Search results for: cadmium determination
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2173

Search results for: cadmium determination

13 The Impact of Efflux Pump Inhibitor on the Activity of Benzosiloxaboroles and Benzoxadiboroles against Gram-Negative Rods

Authors: Agnieszka E. Laudy, Karolina Stępien, Sergiusz Lulinski, Krzysztof Durka, Stefan Tyski

Abstract:

1,3-dihydro-1-hydroxy-2,1-benzoxaborole and its derivatives are a particularly interesting group of synthetic agents and were successfully employed in supramolecular chemistry medicine. The first important compounds, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole and 5-chloro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole were identified as potent antifungal agents. In contrast, (S)-3-(aminomethyl)-7-(3-hydroxypropoxy)-1-hydroxy-1,3-dihydro-2,1-benzoxaborole hydrochloride is in the second phase of clinical trials as a drug for the treatment of Gram-negative bacterial infections of the Enterobacteriaceae family and Pseudomonas aeruginosa. Equally important and difficult task is to search for compounds active against Gram-negative bacilli, which have multi-drug-resistance efflux pumps actively removing many of the antibiotics from bacterial cells. We have examined whether halogen-substituted benzoxaborole-based derivatives and their analogues possess antibacterial activity and are substrates for multi-drug-resistance efflux pumps. The antibacterial activity of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole and 10 halogen-substituted its derivatives, as well as 1,2-phenylenediboronic acid and 3 synthesised fluoro-substituted its analogs, were evaluated. The activity against the reference strains of Gram-positive (n=5) and Gram-negative bacteria (n=10) was screened by the disc-diffusion test (0.4 mg of tested compounds was applied onto paper disc). The minimal inhibitory concentration values and the minimal bactericidal concentration values were estimated according to The Clinical and Laboratory Standards Institute and The European Committee on Antimicrobial Susceptibility Testing recommendations. During the minimal inhibitory concentration values determination with or without phenylalanine-arginine beta-naphthylamide (50 mg/L) efflux pump inhibitor, the concentrations of tested compounds ranged 0.39-400 mg/L in the broth medium supplemented with 1 mM magnesium sulfate. Generally, the studied benzosiloxaboroles and benzoxadiboroles showed a higher activity against Gram-positive cocci than against Gram-negative rods. Moreover, benzosiloxaboroles have the higher activity than benzoxadiboroles compounds. In this study, we demonstrated that substitution (mono-, di- or tetra-) of 1,3-dihydro-3-hydroxy-1,1-dimethyl-1,2,3-benzosiloxaborole with halogen groups resulted in an increase in antimicrobial activity as compared to the parent substance. Interestingly, the 6,7-dichloro-substituted parent substance was found to be the most potent against Gram-positive cocci: Staphylococcus sp. (minimal inhibitory concentration 6.25 mg/L) and Enterococcus sp. (minimal inhibitory concentration 25 mg/L). On the other hand, mono- and dichloro-substituted compounds were the most actively removed by efflux pumps present in Gram-negative bacteria mainly from Enterobacteriaceae family. In the presence of efflux pump inhibitor the minimal inhibitory concentration values of chloro-substituted benzosiloxaboroles decreased from 400 mg/L to 3.12 mg/L. Of note, the highest increase in bacterial susceptibility to tested compounds in the presence of phenylalanine-arginine beta-naphthylamide was observed for 6-chloro-, 6,7-dichloro- and 6,7-difluoro-substituted benzosiloxaboroles. In the case of Escherichia coli, Enterobacter cloacae and P. aeruginosa strains at least a 32-fold decrease in the minimal inhibitory concentration values of these agents were observed. These data demonstrate structure-activity relationships of the tested derivatives and highlight the need for further search for benzoxaboroles and related compounds with significant antimicrobial properties. Moreover, the influence of phenylalanine-arginine beta-naphthylamide on the susceptibility of Gram-negative rods to studied benzosiloxaboroles indicate that some tested agents are substrates for efflux pumps in Gram-negative rods.

