Search results for: hybrid models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8258

Search results for: hybrid models

6068 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: recognition, CNN, Yi character, divergence

Procedia PDF Downloads 165
6067 Wind Interference Effects on Various Plan Shape Buildings Under Wind Load

Authors: Ritu Raj, Hrishikesh Dubey

Abstract:

This paper presents the results of the experimental investigations carried out on two intricate plan shaped buildings to evaluate aerodynamic performance of the building. The purpose is to study the associated environment arising due to wind forces in isolated and interference conditions on a model of scale 1:300 with a prototype having 180m height. Experimental tests were carried out at the boundary layer wind tunnel considering isolated conditions with 0° to 180° isolated wind directions and four interference conditions of twin building (separately for both the models). The research has been undertaken in Terrain Category-II, which is the most widely available terrain in India. A comparative assessment of the two models is performed out in an attempt to comprehend the various consequences of diverse conditions that may emerge in real-life situations, as well as the discrepancies amongst them. Experimental results of wind pressure coefficients of Model-1 and Model-2 shows good agreement with various wind incidence conditions with minute difference in the magnitudes of mean Cp. On the basis of wind tunnel studies, it is distinguished that the performance of Model-2 is better than Model-1in both isolated as well as interference conditions for all wind incidences and orientations respectively.

Keywords: interference factor, tall buildings, wind direction, mean pressure-coefficients

Procedia PDF Downloads 128
6066 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 170
6065 Transforming Urban Living: How Co-Living Solutions Address Social Isolation, Foster Community, and Offer Innovative Approaches to Housing Challenges in Modern Cities

Authors: Yujie Lei

Abstract:

This article examines the evolving concept of urban living through the lens of co-living spaces, focusing on Liverpool. It explores how co-living can address challenges such as rising urban isolation, housing affordability, and social autism, particularly among younger generations. The research aims to understand how these spaces can mitigate social isolation and maximize urban space use. Using a case study approach, the study examines models like Superloft, co-office spaces, and platforms like Airbnb. Findings reveal that Liverpool’s co-living initiatives have gained popularity, offering flexibility and community engagement. This concept has the potential for expansion, not only for the younger generation but also for elderly communities, fostering intergenerational living. The dissertation concludes that co-living offers a sustainable alternative to traditional housing models, aligning with digital-age lifestyles that prioritize flexibility and community. It presents a promising framework for shaping the future of urban development.

Keywords: co-living, urban design, social isolation, urban development, housing challenges

Procedia PDF Downloads 26
6064 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 561
6063 Evaluation of Alternative Approaches for Additional Damping in Dynamic Calculations of Railway Bridges under High-Speed Traffic

Authors: Lara Bettinelli, Bernhard Glatz, Josef Fink

Abstract:

Planning engineers and researchers use various calculation models with different levels of complexity, calculation efficiency and accuracy in dynamic calculations of railway bridges under high-speed traffic. When choosing a vehicle model to depict the dynamic loading on the bridge structure caused by passing high-speed trains, different goals are pursued: On the one hand, the selected vehicle models should allow the calculation of a bridge’s vibrations as realistic as possible. On the other hand, the computational efficiency and manageability of the models should be preferably high to enable a wide range of applications. The commonly adopted and straightforward vehicle model is the moving load model (MLM), which simplifies the train to a sequence of static axle loads moving at a constant speed over the structure. However, the MLM can significantly overestimate the structure vibrations, especially when resonance events occur. More complex vehicle models, which depict the train as a system of oscillating and coupled masses, can reproduce the interaction dynamics between the vehicle and the bridge superstructure to some extent and enable the calculation of more realistic bridge accelerations. At the same time, such multi-body models require significantly greater processing capacities and precise knowledge of various vehicle properties. The European standards allow for applying the so-called additional damping method when simple load models, such as the MLM, are used in dynamic calculations. An additional damping factor depending on the bridge span, which should take into account the vibration-reducing benefits of the vehicle-bridge interaction, is assigned to the supporting structure in the calculations. However, numerous studies show that when the current standard specifications are applied, the calculation results for the bridge accelerations are in many cases still too high compared to the measured bridge accelerations, while in other cases, they are not on the safe side. A proposal to calculate the additional damping based on extensive dynamic calculations for a parametric field of simply supported bridges with a ballasted track was developed to address this issue. In this contribution, several different approaches to determine the additional damping of the supporting structure considering the vehicle-bridge interaction when using the MLM are compared with one another. Besides the standard specifications, this includes the approach mentioned above and two additional recently published alternative formulations derived from analytical approaches. For a bridge catalogue of 65 existing bridges in Austria in steel, concrete or composite construction, calculations are carried out with the MLM for two different high-speed trains and the different approaches for additional damping. The results are compared with the calculation results obtained by applying a more sophisticated multi-body model of the trains used. The evaluation and comparison of the results allow assessing the benefits of different calculation concepts for the additional damping regarding their accuracy and possible applications. The evaluation shows that by applying one of the recently published redesigned additional damping methods, the calculation results can reflect the influence of the vehicle-bridge interaction on the design-relevant structural accelerations considerably more reliable than by using normative specifications.

