Search results for: distributed lag model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18377

Search results for: distributed lag model

18197 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 504
18196 Detection Method of Federated Learning Backdoor Based on Weighted K-Medoids

Authors: Xun Li, Haojie Wang

Abstract:

Federated learning is a kind of distributed training and centralized training mode, which is of great value in the protection of user privacy. In order to solve the problem that the model is vulnerable to backdoor attacks in federated learning, a backdoor attack detection method based on a weighted k-medoids algorithm is proposed. First of all, this paper collates the update parameters of the client to construct a vector group, then uses the principal components analysis (PCA) algorithm to extract the corresponding feature information from the vector group, and finally uses the improved k-medoids clustering algorithm to identify the normal and backdoor update parameters. In this paper, the backdoor is implanted in the federation learning model through the model replacement attack method in the simulation experiment, and the update parameters from the attacker are effectively detected and removed by the defense method proposed in this paper.

Keywords: federated learning, backdoor attack, PCA, k-medoids, backdoor defense

Procedia PDF Downloads 114
18195 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis

Authors: Petr Gurný

Abstract:

One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.

Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default

Procedia PDF Downloads 456
18194 Scalable Cloud-Based LEO Satellite Constellation Simulator

Authors: Karim Sobh, Khaled El-Ayat, Fady Morcos, Amr El-Kadi

Abstract:

Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch.

Keywords: LEO, cloud computing, constellation, satellite, network simulation, netfilter

Procedia PDF Downloads 386
18193 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm

Procedia PDF Downloads 354
18192 Handshake Algorithm for Minimum Spanning Tree Construction

Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha

Abstract:

In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.

Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis

Procedia PDF Downloads 658
18191 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 271
18190 Optimal Protection Coordination in Distribution Systems with Distributed Generations

Authors: Abdorreza Rabiee, Shahla Mohammad Hoseini Mirzaei

Abstract:

The advantages of distributed generations (DGs) based on renewable energy sources (RESs) leads to high penetration level of DGs in distribution network. With incorporation of DGs in distribution systems, the system reliability and security, as well as voltage profile, is improved. However, the protection of such systems is still challenging. In this paper, at first, the related papers are reviewed and then a practical scheme is proposed for coordination of OCRs in distribution system with DGs. The coordination problem is formulated as a nonlinear programming (NLP) optimization problem with the object function of minimizing total operating time of OCRs. The proposed method is studied based on a simple test system. The optimization problem is solved by General Algebraic Modeling System (GAMS) to calculate the optimal time dial setting (TDS) and also pickup current setting of OCRs. The results show the effectiveness of the proposed method and its applicability.

Keywords: distributed generation, DG, distribution network, over current relay, OCR, protection coordination, pickup current, time dial setting, TDS

Procedia PDF Downloads 138
18189 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina

Abstract:

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Keywords: action potential, myelinated segments, nonlinear models, Ranvier nodes, reduced order models, saltatory conduction

Procedia PDF Downloads 161
18188 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 408
18187 An Agile, Intelligent and Scalable Framework for Global Software Development

Authors: Raja Asad Zaheer, Aisha Tanveer, Hafza Mehreen Fatima

Abstract:

