Numerical Performance Analysis for Steam Jet Ejectors

Authors: Abdellah Hanafi, G. M. Mostafa, Mohamed Mortada, Ahmed Hamed

Abstract:

The steam ejectors are the heart of most of the desalination systems that employ vacuum. The systems that employ low grade thermal energy sources like solar energy and geothermal energy use the ejector to drive the system instead of high grade electric energy. The jet-ejector is used to create vacuum employing the flow of steam or air and using the severe pressure drop at the outlet of the main nozzle. The present work involves developing a one dimensional mathematical model for designing jet-ejectors and transform it into computer code using Engineering Equation solver (EES) software. The model receives the required operating conditions at the inlets and outlet of the ejector as inputs and produces the corresponding dimensions required to reach these conditions. The one-dimensional model has been validated using an existed model working on Abu-Qir power station. A prototype has been designed according to the one-dimensional model and attached to a special test bench to be tested before using it in the solar desalination pilot plant. The tested ejector will be responsible for the startup evacuation of the system and adjusting the vacuum of the evaporating effects. The tested prototype has shown a good agreement with the results of the code. In addition a numerical analysis has been applied on one of the designed geometry to give an image of the pressure and velocity distribution inside the ejector from a side, and from other side, to show the difference in results between the two-dimensional ideal gas model and real prototype. The commercial edition of ANSYS Fluent v.14 software is used to solve the two-dimensional axisymmetric case.

Keywords: solar energy, jet ejector, vacuum, evaporating effects

Procedia PDF Downloads 625
573 Review of Capitalization of Construction Industry on Sustainable Risk Management in Nigeria

Authors: Nnadi Ezekiel Ejiofor

Abstract:

The construction industry plays a decisive role in the healthy development of any nation. Not only large but even small construction projects contribute to a country’s economic growth. There is a need for good management to ensure successful delivery and sustainability because of the plethora of risks that have resulted in low-profit margins for contractors, cost and schedule overruns, poor quality delivery, and abandoned projects. This research reviewed Capitalization on Sustainable Risk Management. Questionnaires and oral interviews conducted were utilized as means of data collection. One hundred and ninety-eight (198) large construction firms in Nigeria form the population of this study. 15 (fifteen) companies that emanated from merger and acquisition were used for the study. The instruments used for data collection were a researcher-developed structured questionnaire based on a five-point rating scale, interviews, focus group discussion, and secondary sources (bill of quantities and stock and exchange commission). The instrument was validated by two experts in the field. The reliability of the instrument was established by applying the split-half method. Kendall’s coefficient of concordance was used to test the data, and a degree of agreement was obtained. Data were subjected to descriptive statistics and analyzed using analysis of variance, t-test, and SPSS. The identified impacts of capitalization were an increase in turnover (24.5%), improvement in the image (24.5%), risk reduction (20%), business expansion (17.3%), and geographical spread (13.6%). The study strongly advocates the inclusion of risk management evaluation as part of the construction procurement process.

Keywords: capitalization, project delivery, risks, risk management, sustainability

Procedia PDF Downloads 65
572 Technical Aspects of Closing the Loop in Depth-of-Anesthesia Control

Authors: Gorazd Karer

Abstract:

When performing a diagnostic procedure or surgery in general anesthesia (GA), a proper introduction and dosing of anesthetic agents are one of the main tasks of the anesthesiologist. However, depth of anesthesia (DoA) also seems to be a suitable process for closed-loop control implementation. To implement such a system, one must be able to acquire the relevant signals online and in real-time, as well as stream the calculated control signal to the infusion pump. However, during a procedure, patient monitors and infusion pumps are purposely unable to connect to an external (possibly medically unapproved) device for safety reasons, thus preventing closed-loop control. The paper proposes a conceptual solution to the aforementioned problem. First, it presents some important aspects of contemporary clinical practice. Next, it introduces the closed-loop-control-system structure and the relevant information flow. Focusing on transferring the data from the patient to the computer, it presents a non-invasive image-based system for signal acquisition from a patient monitor for online depth-of-anesthesia assessment. Furthermore, it introduces a UDP-based communication method that can be used for transmitting the calculated anesthetic inflow to the infusion pump. The proposed system is independent of a medical device manufacturer and is implemented in Matlab-Simulink, which can be conveniently used for DoA control implementation. The proposed scheme has been tested in a simulated GA setting and is ready to be evaluated in an operating theatre. However, the proposed system is only a step towards a proper closed-loop control system for DoA, which could routinely be used in clinical practice.