Keywords: Additional Damping Method, Bridge Dynamics, High-Speed Railway Traffic, Vehicle-Bridge-Interaction

Procedia PDF Downloads 161
6062 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: convolution neural network, deep learning, malaria, thin blood smears

Procedia PDF Downloads 130
6061 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic

Authors: Sedat Yayla, Azhin Abdullah

Abstract:

In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.

Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)

Procedia PDF Downloads 271
6060 Seismic Behaviour of CFST-RC Columns

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.

Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance

Procedia PDF Downloads 246
6059 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 191
6058 Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition

Authors: Redouane Tlemsani, Redouane, Belkacem Kouninef, Abdelkader Benyettou

Abstract:

In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables).

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition, networks

Procedia PDF Downloads 618
6057 Going Horizontal: Confronting the Challenges When Transitioning to Cloud

Authors: Harvey Hyman, Thomas Hull

Abstract:

As one of the largest cancer treatment centers in the United States, we continuously confront the challenge of how to leverage the best possible technological solutions, in order to provide the highest quality of service to our customers – the doctors, nurses and patients at Moffitt who are fighting every day for the prevention and cure of cancer. This paper reports on the transition from a vertical to a horizontal IT infrastructure. We discuss how the new frameworks and methods such as public, private and hybrid cloud, brokering cloud services are replacing the traditional vertical paradigm for computing. We also report on the impact of containers, micro services, and the shift to continuous integration/continuous delivery. These impacts and changes in delivery methodology for computing are driving how we accomplish our strategic IT goals across the enterprise.

Keywords: cloud computing, IT infrastructure, IT architecture, healthcare

Procedia PDF Downloads 380
6056 Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model

Authors: Riccardo Loggia, Francesca Pizzimenti, Francesco Lelli, Luigi Martirano

Abstract:

Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station.

Keywords: electric vehicles, charging stations, sharing model, fast charging, car park, power profiles

Procedia PDF Downloads 154
6055 Optimal Voltage and Frequency Control of a Microgrid Using the Harmony Search Algorithm

Authors: Hossein Abbasi

Abstract:

The stability is an important topic to plan and manage the energy in the microgrids as the same as the conventional power systems. The voltage and frequency stability is one of the most important issues recently studied in microgrids. The objectives of this paper are the modelling and designing of the components and optimal controllers for the voltage and frequency control of the AC/DC hybrid microgrid under the different disturbances. Since the PI controllers have the advantages of simple structure and easy implementation, so they are designed and modeled in this paper. The harmony search (HS) algorithm is used to optimize the controllers’ parameters. According to the achieved results, the PI controllers have a good performance in voltage and frequency control of the microgrid.