Global Software Development (GSD) is becoming a common norm in software industry, despite of the fact that global distribution of the teams presents special issues for effective communication and coordination of the teams. Now trends are changing and project management for distributed teams is no longer in a limbo. GSD can be effectively established using agile and project managers can use different agile techniques/tools for solving the problems associated with distributed teams. Agile methodologies like scrum and XP have been successfully used with distributed teams. We have employed exploratory research method to analyze different recent studies related to challenges of GSD and their proposed solutions. In our study, we had deep insight in six commonly faced challenges: communication and coordination, temporal differences, cultural differences, knowledge sharing/group awareness, speed and communication tools. We have established that each of these challenges cannot be neglected for distributed teams of any kind. They are interlinked and as an aggregated whole can cause the failure of projects. In this paper we have focused on creating a scalable framework for detecting and overcoming these commonly faced challenges. In the proposed solution, our objective is to suggest agile techniques/tools relevant to a particular problem faced by the organizations related to the management of distributed teams. We focused mainly on scrum and XP techniques/tools because they are widely accepted and used in the industry. Our solution identifies the problem and suggests an appropriate technique/tool to help solve the problem based on globally shared knowledgebase. We can establish a cause and effect relationship using a fishbone diagram based on the inputs provided for issues commonly faced by organizations. Based on the identified cause, suitable tool is suggested, our framework suggests a suitable tool. Hence, a scalable, extensible, self-learning, intelligent framework proposed will help implement and assess GSD to achieve maximum out of it. Globally shared knowledgebase will help new organizations to easily adapt best practices set forth by the practicing organizations.

Keywords: agile project management, agile tools/techniques, distributed teams, global software development

Procedia PDF Downloads 314
18186 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 635
18185 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 124
18184 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology

Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar

Abstract:

Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.

Keywords: data privacy, distributed system, federated learning, machine learning

Procedia PDF Downloads 134
18183 Design and Analysis of Metamaterial Based Vertical Cavity Surface Emitting Laser

Authors: Ishraq M. Anjum

Abstract:

Distributed Bragg reflectors are used in vertical-cavity surface-emitting lasers (VCSELs) in order to achieve very high reflectivity. Use of metamaterial in place of distributed Bragg reflector can reduce the device size significantly. A silicon-based metamaterial near perfect reflector is designed to be used in place of distributed Bragg reflectors in VCSELs. Mie resonance in dielectric microparticles is exploited in order to design the metamaterial. A reflectivity of 98.31% is achieved using finite-difference time-domain method. An 808nm double intra-cavity contacted VCSEL structure with 1.5 λ cavity is proposed using this metamaterial near perfect reflector. The active region is designed to be composed of seven GaAs/AlGaAs quantum wells. Upon numerical investigation of the designed VCSEL structure, the threshold current is found to be 2.96 mA at an aperture of 40 square micrometers and the maximum output power is found to be 71 mW at a current of 141 mA. Miniaturization of conventional VCSELs is possible using this design.

Keywords: GaAs, LASER, metamaterial, VCSEL, vertical cavity surface emitting laser

Procedia PDF Downloads 182
18182 Intelligent Control of Doubly Fed Induction Generator Wind Turbine for Smart Grid

Authors: Amal A. Hassan, Faten H. Fahmy, Abd El-Shafy A. Nafeh, Hosam K. M. Youssef

Abstract:

Due to the growing penetration of wind energy into the power grid, it is very important to study its interactions with the power system and to provide good control technique in order to deliver high quality power. In this paper, an intelligent control methodology is proposed for optimizing the controllers’ parameters of doubly fed induction generator (DFIG) based wind turbine generation system (WTGS). The genetic algorithm (GA) and particle swarm optimization (PSO) are employed and compared for the parameters adaptive tuning of the proposed proportional integral (PI) multiple controllers of the back to back converters of the DFIG based WTGS. For this purpose, the dynamic model of WTGS with DFIG and its associated controllers is presented. Furthermore, the simulation of the system is performed using MATLAB/SIMULINK and SIMPOWERSYSTEM toolbox to illustrate the performance of the optimized controllers. Finally, this work is validated to 33-bus test radial system to show the interaction between wind distributed generation (DG) systems and the distribution network.

Keywords: DFIG wind turine, intelligent control, distributed generation, particle swarm optimization, genetic algorithm

Procedia PDF Downloads 267
18181 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters

Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu

Abstract:

Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.

Keywords: induction heating, LQR controller, skin depth, temperature field

Procedia PDF Downloads 42
18180 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained

Authors: Homa Ghave, Parmis Shahmaleki

Abstract:

This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.

Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function

Procedia PDF Downloads 264
18179 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder

Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni

Abstract:

Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

Keywords: photonic crystals, disorder, correlation, transmission

Procedia PDF Downloads 477
18178 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 312
18177 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm

Procedia PDF Downloads 145
18176 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
18175 Using Nonhomogeneous Poisson Process with Compound Distribution to Price Catastrophe Options

Authors: Rong-Tsorng Wang

Abstract:

In this paper, we derive a pricing formula for catastrophe equity put options (or CatEPut) with non-homogeneous loss and approximated compound distributions. We assume that the loss claims arrival process is a nonhomogeneous Poisson process (NHPP) representing the clustering occurrences of loss claims, the size of loss claims is a sequence of independent and identically distributed random variables, and the accumulated loss distribution forms a compound distribution and is approximated by a heavy-tailed distribution. A numerical example is given to calibrate parameters, and we discuss how the value of CatEPut is affected by the changes of parameters in the pricing model we provided.

Keywords: catastrophe equity put options, compound distributions, nonhomogeneous Poisson process, pricing model

Procedia PDF Downloads 167
18174 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 129
18173 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 161
18172 IOT Based Process Model for Heart Monitoring Process

Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed

Abstract:

Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.

Keywords: IoT, process model, remote patient monitoring system, smart watch

Procedia PDF Downloads 332
18171 The Role of Knowledge Management in Global Software Engineering

Authors: Samina Khalid, Tehmina Khalil, Smeea Arshad

Abstract:

Knowledge management is essential ingredient of successful coordination in globally distributed software engineering. Various frameworks, KMSs, and tools have been proposed to foster coordination and communication between virtual teams but practical implementation of these solutions has not been found. Organizations have to face challenges to implement knowledge management system. For this purpose at first, a literature review is arranged to investigate about challenges that restrict organizations to implement KMS and then by taking in account these challenges a problem of need of integrated solution in the form of standardized KMS that can easily store tacit and explicit knowledge, has traced down to facilitate coordination and collaboration among virtual teams. Literature review has been already shown that knowledge is a complex perception with profound meanings, and one of the most important resources that contributes to the competitive advantage of an organization. In order to meet the different challenges caused by not properly managing knowledge related to projects among virtual teams in GSE, we suggest making use of the cloud computing model. In this research a distributed architecture to support KM storage is proposed called conceptual framework of KM as a service in cloud. Framework presented is enhanced and conceptual framework of KM is embedded into that framework to store projects related knowledge for future use.

Keywords: management, Globsl software development, global software engineering

Procedia PDF Downloads 527
18170 Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China

Authors: Deginet Aklilu, Tianqi Wang, Endwoke Amsalu, Wei Feng, Zhiwei Li, Xia Li, Lixin Tao, Yanxia Luo, Moning Guo, Xiangtong Liu, Xiuhua Guo

Abstract:

Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.

Keywords: admission, Beijing, cardiovascular diseases, distributed lag non linear model, temperature

Procedia PDF Downloads 62
18169 A Study of Issues and Mitigations on Distributed Denial of Service and Medical Internet of Things Devices

Authors: Robin Singh, Jing-Chiou Liou

Abstract:

The Internet of Things (IoT) devices are being used heavily as part of our everyday routines. Through improved communication and automated procedures, its popularity has assisted users in raising the quality of work. These devices are used in healthcare in order to better collect the patient’s data for their treatment. They are generally considered safe and secure. However, there is some possibility that some loopholes do exist which manufacturers do need to identify before some hacker takes advantage of them. For this study, we focused on two medical IoT devices which are pacemakers and hearing aids. The aim of this paper is to identify if there is any likelihood of these medical devices being hijacked and used as a botnet in Distributed Denial-Of Service attacks. Moreover, some mitigation strategies are being proposed to better secure

Keywords: cybersecurity, DDoS, IoT, medical devices

Procedia PDF Downloads 86
18168 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 324