Keywords: antibacterial activity, benzosiloxaboroles, efflux pumps, phenylalanine-arginine beta-naphthylamide

Procedia PDF Downloads 271
12 Determination of the Phytochemicals Composition and Pharmacokinetics of whole Coffee Fruit Caffeine Extract by Liquid Chromatography-Tandem Mass Spectrometry

Authors: Boris Nemzer, Nebiyu Abshiru, Z. B. Pietrzkowski

Abstract:

Coffee cherry is one of the most ubiquitous agricultural commodities which possess nutritional and human health beneficial properties. Between the two most widely used coffee cherries Coffea arabica (Arabica) and Coffea canephora (Robusta), Coffea arabica remains superior due to its sensory properties and, therefore, remains in great demand in the global coffee market. In this study, the phytochemical contents and pharmacokinetics of Coffeeberry® Energy (CBE), a commercially available Arabica whole coffee fruit caffeine extract, are investigated. For phytochemical screening, 20 mg of CBE was dissolved in an aqueous methanol solution for analysis by mass spectrometry (MS). Quantification of caffeine and chlorogenic acids (CGAs) contents of CBE was performed using HPLC. For the bioavailability study, serum samples were collected from human subjects before and after 1, 2 and 3 h post-ingestion of 150mg CBE extract. Protein precipitation and extraction were carried out using methanol. Identification of compounds was performed using an untargeted metabolomic approach on Q-Exactive Orbitrap MS coupled to reversed-phase chromatography. Data processing was performed using Thermo Scientific Compound Discover 3.3 software. Phytochemical screening identified a total of 170 compounds, including organic acids, phenolic acids, CGAs, diterpenoids and hydroxytryptamine. Caffeine & CGAs make up more than, respectively, 70% & 9% of the total CBE composition. For serum samples, a total of 82 metabolites representing 32 caffeine- and 50 phenolic-derived metabolites were identified. Volcano plot analysis revealed 32 differential metabolites (24 caffeine- and 8 phenolic-derived) that showed an increase in serum level post-CBE dosing. Caffeine, uric acid, and trimethyluric acid isomers exhibited 4- to 10-fold increase in serum abundance post-dosing. 7-Methyluric acid, 1,7-dimethyluric acid, paraxanthine and theophylline exhibited a minimum of 1.5-fold increase in serum level. Among the phenolic-derived metabolites, iso-feruloyl quinic acid isomers (3-, 4- and 5-iFQA) showed the highest increase in serum level. These compounds were essentially absent in serum collected before dosage. More interestingly, the iFQA isomers were not originally present in the CBE extract, as our phytochemical screen did not identify these compounds. This suggests the potential formation of the isomers during the digestion and absorption processes. Pharmacokinetics parameters (Cmax, Tmax and AUC0-3h) of caffeine- and phenolic-derived metabolites were also investigated. Caffeine was rapidly absorbed, reaching a maximum concentration (Cmax) of 10.95 µg/ml in just 1 hour. Thereafter, caffeine level steadily dropped from the peak level, although it did not return to baseline within the 3-hour dosing period. The disappearance of caffeine from circulation was mirrored by the rise in the concentration of its methylxanthine metabolites. Similarly, serum concentration of iFQA isomers steadily increased, reaching maximum (Cmax: 3-iFQA, 1.54 ng/ml; 4-iFQA, 2.47 ng/ml; 5-iFQA, 2.91 ng/ml) at tmax of 1.5 hours. The isomers remained well above the baseline during the 3-hour dosing period, allowing them to remain in circulation long enough for absorption into the body. Overall, the current study provides evidence of the potential health benefits of a uniquely formulated whole coffee fruit product. Consumption of this product resulted in a distinct serum profile of bioactive compounds, as demonstrated by the more than 32 metabolites that exhibited a significant change in systemic exposure.

Keywords: phytochemicals, mass spectrometry, pharmacokinetics, differential metabolites, chlorogenic acids

Procedia PDF Downloads 68
11 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 16
10 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)

Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe

Abstract:

Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.

Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths

Procedia PDF Downloads 113
9 Regional Metamorphism of the Loki Crystalline Massif Allochthonous Complex of the Caucasus

Authors: David Shengelia, Giorgi Chichinadze, Tamara Tsutsunava, Giorgi Beridze, Irakli Javakhishvili

Abstract:

The Loki pre-Alpine crystalline massif crops out within the Caucasus region. The massif basement is represented by the Upper Devonian gneissose quartz-diorites, the Lower-Middle Paleozoic metamorphic allochthonous complex, and different magmatites. Earlier, the metamorphic complex was considered as indivisible set represented by the series of different temperature metamorphits. The degree of metamorphism of separate parts of the complex is due to different formation conditions. This fact according to authors of the abstract was explained by the allochthonous-flaky structure of the complex. It was stated that the complex thrust over the gneissose quartz diorites before the intrusion of Sudetic granites. During the detailed mapping, the authors turned out that the metamorphism issues need to be reviewed and additional researches to be carried out. Investigations were accomplished by using the following methodologies: finding of key sections, a sampling of rocks, microscopic description of the material, analytical determination of elements in the rocks, microprobe analysis of minerals and new interpretation of obtained data. According to the author’s recent data within the massif four tectonic plates: Lower Gorastskali, Sapharlo-Lok-Jandari, Moshevani and “mélange” overthrust sheets have been mapped. They differ from each other by composition, the degree of metamorphism and internal structure. It is confirmed that the initial rocks of the tectonic plates formed in different geodynamic conditions during overthrusting due to tectonic compression form a thick tectonic sheet. Based on the detailed laboratory investigations additional mineral assemblages were established, temperature limits were specified, and a renewed trend of metamorphism facies and subfacies was elaborated. The results are the following: 1. The Lower Gorastskali overthrust sheet is a fragment of ophiolitic association corresponding to the Paleotethys oceanic crust. The main rock-forming minerals are carbonate, chlorite, spinel, epidote, clinoptilolite, plagioclase, hornblende, actinolite, hornblende, albite, serpentine, tremolite, talc, garnet, and prehnite. Regional metamorphism of rocks corresponds to the greenschist facies lowest stage. 2. The Sapharlo-Lok-Jandari overthrust sheet metapelites are represented by chloritoid, chlorite, phengite, muscovite, biotite, garnet, ankerite, carbonate, and quartz. Metabasites containing actinolite, chlorite, plagioclase, calcite, epidote, albite, actinolitic hornblende and hornblende are also present. The degree of metamorphism corresponds to the greenschist high-temperature chlorite, biotite, and low-temperature garnet subfacies. Later the rocks underwent the contact influence of Late Variscan granites. 3. The Moshevani overthrust sheet is represented mainly by metapelites and rarely by metabasites. Main rock-forming minerals of metapelites are muscovite, biotite, chlorite, quartz, andalusite, plagioclase, garnet and cordierite and of metabasites - plagioclase, green and blue-green hornblende, chlorite, epidote, actinolite, albite, and carbonate. Metamorphism level corresponds to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies as well. 4. The “mélange” overthrust sheet is built of different size rock fragments and blocks of Moshevani and Lower Gorastskali overthrust sheets. The degree of regional metamorphism of first and second overthrust sheets of the Loki massif corresponds to chlorite, biotite, and low-temperature garnet subfacies, but of the third overthrust sheet – to staurolite-andalusite subfacies of staurolite facies and partially to facies of biotite muscovite gneisses and hornfelse facies.

Keywords: regional metamorphism, crystalline massif, mineral assemblages, the Caucasus

Procedia PDF Downloads 166
8 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
7 Extracellular Polymeric Substances Study in an MBR System for Fouling Control

Authors: Dimitra C. Banti, Gesthimani Liona, Petros Samaras, Manasis Mitrakas

Abstract:

Municipal and industrial wastewaters are often treated biologically, by the activated sludge process (ASP). The ASP not only requires large aeration and sedimentation tanks, but also generates large quantities of excess sludge. An alternative technology is the membrane bioreactor (MBR), which replaces two stages of the conventional ASP—clarification and settlement—with a single, integrated biotreatment and clarification step. The advantages offered by the MBR over conventional treatment include reduced footprint and sludge production through maintaining a high biomass concentration in the bioreactor. Notwithstanding these advantages, the widespread application of the MBR process is constrained by membrane fouling. Fouling leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary and resulting to increased operating costs. In general, membrane fouling results from the interaction between the membrane material and the components in the activated sludge liquor. The latter includes substrate components, cells, cell debris and microbial metabolites, such as Extracellular Polymeric Substances (EPS) and Sludge Microbial Products (SMPs). The challenge for effective MBR operation is to minimize the rate of Transmembrane Pressure (TMP) increase. This can be achieved by several ways, one of which is the addition of specific additives, that enhance the coagulation and flocculation of compounds, which are responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate. In this project the effectiveness of a non-commercial composite coagulant was studied as an agent for fouling control in a lab scale MBR system consisting in two aerated tanks. A flat sheet membrane module with 0.40 um pore size was submerged into the second tank. The system was fed by50 L/d of municipal wastewater collected from the effluent of the primary sedimentation basin. The TMP increase rate, which is directly related to fouling growth, was monitored by a PLC system. EPS, MLSS and MLVSS measurements were performed in samples of mixed liquor; in addition, influent and effluent samples were collected for the determination of physicochemical characteristics (COD, BOD5, NO3-N, NH4-N, Total N and PO4-P). The coagulant was added in concentrations 2, 5 and 10mg/L during a period of 2 weeks and the results were compared with the control system (without coagulant addition). EPS fractions were extracted by a three stages physical-thermal treatment allowing the identification of Soluble EPS (SEPS) or SMP, Loosely Bound EPS (LBEPS) and Tightly Bound EPS (TBEPS). Proteins and carbohydrates concentrations were measured in EPS fractions by the modified Lowry method and Dubois method, respectively. Addition of 2 mg/L coagulant concentration did not affect SEPS proteins in comparison with control process and their values varied between 32 to 38mg/g VSS. However a coagulant dosage of 5mg/L resulted in a slight increase of SEPS proteins at 35-40 mg/g VSS while 10mg/L coagulant further increased SEPS to 44-48mg/g VSS. Similar results were obtained for SEPS carbohydrates. Carbohydrates values without coagulant addition were similar to the corresponding values measured for 2mg/L coagulant; the addition of mg/L coagulant resulted to a slight increase of carbohydrates SEPS to 6-7mg/g VSS while a dose of 10 mg/L further increased carbohydrates content to 9-10mg/g VSS. Total LBEPS and TBEPS, consisted of proteins and carbohydrates of LBEPS and TBEPS respectively, presented similar variations by the addition of the coagulant. Total LBEPS at 2mg/L dose were almost equal to 17mg/g VSS, and their values increased to 22 and 29 mg/g VSS during the addition of 5 mg/L and 10 mg/L of coagulant respectively. Total TBEPS were almost 37 mg/g VSS at a coagulant dose of 2 mg/L and increased to 42 and 51 mg/g VSS at 5 mg/L and 10 mg/L doses, respectively. Therefore, it can be concluded that coagulant addition could potentially affect microorganisms activities, excreting EPS in greater amounts. Nevertheless, EPS increase, mainly SEPS increase, resulted to a higher membrane fouling rate, as justified by the corresponding TMP increase rate. However, the addition of the coagulant, although affected the EPS content in the reactor mixed liquor, did not change the filtration process: an effluent of high quality was produced, with COD values as low as 20-30 mg/L.

Keywords: extracellular polymeric substances, MBR, membrane fouling, EPS

Procedia PDF Downloads 268
6 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 175
5 Development of an Omaha System-Based Remote Intervention Program for Work-Related Musculoskeletal Disorders (WMSDs) Among Front-Line Nurses

Authors: Tianqiao Zhang, Ye Tian, Yanliang Yin, Yichao Tian, Suzhai Tian, Weige Sun, Shuhui Gong, Limei Tang, Ruoliang Tang

Abstract:

Introduction: Healthcare workers, especially the nurses all over the world, are highly vulnerable to work-related musculoskeletal disorders (WMSDs), experiencing high rates of neck, shoulder, and low back injuries, due to the unfavorable working conditions. To reduce WMSDs among nursing personnel, many workplace interventions have been developed and implemented. Unfortunately, the ongoing Covid-19 (SARS-CoV-2) pandemic has posed great challenges to the ergonomic practices and interventions in healthcare facilities, particularly the hospitals, since current Covid-19 mitigation measures, such as social distancing and working remotely, has substantially minimized in-person gatherings and trainings. On the other hand, hospitals throughout the world have been short-staffed, resulting in disturbance of shift scheduling and more importantly, the increased job demand among the available caregivers, particularly the doctors and nurses. With the latest development in communication technology, remote intervention measures have been developed as an alternative, without the necessity of in-person meetings. The Omaha System (OS) is a standardized classification system for nursing practices, including a problem classification system, an intervention system, and an outcome evaluation system. This paper describes the development of an OS-based ergonomic intervention program. Methods: First, a comprehensive literature search was performed among worldwide electronic databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), between journal inception to May 2020, resulting in a total of 1,418 scientific articles. After two independent screening processes, the final knowledge pool included eleven randomized controlled trial studies to develop the draft of the intervention program with Omaha intervention subsystem as the framework. After the determination of sample size needed for statistical power and the potential loss to follow-up, a total of 94 nurses from eight clinical departments agreed to provide written, informed consent to participate in the study, which were subsequently assigned into two random groups (i.e., intervention vs. control). A subgroup of twelve nurses were randomly selected to participate in a semi-structured interview, during which their general understanding and awareness of musculoskeletal disorders and potential interventions was assessed. Then, the first draft was modified to reflect the findings from these interviews. Meanwhile, the tentative program schedule was also assessed. Next, two rounds of consultation were conducted among experts in nursing management, occupational health, psychology, and rehabilitation, to further adjust and finalize the intervention program. The control group had access to all the information and exercise modules at baseline, while an interdisciplinary research team was formed and supervised the implementation of the on-line intervention program through multiple social media groups. Outcome measures of this comparative study included biomechanical load assessed by the Quick Exposure Check and stresses due to awkward body postures. Results and Discussion: Modification to the draft included (1) supplementing traditional Chinese medicine practices, (2) adding the use of assistive patient handling equipment, and (3) revising the on-line training method. Information module should be once a week, lasting about 20 to 30 minutes, for a total of 6 weeks, while the exercise module should be 5 times a week, each lasting about 15 to 20 minutes, for a total of 6 weeks.

Keywords: ergonomic interventions, musculoskeletal disorders (MSDs), omaha system, nurses, Covid-19

Procedia PDF Downloads 182
4 Hydrocarbon Source Rocks of the Maragh Low

Authors: Elhadi Nasr, Ibrahim Ramadan

Abstract:

Biostratigraphical analyses of well sections from the Maragh Low in the Eastern Sirt Basin has allowed high resolution correlations to be undertaken. Full integration of this data with available palaeoenvironmental, lithological, gravity, seismic, aeromagnetic, igneous, radiometric and wireline log information and a geochemical analysis of source rock quality and distribution has led to a more detailed understanding of the geological and the structural history of this area. Pre Sirt Unconformity two superimposed rifting cycles have been identified. The oldest is represented by the Amal Group of sediments and is of Late Carboniferous, Kasimovian / Gzelian to Middle Triassic, Anisian age. Unconformably overlying is a younger rift cycle which is represented the Sarir Group of sediments and is of Early Cretaceous, late Neocomian to Aptian in age. Overlying the Sirt Unconformity is the marine Late Cretaceous section. An assessment of pyrolysis results and a palynofacies analysis has allowed hydrocarbon source facies and quality to be determined. There are a number of hydrocarbon source rock horizons in the Maragh Low, these are sometimes vertically stacked and they are of fair to excellent quality. The oldest identified source rock is the Triassic Shale, this unit is unconformably overlain by sandstones belonging to the Sarir Group and conformably overlies a Triassic Siltstone unit. Palynological dating of the Triassic Shale unit indicates a Middle Triassic, Anisian age. The Triassic Shale is interpreted to have been deposited in a lacustrine palaeoenvironment. This particularly is evidenced by the dark, fine grained, organic rich nature of the sediment and is supported by palynofacies analysis and by the recovery of fish fossils. Geochemical analysis of the Triassic Shale indicates total organic carbon varying between 1.37 and 3.53. S2 pyrolysate yields vary between 2.15 mg/g and 6.61 mg/g and hydrogen indices vary between 156.91 and 278.91. The source quality of the Triassic Shale varies from being of fair to very good / rich. Linked to thermal maturity it is now a very good source for light oil and gas. It was once a very good to rich oil source. The Early Barremian Shale was also deposited in a lacustrine palaeoenvironment. Recovered palynomorphs indicate an Early Cretaceous, late Neocomian to early Barremian age. The Early Barremian Shale is conformably underlain and overlain by sandstone units belonging to the Sarir Group of sediments which are also of Early Cretaceous age. Geochemical analysis of the Early Barremian Shale indicates that it is a good oil source and was originally very good. Total organic carbon varies between 3.59% and 7%. S2 varies between 6.30 mg/g and 10.39 mg/g and the hydrogen indices vary between 148.4 and 175.5. A Late Barremian Shale unit of this age has also been identified in the central Maragh Low. Geochemical analyses indicate that total organic carbon varies between 1.05 and 2.38%, S2 pyrolysate between 1.6 and 5.34 mg/g and the hydrogen index between 152.4 and 224.4. It is a good oil source rock which is now mature. In addition to the non marine hydrocarbon source rocks pre Sirt Unconformity, three formations in the overlying Late Cretaceous section also provide hydrocarbon quality source rocks. Interbedded shales within the Rachmat Formation of Late Cretaceous, early Campanian age have total organic carbon ranging between, 0.7 and 1.47%, S2 pyrolysate varying between 1.37 and 4.00 mg/g and hydrogen indices varying between 195.7 and 272.1. The indication is that this unit would provide a fair gas source to a good oil source. Geochemical analyses of the overlying Tagrifet Limestone indicate that total organic carbon varies between 0.26% and 1.01%. S2 pyrolysate varies between 1.21 and 2.16 mg/g and hydrogen indices vary between 195.7 and 465.4. For the overlying Sirt Shale Formation of Late Cretaceous, late Campanian age, total organic carbon varies between 1.04% and 1.51%, S2 pyrolysate varies between 4.65 mg/g and 6.99 mg/g and the hydrogen indices vary between 151 and 462.9. The study has proven that both the Sirt Shale Formation and the Tagrifet Limestone are good to very good and rich sources for oil in the Maragh Low. High resolution biostratigraphical interpretations have been integrated and calibrated with thermal maturity determinations (Vitrinite Reflectance (%Ro), Spore Colour Index (SCI) and Tmax (ºC) and the determined present day geothermal gradient of 25ºC / Km for the Maragh Low. Interpretation of generated basin modelling profiles allows a detailed prediction of timing of maturation development of these source horizons and leads to a determination of amounts of missing section at major unconformities. From the results the top of the oil window (0.72% Ro) is picked as high as 10,700’ and the base of the oil window (1.35% Ro) assuming a linear trend and by projection is picked as low as 18,000’ in the Maragh Low. For the Triassic Shale the early phase of oil generation was in the Late Palaeocene / Early to Middle Eocene and the main phase of oil generation was in the Middle to Late Eocene. The Early Barremian Shale reached the main phase of oil generation in the Early Oligocene with late generation being reached in the Middle Miocene. For the Rakb Group section (Rachmat Formation, Tagrifet Limestone and Sirt Shale Formation) the early phase of oil generation started in the Late Eocene with the main phase of generation being between the Early Oligocene and the Early Miocene. From studying maturity profiles and from regional considerations it can be predicted that up to 500’ of sediment may have been deposited and eroded by the Sirt Unconformity in the central Maragh Low while up to 2000’ of sediment may have been deposited and then eroded to the south of the trough.

Keywords: Geochemical analysis of the source rocks from wells in Eastern Sirt Basin.

Procedia PDF Downloads 408
3 Knowledge of the Doctors Regarding International Patient Safety Goal

Authors: Fatima Saeed, Abdullah Mudassar

Abstract:

Introduction: Patient safety remains a global priority in the ever-evolving healthcare landscape. At the forefront of this endeavor are the International Patient Safety Goals (IPSGs), a standardized framework designed to mitigate risks and elevate the quality of care. Doctors, positioned as primary caregivers, wield a pivotal role in upholding and adhering to IPSGs, underscoring the critical significance of their knowledge and understanding of these goals. This research embarks on a comprehensive exploration into the depth of Doctors ' comprehension of IPSGs, aiming to unearth potential gaps and provide insights for targeted educational interventions. Established by influential healthcare bodies, including the World Health Organization (WHO), IPSGs represent a universally applicable set of objectives spanning crucial domains such as medication safety, infection control, surgical site safety, and patient identification. Adherence to these goals has exhibited substantial reductions in adverse events, fostering an overall enhancement in the quality of care. This study operates on the fundamental premise that an informed Doctors workforce is indispensable for effectively implementing IPSGs. A nuanced understanding of these goals empowers Doctors to identify potential risks, advocate for necessary changes, and actively contribute to a safety-centric culture within healthcare institutions. Despite the acknowledged importance of IPSGs, there is a growing concern that nurses may need more knowledge to integrate these goals into their practice seamlessly. Methodology: A Comprehensive research methodology covering study design, setting, duration, sample size determination, sampling technique, and data analysis. It introduces the philosophical framework guiding the research and details material, methods, and the analysis framework. The descriptive quantitative cross-sectional study in teaching care hospitals utilized convenient sampling over six months. Data collection involved written informed consent and questionnaires, analyzed with SPSS version 23, presenting results graphically and descriptively. The chapter ensures a clear understanding of the study's design, execution, and analytical processes. Result: The survey results reveal a substantial distribution across hospitals, with 34.52% in MTIKTH and 65.48% in HMC MTI. There is a notable prevalence of patient safety incidents, emphasizing the significance of adherence to IPSGs. Positive trends are observed, including 77.0% affirming the "time-out" procedure, 81.6% acknowledging effective healthcare provider communication, and high recognition (82.7%) of the purpose of IPSGs to improve patient safety. While the survey reflects a good understanding of IPSGs, areas for improvement are identified, suggesting opportunities for targeted interventions. Discussion: The study underscores the need for tailored care approaches and highlights the bio-socio-cultural context of 'contagion,' suggesting areas for further research amid antimicrobial resistance. Shifting the focus to patient safety practices, the survey chapter provides a detailed overview of results, emphasizing workplace distribution, patient safety incidents, and positive reflections on IPSGs. The findings indicate a positive trend in patient safety practices with areas for improvement, emphasizing the ongoing need for reinforcing safety protocols and cultivating a safety-centric culture in healthcare. Conclusion: In summary, the survey indicates a positive trend in patient safety practices with a good understanding of IPSGs among participants. However, identifying areas for potential improvement suggests opportunities for targeted interventions to enhance patient safety further. Ongoing efforts to reinforce adherence to safety protocols, address identified gaps, and foster a safety culture will contribute to continuous improvements in patient care and outcomes.

Keywords: infection control, international patient safety, patient safety practices, proper medication

Procedia PDF Downloads 54
2 Evaluation of Academic Research Projects Using the AHP and TOPSIS Methods

Authors: Murat Arıbaş, Uğur Özcan

Abstract:

Due to the increasing number of universities and academics, the fund of the universities for research activities and grants/supports given by government institutions have increased number and quality of academic research projects. Although every academic research project has a specific purpose and importance, limited resources (money, time, manpower etc.) require choosing the best ones from all (Amiri, 2010). It is a pretty hard process to compare and determine which project is better such that the projects serve different purposes. In addition, the evaluation process has become complicated since there are more than one evaluator and multiple criteria for the evaluation (Dodangeh, Mojahed and Yusuff, 2009). Mehrez and Sinuany-Stern (1983) determined project selection problem as a Multi Criteria Decision Making (MCDM) problem. If a decision problem involves multiple criteria and objectives, it is called as a Multi Attribute Decision Making problem (Ömürbek & Kınay, 2013). There are many MCDM methods in the literature for the solution of such problems. These methods are AHP (Analytic Hierarchy Process), ANP (Analytic Network Process), TOPSIS (Technique for Order Preference by Similarity to Ideal Solution), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation), UTADIS (Utilities Additives Discriminantes), ELECTRE (Elimination et Choix Traduisant la Realite), MAUT (Multiattribute Utility Theory), GRA (Grey Relational Analysis) etc. Teach method has some advantages compared with others (Ömürbek, Blacksmith & Akalın, 2013). Hence, to decide which MCDM method will be used for solution of the problem, factors like the nature of the problem, types of choices, measurement scales, type of uncertainty, dependency among the attributes, expectations of decision maker, and quantity and quality of the data should be considered (Tavana & Hatami-Marbini, 2011). By this study, it is aimed to develop a systematic decision process for the grant support applications that are expected to be evaluated according to their scientific adequacy by multiple evaluators under certain criteria. In this context, project evaluation process applied by The Scientific and Technological Research Council of Turkey (TÜBİTAK) the leading institutions in our country, was investigated. Firstly in the study, criteria that will be used on the project evaluation were decided. The main criteria were selected among TÜBİTAK evaluation criteria. These criteria were originality of project, methodology, project management/team and research opportunities and extensive impact of project. Moreover, for each main criteria, 2-4 sub criteria were defined, hence it was decided to evaluate projects over 13 sub-criterion in total. Due to superiority of determination criteria weights AHP method and provided opportunity ranking great number of alternatives TOPSIS method, they are used together. AHP method, developed by Saaty (1977), is based on selection by pairwise comparisons. Because of its simple structure and being easy to understand, AHP is the very popular method in the literature for determining criteria weights in MCDM problems. Besides, the TOPSIS method developed by Hwang and Yoon (1981) as a MCDM technique is an alternative to ELECTRE method and it is used in many areas. In the method, distance from each decision point to ideal and to negative ideal solution point was calculated by using Euclidian Distance Approach. In the study, main criteria and sub-criteria were compared on their own merits by using questionnaires that were developed based on an importance scale by four relative groups of people (i.e. TUBITAK specialists, TUBITAK managers, academics and individuals from business world ) After these pairwise comparisons, weight of the each main criteria and sub-criteria were calculated by using AHP method. Then these calculated criteria’ weights used as an input in TOPSİS method, a sample consisting 200 projects were ranked on their own merits. This new system supported to opportunity to get views of the people that take part of project process including preparation, evaluation and implementation on the evaluation of academic research projects. Moreover, instead of using four main criteria in equal weight to evaluate projects, by using weighted 13 sub-criteria and decision point’s distance from the ideal solution, systematic decision making process was developed. By this evaluation process, new approach was created to determine importance of academic research projects.