Keywords: frequency control, HS algorithm, microgrid, PI controller, voltage control

Procedia PDF Downloads 391
6054 Mapping Interrelationships among Key Sustainability Drivers: A Strategic Framework for Enhanced Entrepreneurial Sustainability among MSME

Authors: Akriti Chandra, Gourav Dwivedi, Seema Sharma, Shivani

Abstract:

This study investigates the adoption of green business (GB) models within a circular economy framework (CEBM) for Micro Small and Medium Enterprise (MSME), given the rising importance of sustainable practices. The research begins by exploring the shift from linear business models towards resource-efficient, sustainable models, emphasizing the benefits of the circular economy. The study's literature review identifies 60 influential factors impacting the shift to green businesses, grouped as internal and external drivers. However, there is a research gap in examining these factors' interrelationships and operationalizing them within MSMEs. To address this gap, the study employs Total Interpretive Structural Modelling (TISM) to establish a hierarchical structure of factors influencing GB and circular economy business model (CEBM) adoption. Findings reveal that factors like green innovation and market competitiveness are particularly impactful. Using Systems Theory, which views organizations as complex adaptive systems, the study contextualizes these drivers within MSMEs, proposing a framework for a sustainable business model adoption. The study concludes with significant implications for policymakers, suggesting that the identified factors and their hierarchical relationships can guide policy formulation for a broader transition to green business practices. This work also invites further research, recommending larger, quantitative studies to empirically validate these factors and explore practical challenges in implementing CEBMs.

Keywords: green business (GB), circular economy business model (CEBM), micro small and medium enterprise (MSME), total interpretive structural modelling (TISM), systems theory

Procedia PDF Downloads 13
6053 Synthesis of an Organic-Inorganic Salt of (C2H5NO2) 2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: Polyoxometalate, Keggin, Organic-inorganic salt, TMV

Procedia PDF Downloads 288
6052 Synthesis of an Organic- Inorganic Salt of (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus (TMV)

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40 was synthesized. Investigation on Anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 421
6051 Vortices Structure in Internal Laminar and Turbulent Flows

Authors: Farid Gaci, Zoubir Nemouchi

Abstract:

A numerical study of laminar and turbulent fluid flows in 90° bend of square section was carried out. Three-dimensional meshes, based on hexahedral cells, were generated. The QUICK scheme was employed to discretize the convective term in the transport equations. The SIMPLE algorithm was adopted to treat the velocity-pressure coupling. The flow structure obtained showed interesting features such as recirculation zones and counter-rotating pairs of vortices. The performance of three different turbulence models was evaluated: the standard k- ω model, the SST k-ω model and the Reynolds Stress Model (RSM). Overall, it was found that, the multi-equation model performed better than the two equation models. In fact, the existence of four pairs of counter rotating cells, in the straight duct upstream of the bend, were predicted by the RSM closure but not by the standard eddy viscosity model nor the SST k-ω model. The analysis of the results led to a better understanding of the induced three dimensional secondary flows and the behavior of the local pressure coefficient and the friction coefficient.

Keywords: curved duct, counter-rotating cells, secondary flow, laminar, turbulent

Procedia PDF Downloads 336
6050 Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation

Authors: Sung-Min Kim, Joon-Hong Park, Hyuk Choi

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the anti-splash device located under the P/V valve and new concept design models using the CFD. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-splash device is fitted to improve and prevent this problem in the shipbuilding industry, but the oil outflow accidents are still reported by ship owners. Thus, 4 types of new design model are presented by this study, and then comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the anti-splash device. Therefore, the flow and velocity are grasped by transient analysis, and then it decided optimum model and design parameters to develop model. Later, it is needed to develop an anti-splash device by flow test to get certification and verification using experiment equipments.

Keywords: anti-splash device, P/V valve, sloshing, CFD

Procedia PDF Downloads 634
6049 A Survey of Digital Health Companies: Opportunities and Business Model Challenges

Authors: Iris Xiaohong Quan

Abstract:

The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.

Keywords: digital health, business models, entrepreneurship opportunities, healthcare

Procedia PDF Downloads 183
6048 Theoretical Discussion on the Classification of Risks in Supply Chain Management

Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite

Abstract:

The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.

Keywords: sisks classification, survey, supply chain management, theoretical discussion

Procedia PDF Downloads 633
6047 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton

Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla

Abstract:

An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.

Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton

Procedia PDF Downloads 137
6046 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 378
6045 Human 3D Metastatic Melanoma Models for in vitro Evaluation of Targeted Therapy Efficiency

Authors: Delphine Morales, Florian Lombart, Agathe Truchot, Pauline Maire, Pascale Vigneron, Antoine Galmiche, Catherine Lok, Muriel Vayssade

Abstract:

Targeted therapy molecules are used as a first-line treatment for metastatic melanoma with B-Raf mutation. Nevertheless, these molecules can cause side effects to patients and are efficient on 50 to 60 % of them. Indeed, melanoma cell sensitivity to targeted therapy molecules is dependent on tumor microenvironment (cell-cell and cell-extracellular matrix interactions). To better unravel factors modulating cell sensitivity to B-Raf inhibitor, we have developed and compared several melanoma models: from metastatic melanoma cells cultured as monolayer (2D) to a co-culture in a 3D dermal equivalent. Cell response was studied in different melanoma cell lines such as SK-MEL-28 (mutant B-Raf (V600E), sensitive to Vemurafenib), SK-MEL-3 (mutant B-Raf (V600E), resistant to Vemurafenib) and a primary culture of dermal human fibroblasts (HDFn). Assays have initially been performed in a monolayer cell culture (2D), then a second time on a 3D dermal equivalent (dermal human fibroblasts embedded in a collagen gel). All cell lines were treated with Vemurafenib (a B-Raf inhibitor) for 48 hours at various concentrations. Cell sensitivity to treatment was assessed under various aspects: Cell proliferation (cell counting, EdU incorporation, MTS assay), MAPK signaling pathway analysis (Western-Blotting), Apoptosis (TUNEL), Cytokine release (IL-6, IL-1α, HGF, TGF-β, TNF-α) upon Vemurafenib treatment (ELISA) and histology for 3D models. In 2D configuration, the inhibitory effect of Vemurafenib on cell proliferation was confirmed on SK-MEL-28 cells (IC50=0.5 µM), and not on the SK-MEL-3 cell line. No apoptotic signal was detected in SK-MEL-28-treated cells, suggesting a cytostatic effect of the Vemurafenib rather than a cytotoxic one. The inhibition of SK-MEL-28 cell proliferation upon treatment was correlated with a strong expression decrease of phosphorylated proteins involved in the MAPK pathway (ERK, MEK, and AKT/PKB). Vemurafenib (from 5 µM to 10 µM) also slowed down HDFn proliferation, whatever cell culture configuration (monolayer or 3D dermal equivalent). SK-MEL-28 cells cultured in the dermal equivalent were still sensitive to high Vemurafenib concentrations. To better characterize all cell population impacts (melanoma cells, dermal fibroblasts) on Vemurafenib efficacy, cytokine release is being studied in 2D and 3D models. We have successfully developed and validated a relevant 3D model, mimicking cutaneous metastatic melanoma and tumor microenvironment. This 3D melanoma model will become more complex by adding a third cell population, keratinocytes, allowing us to characterize the epidermis influence on the melanoma cell sensitivity to Vemurafenib. In the long run, the establishment of more relevant 3D melanoma models with patients’ cells might be useful for personalized therapy development. The authors would like to thank the Picardie region and the European Regional Development Fund (ERDF) 2014/2020 for the funding of this work and Oise committee of "La ligue contre le cancer".

Keywords: 3D human skin model, melanoma, tissue engineering, vemurafenib efficiency

Procedia PDF Downloads 304
6044 Integrating Critical Stylistics and Visual Grammar: A Multimodal Stylistic Approach to the Analysis of Non-Literary Texts

Authors: Shatha Khuzaee

Abstract:

The study develops multimodal stylistic approach to analyse a number of BBC online news articles reporting some key events from the so called ‘Arab Uprisings’. Critical stylistics (CS) and visual grammar (VG) provide insightful arguments to the ways ideology is projected through different verbal and visual modes, yet they are mode specific because they examine how each mode projects its meaning separately and do not attempt to clarify what happens intersemiotically when the two modes co-occur. Therefore, it is the task undertaken in this research to propose multimodal stylistic approach that addresses the issue of ideology construction when the two modes co-occur. Informed by functional grammar and social semiotics, the analysis attempts to integrate three linguistic models developed in critical stylistics, namely, transitivity choices, prioritizing and hypothesizing along with their visual equivalents adopted from visual grammar to investigate the way ideology is constructed, in multimodal text, when text/image participate and interrelate in the process of meaning making on the textual level of analysis. The analysis provides comprehensive theoretical and analytical elaborations on the different points of integration between CS linguistic models and VG equivalents which operate on the textual level of analysis to better account for ideology construction in news as non-literary multimodal texts. It is argued that the analysis well thought out a plan that would remark the first step towards the integration between the well-established linguistic models of critical stylistics and that of visual analysis to analyse multimodal texts on the textual level. Both approaches are compatible to produce multimodal stylistic approach because they intend to analyse text and image depending on whatever textual evidence is available. This supports the analysis maintain the rigor and replicability needed for a stylistic analysis like the one undertaken in this study.

Keywords: multimodality, stylistics, visual grammar, social semiotics, functional grammar

Procedia PDF Downloads 221
6043 On Multiobjective Optimization to Improve the Scalability of Fog Application Deployments Using Fogtorch

Authors: Suleiman Aliyu

Abstract:

Integrating IoT applications with Fog systems presents challenges in optimization due to diverse environments and conflicting objectives. This study explores achieving Pareto optimal deployments for Fog-based IoT systems to address growing QoS demands. We introduce Pareto optimality to balance competing performance metrics. Using the FogTorch optimization framework, we propose a hybrid approach (Backtracking search with branch and bound) for scalable IoT deployments. Our research highlights the advantages of Pareto optimality over single-objective methods and emphasizes the role of FogTorch in this context. Initial results show improvements in IoT deployment cost in Fog systems, promoting resource-efficient strategies.

Keywords: pareto optimality, fog application deployment, resource allocation, internet of things

Procedia PDF Downloads 88
6042 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 128
6041 Security in Resource Constraints: Network Energy Efficient Encryption

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.

Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC

Procedia PDF Downloads 145
6040 Density Measurement of Mixed Refrigerants R32+R1234yf and R125+R290 from 0°C to 100°C and at Pressures up to 10 MPa

Authors: Xiaoci Li, Yonghua Huang, Hui Lin

Abstract:

Optimization of the concentration of components in mixed refrigerants leads to potential improvement of either thermodynamic cycle performance or safety performance of heat pumps and refrigerators. R32+R1234yf and R125+R290 are two promising binary mixed refrigerants for the application of heat pumps working in the cold areas. The p-ρ-T data of these mixtures are one of the fundamental and necessary properties for design and evaluation of the performance of the heat pumps. Although the property data of mixtures can be predicted by the mixing models based on the pure substances incorporated in programs such as the NIST database Refprop, direct property measurement will still be helpful to reveal the true state behaviors and verify the models. Densities of the mixtures of R32+R1234yf an d R125+R290 are measured by an Anton Paar U shape oscillating tube digital densimeter DMA-4500 in the range of temperatures from 0°C to 100 °C and pressures up to 10 MPa. The accuracy of the measurement reaches 0.00005 g/cm³. The experimental data are compared with the predictions by Refprop in the corresponding range of pressure and temperature.

Keywords: mixed refrigerant, density measurement, densimeter, thermodynamic property

Procedia PDF Downloads 296
6039 Synthesis of an Organic-Inorganic Salt of 12-Silicotungstate, (C2H5NO2)2H4SiW12O40 and Investigation of Its Anti-Viral Effect on the Tobacco Mosaic Virus

Authors: Mahboobeh Mohadeszadeh, Majid Saghi

Abstract:

Polyoxometalates (POMs) are important inorganic compounds that have been considered specifically in recent years due to abundant attributes and applications. Those POMs that have one central tetrahedral atom called keggin. The binding Amino-acid groups to keggin structure give the antivirus effect to these compounds. A new organic-inorganic hybrid structure, with formula (Gly)2H4SiW12O40, was synthesized. Investigation on the anti-viral effect of this compound showed the (Gly)2H4SiW12O40 prevents infection of Tobacco Mosaic Virus (TMV) on the Nicotianatabacum plants.

Keywords: polyoxometalate, keggin, organic-inorganic salt, TMV

Procedia PDF Downloads 291