Keywords: closed-loop control, depth of anesthesia (DoA), modeling, optical signal acquisition, patient state index (PSi), UDP communication protocol

Procedia PDF Downloads 222
571 The Issue of Pedagogical Approaches in Higher Education: Public Universities as an Example

Authors: Majda El Moufarej

Abstract:

Higher education plays a central role in socio-economic development. However, with the wave of change mainly due to the extensive use of technology in the workplace, the rate of unemployment among graduates rises because they lack the appropriate competencies and skills currently required in professional life. This situation has led higher education institutions worldwide to reconsider their missions, strategic planning, and curricula, among other elements to redress the image of the university as expected. When it comes to practice, there are many obstacles that hinder the achievement of the expected objectives, especially in public universities with free access, as in the case of Morocco. Nevertheless, huge efforts have been made by educational managers to improve the quality of education by focusing on the issue of pedagogical approaches, where university teachers assume more responsibility to save the situation. In this paper, the focus will be placed on the issue of pedagogical approaches to be adopted, depending on the nature of the subject, the size of the class, the available equipment, the students’ level and degree of motivation. Before elaborating on this idea, it may be more insightful to begin by addressing another variable, which concerns the new role of university teachers and their qualification in pedagogical competence. Then, the discussion will revolve around five pedagogical approaches currently adopted in western universities and the focus will be exclusively placed on the one which is called “the Systematic Approach to course Design”, due to its crucial relevance in the teaching of subjects in the schools of humanities, as it can guide the teacher in the development of an explicit program for purposeful teaching and learning. The study is based on a qualitative method, and the findings will be analyzed and followed by some recommendations about how to overcome difficulties in teaching large groups, while transmitting the relevant knowledge and skills on demand in the workplace.

Keywords: higher education, public universities, pedagogical approaches, pedagogical competence

Procedia PDF Downloads 299
570 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis

Authors: Yongqin Zhang, John Lett

Abstract:

Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.

Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements

Procedia PDF Downloads 82
569 Application of Remote Sensing for Monitoring the Impact of Lapindo Mud Sedimentation for Mangrove Ecosystem, Case Study in Sidoarjo, East Java

Authors: Akbar Cahyadhi Pratama Putra, Tantri Utami Widhaningtyas, M. Randy Aswin

Abstract:

Indonesia as an archipelagic nation have very long coastline which have large potential marine resources, one of that is the mangrove ecosystems. Lapindo mudflow disaster in Sidoarjo, East Java requires mudflow flowed into the sea through the river Brantas and Porong. Mud material that transported by river flow is feared dangerous because they contain harmful substances such as heavy metals. This study aims to map the mangrove ecosystem seen from its density and knowing how big the impact of a disaster on the Lapindo mud to mangrove ecosystem and accompanied by efforts to address the mangrove ecosystem that maintained continuity. Mapping coastal mangrove conditions of Sidoarjo was done using remote sensing products that Landsat 7 ETM + images with dry months of recording time in 2002, 2006, 2009, and 2014. The density of mangrove detected using NDVI that uses the band 3 that is the red channel and band 4 that is near IR channel. Image processing was used to produce NDVI using ENVI 5.1 software. NDVI results were used for the detection of mangrove density is 0-1. The development of mangrove ecosystems of both area and density from year to year experienced has a significant increase. Mangrove ecosystems growths are affected by material deposition area of Lapindo mud on Porong and Brantas river estuary, where the silt is growing medium suitable mangrove ecosystem and increasingly growing. Increasing the density caused support by public awareness to prevent heavy metals in the material so that the Lapindo mud mangrove breeding done around the farm.

Keywords: archipelagic nation, mangrove, Lapindo mudflow disaster, NDVI

Procedia PDF Downloads 443
568 The Image of Victim and Criminal in Love Crimes on Social Media in Egypt: Facebook Discourse Analysis

Authors: Sherehan Hamdalla

Abstract:

Egypt has experienced a series of terrifying love crimes in the last few months. This ‘trend’ of love crimes started with a young man caught on video slaughtering his ex-girlfriend in the street in the city of El Mansoura. The crime shocked all Egyptian citizens at all levels; unfortunately, not less than three similar crimes took place in other different Egyptian cities with the same killing trigger. The characteristics and easy access and reach of social media consider the reason why it is one of the most crucial online communication channels; users utilize social media platforms for sharing and exchanging ideas, news, and many other activities; they can freely share posts that reflect their mindset or personal views regarding any issues, these posts are going viral in all social media account by reposting or numbers of shares for these posts to support the content included, or even to attack. The repetition of sharing certain posts could mobilize other supporters with the same point of view, especially when that crowd’s online participation is confronting a public opinion case’s consequences. The death of that young woman was followed by similar crimes in other cities, such as El Sharkia and Port Said. These love crimes provoked a massive wave of contention among all social classes in Egypt. Strangely, some were supporting the criminal and defending his side for several reasons, which the study will uncover. Facebook, the most popular social media platform for Egyptians, reflects the debate between supporters of the victim and supporters of the criminal. Facebook pages were created specifically to disseminate certain viewpoints online, for example, asking for the maximum penalty to be given to criminals. These pages aimed to mobilize the maximum number of supporters and to affect the outcome of the trials.

Keywords: love crimes, victim, criminal, social media

Procedia PDF Downloads 80
567 Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays

Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md. Yusof

Abstract:

Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project.

Keywords: final account closing, construction project, construction delay, supply chain management

Procedia PDF Downloads 371
566 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 483
565 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques

Authors: Gizem Eser Erdek

Abstract:

This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.

Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet

Procedia PDF Downloads 83
564 Effect of Underwater Antiquities as a Hidden Competitive Advantage of Hotels on Their Financial Performance: An Exploratory Study

Authors: Iman Shawky, Mohamed Elsayed

Abstract:

Every hotel works in the hospitality market tends to have its own merit and character in its products marketing in order to maintain both its brand's identity and image among guests. According to the growth of global competition in the hospitality industry; the concept of competitive advantage is becoming increasingly important in hotels' marketing world as it examines reasons for outweighing hotels in their dimensions of strategic and marketing plans. In fact, Egypt is the land of appeared and submerged secrets as a result of its ancient civilization ongoing explorations. Although underwater antiquities represent ambiguous treasures, they have auspicious future in it, particularly in Alexandria. The study aims at examining to what extent underwater antiquities represent a competitive advantage of four and five-star hotels in Alexandria. For achieving this aim, an exploratory study conducted by currying out the investigation and comparison of the closest and most popular landmarks mentioned on both hotels' official websites and on common used reservations' websites. In addition to that, two different questionnaire forms designed; one for both revenue and sales and marketing hotels' managers while the other for their guests. The results indicate that both official hotels' websites and the most common used reservations' websites totally ignore mentioning underwater antiquities as attractive landmarks surrounding Alexandria hotels. Furthermore, most managers expect that underwater antiquities can furnish distinguished competitive advantage to their hotels. Also, they can help exceeding guests' expectations during their accommodation as long as they included on both official hotels' and reservations' websites as the most surrounding famous landmarks. Moreover, most managers foresee that high awareness of underwater antiquities can enhance the guests' accommodation frequencies and improve the financial performance of their hotels.

Keywords: competitive advantage, financial performance, hotels' websites, underwater antiquities

Procedia PDF Downloads 170
563 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor

Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh

Abstract:

Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.

Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging

Procedia PDF Downloads 266
562 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape

Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu

Abstract:

Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.

Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric

Procedia PDF Downloads 346
561 Synthesis, Characterization of Organic and Inorganic Zn-Al Layered Double Hydroxides and Application for the Uptake of Methyl Orange from Aqueous Solution

Authors: Fatima Zahra Mahjoubi, Abderrahim Khalidi, Mohammed Abdennouri, Noureddine Barka

Abstract:

Zn-Al layered double hydroxides containing carbonate, nitrate and dodecylsulfate as the interlamellar anions have been prepared through a coprecipitation method. The resulting compounds were characterized using XRD, ICP, FTIR, TGA/DTA, TEM/EDX and pHPZC analysis. The XRD patterns revealed that carbonate and nitrate could be intercalated into the interlayer structure with basal spacing of 22.74 and 26.56 Å respectively. Bilayer intercalation of dodecylsulfate molecules was achieved in Zn-Al LDH with a basal spacing of 37.86 Å. The TEM observation indicated that the materials synthesized via coprecipitation present nanoscale LDH particle. The average particle size of Zn-AlCO3 is 150 to 200 nm. Irregular circular to hexagonal shaped particles with 30 to 40 nm in diameter was observed in the Zn-AlNO3 morphology. TEM image of Zn-AlDs display nanostructured sheet like particles with size distribution between 5 to 10 nm. The sorption characteristics and mechanisms of methyl orange dye on organic LDH were investigated and were subsequently compared with that on the inorganic Zn-Al layered double hydroxides. Adsorption experiments for MO were carried out as function of solution pH, contact time and initial dye concentration. The adsorption behavior onto inorganic LDHs was obviously influenced by initial pH. However, the adsorption capacity of organic LDH was influenced indistinctively by initial pH and the removal percentage of MO was practically constant at various value of pH. As the MO concentration increased, the curve of adsorption capacity became L-type onto LDHs. The adsorption behavior for Zn-AlDs was proposed by the dissolution of dye in a hydrophobic interlayer region (i.e., adsolubilization). The results suggested that Zn-AlDs could be applied as a potential adsorbent for MO removal in a wide range of pH.