Keywords: Academic projects, Ahp method, Research projects evaluation, Topsis method.

Procedia PDF Downloads 589
1 Tool for Maxillary Sinus Quantification in Computed Tomography Exams

Authors: Guilherme Giacomini, Ana Luiza Menegatti Pavan, Allan Felipe Fattori Alves, Marcela de Oliveira, Fernando Antonio Bacchim Neto, José Ricardo de Arruda Miranda, Seizo Yamashita, Diana Rodrigues de Pina

Abstract:

The maxillary sinus (MS), part of the paranasal sinus complex, is one of the most enigmatic structures in modern humans. The literature has suggested that MSs function as olfaction accessories, to heat or humidify inspired air, for thermoregulation, to impart resonance to the voice and others. Thus, the real function of the MS is still uncertain. Furthermore, the MS anatomy is complex and varies from person to person. Many diseases may affect the development process of sinuses. The incidence of rhinosinusitis and other pathoses in the MS is comparatively high, so, volume analysis has clinical value. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure, which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust, and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression, and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to quantify MS volume proved to be robust, fast, and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases. Providing volume values for MS could be helpful in evaluating the presence of any abnormality and could be used for treatment planning and evaluation of the outcome. The computed tomography (CT) has allowed a more exact assessment of this structure which enables a quantitative analysis. However, this is not always possible in the clinical routine, and if possible, it involves much effort and/or time. Therefore, it is necessary to have a convenient, robust and practical tool correlated with the MS volume, allowing clinical applicability. Nowadays, the available methods for MS segmentation are manual or semi-automatic. Additionally, manual methods present inter and intraindividual variability. Thus, the aim of this study was to develop an automatic tool to quantity the MS volume in CT scans of paranasal sinuses. This study was developed with ethical approval from the authors’ institutions and national review panels. The research involved 30 retrospective exams of University Hospital, Botucatu Medical School, São Paulo State University, Brazil. The tool for automatic MS quantification, developed in Matlab®, uses a hybrid method, combining different image processing techniques. For MS detection, the algorithm uses a Support Vector Machine (SVM), by features such as pixel value, spatial distribution, shape and others. The detected pixels are used as seed point for a region growing (RG) segmentation. Then, morphological operators are applied to reduce false-positive pixels, improving the segmentation accuracy. These steps are applied in all slices of CT exam, obtaining the MS volume. To evaluate the accuracy of the developed tool, the automatic method was compared with manual segmentation realized by an experienced radiologist. For comparison, we used Bland-Altman statistics, linear regression and Jaccard similarity coefficient. From the statistical analyses for the comparison between both methods, the linear regression showed a strong association and low dispersion between variables. The Bland–Altman analyses showed no significant differences between the analyzed methods. The Jaccard similarity coefficient was > 0.90 in all exams. In conclusion, the developed tool to automatically quantify MS volume proved to be robust, fast and efficient, when compared with manual segmentation. Furthermore, it avoids the intra and inter-observer variations caused by manual and semi-automatic methods. As future work, the tool will be applied in clinical practice. Thus, it may be useful in the diagnosis and treatment determination of MS diseases.

Keywords: maxillary sinus, support vector machine, region growing, volume quantification

Procedia PDF Downloads 504