Keywords: adsorption, dodecylsulfate, kinetics, layered double hydroxides, methyl orange removal

Procedia PDF Downloads 302
560 One-Hit Multiple Instance Logistic Regression for Binary Classification and Its Application to Atomic Force Microscopy Images for Bladder Cancer Determination

Authors: Eugene Demidenko, John Seigne, Igor Sokolov

Abstract:

Multiple instance classification is a known machine learning tech-nique when only a bag of features is labeled. The method of binary multiple instance classification, termed multiple instance logistic regression (LR), received the most attention as a well-defined statistical model. This algorithm is realized in several computer languages, including R (milr) and MATLAB. This work suggests improving this model, which is called the one-hit multiple instance LR. Unlike the existing ap-proach, where unknown labels are treated as missing observations, our model directly implements the ML approach. As such, it is methodologically straightforward and computationally stable, especially when features are highly correlated and/or bags are heterogeneous. Since the one-hit LR admits a closed form for the log-likelihood function, an efficient Fisher scoring algorithm applies with the variances of the regres-sion coefficients computed through the inverse of the Fisher information matrix at the final iteration. Numerical experiments demonstrate the superiority of the one-hit LR in terms of regression coefficients and classification accuracy. Another advantage of our approach is developing the optimal probability threshold for classification (the traditional threshold equals 0 5). The one-hit LR is illustrated with a noninvasive bladder cancer identification where each patient, in the multiple instance terminol-ogy ’bag,’ contains feature images of multiple cells from a urine sample of the same individual. We show that the one-hit LR with two Atomic Force Microscopy (AFM) image features leads to a perfect (AUC=1) or almost perfect (AUC=0.978) classifica-tion of normal and cancer patients among 20 individuals. The -value 0.0018 confirms that the latter AUC is unlikely to be obtained by chance.

Keywords: AUC, classification accuracy, classification p-value, Fisher information, ML, ROC curve

Procedia PDF Downloads 9
559 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification

Authors: Ian Omung'a

Abstract:

Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.

Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision

Procedia PDF Downloads 97
558 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images

Authors: Jingjue Bao, Ye Li, Yujie Qi

Abstract:

The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.

Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image

Procedia PDF Downloads 86
557 Comparative Ethnography and Urban Health: A Multisite Study on Obesogenic Cities

Authors: Carlos Rios Llamas

Abstract:

Urban health challenges, like the obesity epidemic, need to be studied from a dialogue between different disciplines and geographical conditions. Public health uses quantitative analysis and local samples, but qualitative data and multisite analysis would help to better understand how obesity has become a health problem. In the last decades, obesity rates have increased in most of the countries, especially in the Western World. Concerned about the problem, the American Medical Association has recently voted obesity as a disease. Suddenly, a ‘war on obesity’ attracted scientists from different disciplines to explore various ways to control and even reverse the trends. Medical sciences have taken the advance with quantitative methodologies focused on individual behaviors. Only a few scientist have extended their studies to the environment where obesity is produced as social risk, and less of them have taken into consideration the political and cultural aspects. This paper presents a multisite ethnography in South Bronx, USA, La Courneuve, France, and Lomas del Sur, Mexico, where obesity rates are as relevant as urban degradation. The comparative ethnography offers a possibility to unveil the mechanisms producing health risks from the urban tissue. The analysis considers three main categories: 1) built environment and access to food and physical activity, 2) biocultural construction of the healthy body, 3) urban inequalities related to health and body size. Major findings from a comparative ethnography on obesogenic environments, refer to the anthropological values related to food and body image, as well as the multidimensional oppression expressed in fat people who live in stigmatized urban zones. At the end, obesity, like many other diseases, is the result of political and cultural constructions structured in urbanization processes.

Keywords: comparative ethnography, urban health, obesogenic cities, biopolitics

Procedia PDF Downloads 249
556 Bismuth Telluride Topological Insulator: Physical Vapor Transport vs Molecular Beam Epitaxy

Authors: Omar Concepcion, Osvaldo De Melo, Arturo Escobosa

Abstract:

Topological insulator (TI) materials are insulating in the bulk and conducting in the surface. The unique electronic properties associated with these surface states make them strong candidates for exploring innovative quantum phenomena and as practical applications for quantum computing, spintronic and nanodevices. Many materials, including Bi₂Te₃, have been proposed as TIs and, in some cases, it has been demonstrated experimentally by angle-resolved photoemission spectroscopy (ARPES), scanning tunneling spectroscopy (STM) and/or magnetotransport measurements. A clean surface is necessary in order to make any of this measurements. Several techniques have been used to produce films and different kinds of nanostructures. Growth and characterization in situ is usually the best option although cleaving the films can be an alternative to have a suitable surface. In the present work, we report a comparison of Bi₂Te₃ grown by physical vapor transport (PVT) and molecular beam epitaxy (MBE). The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ARPES. The Bi₂Te₃ samples grown by PVT, were cleaved in the ultra-high vacuum in order to obtain a surface free of contaminants. In both cases, the XRD shows a c-axis orientation and the pole diagrams proved the epitaxial relationship between film and substrate. The ARPES image shows the linear dispersion characteristic of the surface states of the TI materials. The samples grown by PVT, a relatively simple and cost-effective technique shows the same high quality and TI properties than the grown by MBE.

Keywords: Bismuth telluride, molecular beam epitaxy, physical vapor transport, topological insulator

Procedia PDF Downloads 197
555 Remote Sensing and GIS-Based Environmental Monitoring by Extracting Land Surface Temperature of Abbottabad, Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Adnan Tahir, Hisham Bin Hafeez Awan

Abstract:

Continuous environmental determinism and climatic change in the entire globe due to increasing land surface temperature (LST) has become a vital phenomenon nowadays. LST is accelerating because of increasing greenhouse gases in the environment which results of melting down ice caps, ice sheets and glaciers. It has not only worse effects on vegetation and water bodies of the region but has also severe impacts on monsoon areas in the form of capricious rainfall and monsoon failure extensive precipitation. Environment can be monitored with the help of various geographic information systems (GIS) based algorithms i.e. SC (Single), DA (Dual Angle), Mao, Sobrino and SW (Split Window). Estimation of LST is very much possible from digital image processing of satellite imagery. This paper will encompass extraction of LST of Abbottabad using SW technique of GIS and Remote Sensing over last ten years by means of Landsat 7 ETM+ (Environmental Thematic Mapper) and Landsat 8 vide their Thermal Infrared (TIR Sensor) and Optical Land Imager (OLI sensor less Landsat 7 ETM+) having 100 m TIR resolution and 30 m Spectral Resolutions. These sensors have two TIR bands each; their emissivity and spectral radiance will be used as input statistics in SW algorithm for LST extraction. Emissivity will be derived from Normalized Difference Vegetation Index (NDVI) threshold methods using 2-5 bands of OLI with the help of e-cognition software, and spectral radiance will be extracted TIR Bands (Band 10-11 and Band 6 of Landsat 7 ETM+). Accuracy of results will be evaluated by weather data as well. The successive research will have a significant role for all tires of governing bodies related to climate change departments.

Keywords: environment, Landsat 8, SW Algorithm, TIR

Procedia PDF Downloads 358
554 3D Human Face Reconstruction in Unstable Conditions

Authors: Xiaoyuan Suo

Abstract:

3D object reconstruction is a broad research area within the computer vision field involving many stages and still open problems. One of the existing challenges in this field lies with micromotion, such as the facial expressions on the appearance of the human or animal face. Similar literatures in this field focuses on 3D reconstruction in stable conditions such as an existing image or photos taken in a rather static environment, while the purpose of this work is to discuss a flexible scan system using multiple cameras that can correctly reconstruct 3D stable and moving objects -- human face with expression in particular. Further, a mathematical model is proposed at the end of this literature to automate the 3D object reconstruction process. The reconstruction process takes several stages. Firstly, a set of simple 2D lines would be projected onto the object and hence a set of uneven curvy lines can be obtained, which represents the 3D numerical data of the surface. The lines and their shapes will help to identify object’s 3D construction in pixels. With the two-recorded angles and their distance from the camera, a simple mathematical calculation would give the resulting coordinate of each projected line in an absolute 3D space. This proposed research will benefit many practical areas, including but not limited to biometric identification, authentications, cybersecurity, preservation of cultural heritage, drama acting especially those with rapid and complex facial gestures, and many others. Specifically, this will (I) provide a brief survey of comparable techniques existing in this field. (II) discuss a set of specialized methodologies or algorithms for effective reconstruction of 3D objects. (III)implement, and testing the developed methodologies. (IV) verify findings with data collected from experiments. (V) conclude with lessons learned and final thoughts.

Keywords: 3D photogrammetry, 3D object reconstruction, facial expression recognition, facial recognition

Procedia PDF Downloads 154
553 A Review of Accuracy Optical Surface Imaging Systems for Setup Verification During Breast Radiotherapy Treatment

Authors: Auwal Abubakar, Ahmed Ahidjo, Shazril Imran Shaukat, Noor Khairiah A. Karim, Gokula Kumar Appalanaido, Hafiz Mohd Zin

Abstract:

Background: The use of optical surface imaging systems (OSISs) is increasingly becoming popular in radiotherapy practice, especially during breast cancer treatment. This study reviews the accuracy of the available commercial OSISs for breast radiotherapy. Method: A literature search was conducted and identified the available commercial OSISs from different manufacturers that are integrated into radiotherapy practice for setup verification during breast radiotherapy. Studies that evaluated the accuracy of the OSISs during breast radiotherapy using cone beam computed tomography (CBCT) as a reference were retrieved and analyzed. The physics and working principles of the systems from each manufacturer were discussed together with their respective strength and limitations. Results: A total of five (5) different commercially available OSISs from four (4) manufacturers were identified, each with a different working principle. Six (6) studies were found to evaluate the accuracy of the systems during breast radiotherapy in conjunction with CBCT as a goal standard. The studies revealed that the accuracy of the system in terms of mean difference ranges from 0.1 to 2.1 mm. The correlation between CBCT and OSIS ranges between 0.4 and 0.9. The limit of agreements obtained using bland Altman analysis in the studies was also within an acceptable range. Conclusion: The OSISs have an acceptable level of accuracy and could be used safely during breast radiotherapy. The systems are non-invasive, ionizing radiation-free, and provide real-time imaging of the target surface at no extra concomitant imaging dose. However, the system should only be used to complement rather than replace x-ray-based image guidance techniques such as CBCT.

Keywords: optical surface imaging system, Cone beam computed tomography (CBCT), surface guided radiotherapy, Breast radiotherapy

Procedia PDF Downloads 70
552 Crop Leaf Area Index (LAI) Inversion and Scale Effect Analysis from Unmanned Aerial Vehicle (UAV)-Based Hyperspectral Data

Authors: Xiaohua Zhu, Lingling Ma, Yongguang Zhao

Abstract:

Leaf Area Index (LAI) is a key structural characteristic of crops and plays a significant role in precision agricultural management and farmland ecosystem modeling. However, LAI retrieved from different resolution data contain a scaling bias due to the spatial heterogeneity and model non-linearity, that is, there is scale effect during multi-scale LAI estimate. In this article, a typical farmland in semi-arid regions of Chinese Inner Mongolia is taken as the study area, based on the combination of PROSPECT model and SAIL model, a multiple dimensional Look-Up-Table (LUT) is generated for multiple crops LAI estimation from unmanned aerial vehicle (UAV) hyperspectral data. Based on Taylor expansion method and computational geometry model, a scale transfer model considering both difference between inter- and intra-class is constructed for scale effect analysis of LAI inversion over inhomogeneous surface. The results indicate that, (1) the LUT method based on classification and parameter sensitive analysis is useful for LAI retrieval of corn, potato, sunflower and melon on the typical farmland, with correlation coefficient R2 of 0.82 and root mean square error RMSE of 0.43m2/m-2. (2) The scale effect of LAI is becoming obvious with the decrease of image resolution, and maximum scale bias is more than 45%. (3) The scale effect of inter-classes is higher than that of intra-class, which can be corrected efficiently by the scale transfer model established based Taylor expansion and Computational geometry. After corrected, the maximum scale bias can be reduced to 1.2%.

Keywords: leaf area index (LAI), scale effect, UAV-based hyperspectral data, look-up-table (LUT), remote sensing

Procedia PDF Downloads 442