Search results for: Darcy flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4693

Search results for: Darcy flow

2743 Quantification of Effect of Linear Anionic Polyacrylamide on Seepage in Irrigation Channels

Authors: Hamil Uribe, Cristian Arancibia

Abstract:

In Chile, the water for irrigation and hydropower generation is delivery essentially through unlined channels on earth, which have high seepage losses. Traditional seepage-abatement technologies are very expensive. The goals of this work were to quantify water loss in unlined channels and select reaches to evaluate the use of linear anionic polyacrylamide (LA-PAM) to reduce seepage losses. The study was carried out in Maule Region, central area of Chile. Water users indicated reaches with potential seepage losses, 45 km of channels in total, whose flow varied between 1.07 and 23.6 m³ s⁻¹. According to seepage measurements, 4 reaches of channels, 4.5 km in total, were selected for LA-PAM application. One to 4 LA-PAM applications were performed at rates of 11 kg ha⁻¹, considering wet perimeter area as basis of calculation. Large channels were used to allow motorboat moving against the current to carry-out LA-PAM application. For applications, a seeder machine was used to evenly distribute granulated polymer on water surface. Water flow was measured (StreamPro ADCP) upstream and downstream in selected reaches, to estimate seepage losses before and after LA-PAM application. Weekly measurements were made to quantify treatment effect and duration. In each case, water turbidity and temperature were measured. Channels showed variable losses up to 13.5%. Channels showing water gains were not treated with PAM. In all cases, LA-PAM effect was positive, achieving average loss reductions of 8% to 3.1%. Water loss was confirmed and it was possible to reduce seepage through LA-PAM applications provided that losses were known and correctly determined when applying the polymer. This could allow increasing irrigation security in critical periods, especially under drought conditions.

Keywords: canal seepage, irrigation, polyacrylamide, water management

Procedia PDF Downloads 163
2742 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps

Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li

Abstract:

With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.

Keywords: mobile computing, deep learning apps, sensitive information, static analysis

Procedia PDF Downloads 146
2741 Investigating the Thermal Comfort Properties of Mohair Fabrics

Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman

Abstract:

Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.

Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance

Procedia PDF Downloads 132
2740 Quantification and Detection of Non-Sewer Water Infiltration and Inflow in Urban Sewer Systems

Authors: M. Beheshti, S. Saegrov, T. M. Muthanna

Abstract:

Separated sewer systems are designed to transfer the wastewater from houses and industrial sections to wastewater treatment plants. Unwanted water in the sewer systems is a well-known problem, i.e. storm-water inflow is around 50% of the foul sewer, and groundwater infiltration to the sewer system can exceed 50% of total wastewater volume in deteriorated networks. Infiltration and inflow of non-sewer water (I/I) into sewer systems is unfavorable in separated sewer systems and can trigger overloading the system and reducing the efficiency of wastewater treatment plants. Moreover, I/I has negative economic, environmental, and social impacts on urban areas. Therefore, for having sustainable management of urban sewer systems, I/I of unwanted water into the urban sewer systems should be considered carefully and maintenance and rehabilitation plan should be implemented on these water infrastructural assets. This study presents a methodology to identify and quantify the level of I/I into the sewer system. Amount of I/I is evaluated by accurate flow measurement in separated sewer systems for specified isolated catchments in Trondheim city (Norway). Advanced information about the characteristics of I/I is gained by CCTV inspection of sewer pipelines with high I/I contribution. Achieving enhanced knowledge about the detection and localization of non-sewer water in foul sewer system during the wet and dry weather conditions will enable the possibility for finding the problem of sewer system and prioritizing them and taking decisions for rehabilitation and renewal planning in the long-term. Furthermore, preventive measures and optimization of sewer systems functionality and efficiency can be executed by maintenance of sewer system. In this way, the exploitation of sewer system can be improved by maintenance and rehabilitation of existing pipelines in a sustainable way by more practical cost-effective and environmental friendly way. This study is conducted on specified catchments with different properties in Trondheim city. Risvollan catchment is one of these catchments with a measuring station to investigate hydrological parameters through the year, which also has a good database. For assessing the infiltration in a separated sewer system, applying the flow rate measurement method can be utilized in obtaining a general view of the network condition from infiltration point of view. This study discusses commonly used and advanced methods of localizing and quantifying I/I in sewer systems. A combination of these methods give sewer operators the possibility to compare different techniques and obtain reliable and accurate I/I data which is vital for long-term rehabilitation plans.

Keywords: flow rate measurement, infiltration and inflow (I/I), non-sewer water, separated sewer systems, sustainable management

Procedia PDF Downloads 311
2739 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: ignition transient, solid rockets, starting transient, thrust transient

Procedia PDF Downloads 430
2738 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels

Authors: Abdulrahman Abdulrahman

Abstract:

A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.

Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile

Procedia PDF Downloads 223
2737 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 322
2736 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 384
2735 A BIM-Based Approach to Assess COVID-19 Risk Management Regarding Indoor Air Ventilation and Pedestrian Dynamics

Authors: T. Delval, C. Sauvage, Q. Jullien, R. Viano, T. Diallo, B. Collignan, G. Picinbono

Abstract:

In the context of the international spread of COVID-19, the Centre Scientifique et Technique du Bâtiment (CSTB) has led a joint research with the French government authorities Hauts-de-Seine department, to analyse the risk in school spaces according to their configuration, ventilation system and spatial segmentation strategy. This paper describes the main results of this joint research. A multidisciplinary team involving experts in indoor air quality/ventilation, pedestrian movements and IT domains was established to develop a COVID risk analysis tool based on Building Information Model. The work started with specific analysis on two pilot schools in order to provide for the local administration specifications to minimize the spread of the virus. Different recommendations were published to optimize/validate the use of ventilation systems and the strategy of student occupancy and student flow segmentation within the building. This COVID expertise has been digitized in order to manage a quick risk analysis on the entire building that could be used by the public administration through an easy user interface implemented in a free BIM Management software. One of the most interesting results is to enable a dynamic comparison of different ventilation system scenarios and space occupation strategy inside the BIM model. This concurrent engineering approach provides users with the optimal solution according to both ventilation and pedestrian flow expertise.

Keywords: BIM, knowledge management, system expert, risk management, indoor ventilation, pedestrian movement, integrated design

Procedia PDF Downloads 90
2734 Evaluation of an Integrated Supersonic System for Inertial Extraction of CO₂ in Post-Combustion Streams of Fossil Fuel Operating Power Plants

Authors: Zarina Chokparova, Ighor Uzhinsky

Abstract:

Carbon dioxide emissions resulting from burning of the fossil fuels on large scales, such as oil industry or power plants, leads to a plenty of severe implications including global temperature raise, air pollution and other adverse impacts on the environment. Besides some precarious and costly ways for the alleviation of CO₂ emissions detriment in industrial scales (such as liquefaction of CO₂ and its deep-water treatment, application of adsorbents and membranes, which require careful consideration of drawback effects and their mitigation), one physically and commercially available technology for its capture and disposal is supersonic system for inertial extraction of CO₂ in after-combustion streams. Due to the flue gas with a carbon dioxide concentration of 10-15 volume percent being emitted from the combustion system, the waste stream represents a rather diluted condition at low pressure. The supersonic system induces a flue gas mixture stream to expand using a converge-and-diverge operating nozzle; the flow velocity increases to the supersonic ranges resulting in rapid drop of temperature and pressure. Thus, conversion of potential energy into the kinetic power causes a desublimation of CO₂. Solidified carbon dioxide can be sent to the separate vessel for further disposal. The major advantages of the current solution are its economic efficiency, physical stability, and compactness of the system, as well as needlessness of addition any chemical media. However, there are several challenges yet to be regarded to optimize the system: the way for increasing the size of separated CO₂ particles (as they are represented on a micrometers scale of effective diameter), reduction of the concomitant gas separated together with carbon dioxide and provision of CO₂ downstream flow purity. Moreover, determination of thermodynamic conditions of the vapor-solid mixture including specification of the valid and accurate equation of state remains to be an essential goal. Due to high speeds and temperatures reached during the process, the influence of the emitted heat should be considered, and the applicable solution model for the compressible flow need to be determined. In this report, a brief overview of the current technology status will be presented and a program for further evaluation of this approach is going to be proposed.

Keywords: CO₂ sequestration, converging diverging nozzle, fossil fuel power plant emissions, inertial CO₂ extraction, supersonic post-combustion carbon dioxide capture

Procedia PDF Downloads 131
2733 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 69
2732 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 361
2731 Experimental Proof of Concept for Piezoelectric Flow Harvesting for In-Pipe Metering Systems

Authors: Sherif Keddis, Rafik Mitry, Norbert Schwesinger

Abstract:

Intelligent networking of devices has rapidly been gaining importance over the past years and with recent advances in the fields of microcontrollers, integrated circuits and wireless communication, low power applications have emerged, enabling this trend even more. Connected devices provide a much larger database thus enabling highly intelligent and accurate systems. Ensuring safe drinking water is one of the fields that require constant monitoring and can benefit from an increased accuracy. Monitoring is mainly achieved either through complex measures, such as collecting samples from the points of use, or through metering systems typically distant to the points of use which deliver less accurate assessments of the quality of water. Constant metering near the points of use is complicated due to their inaccessibility; e.g. buried water pipes, locked spaces, which makes system maintenance extremely difficult and often unviable. The research presented here attempts to overcome this challenge by providing these systems with enough energy through a flow harvester inside the pipe thus eliminating the maintenance requirements in terms of battery replacements or containment of leakage resulting from wiring such systems. The proposed flow harvester exploits the piezoelectric properties of polyvinylidene difluoride (PVDF) films to convert turbulence induced oscillations into electrical energy. It is intended to be used in standard water pipes with diameters between 0.5 and 1 inch. The working principle of the harvester uses a ring shaped bluff body inside the pipe to induce pressure fluctuations. Additionally the bluff body houses electronic components such as storage, circuitry and RF-unit. Placing the piezoelectric films downstream of that bluff body causes their oscillation which generates electrical charge. The PVDF-film is placed as a multilayered wrap fixed to the pipe wall leaving the top part to oscillate freely inside the flow. The warp, which allows for a larger active, consists of two layers of 30µm thick and 12mm wide PVDF layered alternately with two centered 6µm thick and 8mm wide aluminum foil electrodes. The length of the layers depends on the number of windings and is part of the investigation. Sealing the harvester against liquid penetration is achieved by wrapping it in a ring-shaped LDPE-film and welding the open ends. The fabrication of the PVDF-wraps is done by hand. After validating the working principle using a wind tunnel, experiments have been conducted in water, placing the harvester inside a 1 inch pipe at water velocities of 0.74m/s. To find a suitable placement of the wrap inside the pipe, two forms of fixation were compared regarding their power output. Further investigations regarding the number of windings required for efficient transduction were made. Best results were achieved using a wrap with 3 windings of the active layers which delivers a constant power output of 0.53µW at a 2.3MΩ load and an effective voltage of 1.1V. Considering the extremely low power requirements of sensor applications, these initial results are promising. For further investigations and optimization, machine designs are currently being developed to automate the fabrication and decrease tolerance of the prototypes.

Keywords: maintenance-free sensors, measurements at point of use, piezoelectric flow harvesting, universal micro generator, wireless metering systems

Procedia PDF Downloads 180
2730 Flow-Oriented Incentive Spirometry in the Reversal of Diaphragmatic Dysfunction in Bariatric Surgery Postoperative Period

Authors: Eli Maria Forti-Pazzianotto, Carolina Moraes Da Costa, Daniela Faleiros Berteli Merino, Maura Rigoldi Simões Da Rocha, Irineu Rasera-Junior

Abstract:

There is no conclusive evidence to support the use of one type or brand of incentive espirometry over others. The decision as to which equipment is best, have being based on empirical assessment of patient acceptance, ease of use, and cost. The aim was to evaluate the effects of use of two methodologies of breathing exercises, performed by flow-oriented incentive spirometry, in the reversal of diaphragmatic dysfunction in postoperative bariatric surgery. 38 morbid obese women were selected. Respiratory muscle strength was evaluated through the nasal inspiratory pressure (NIP), and the respiratory muscles endurance, through incremental test by measurement of sustained maximal inspiratory pressure (SMIP). They were randomized in 2 groups: 1- Respiron® Classic (RC) the inspirations were slow, deep and sustained for as long as possible (5 sec). 2- Respiron® Athletic1 (RA1) - the inspirations were explosive, quick and intense, raising balls by the explosive way. 6 sets of 15 repetitions with intervals of 30 to 60 seconds were performed in groups. At the end of the intervention program (second PO), the volunteers were reevaluated. The groups were homogeneous with regard to initial assessment. However on reevaluating there was a significant decline of the variable PIN (p= < 0.0001) and SMIP (p=0.0004) in RC. In the RA1 group there was a maintenance of SMIP (p=0.5076) after surgery. The use of the Respiron Athletic 1, as well as the methodology of application used, can contribute positively to preserve the inspiratory muscle endurance and improve the diaphragmatic dysfunction in postoperative period.

Keywords: bariatric surgery, incentive spirometry, respiratory muscle, physiotherapy

Procedia PDF Downloads 357
2729 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House

Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos

Abstract:

The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.

Keywords: airtightness, blower door, trnflow, infrared thermography

Procedia PDF Downloads 108
2728 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 252
2727 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction

Authors: Hua Li, Hongwu Deng

Abstract:

The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.

Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary

Procedia PDF Downloads 89
2726 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations

Procedia PDF Downloads 161
2725 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam

Authors: Huu Hue Van

Abstract:

The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.

Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir

Procedia PDF Downloads 66
2724 Architecture - Performance Relationship in GPU Computing - Composite Process Flow Modeling and Simulations

Authors: Ram Mohan, Richard Haney, Ajit Kelkar

Abstract:

Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. This research and technical presentation will focus on the analysis and understanding of the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines.

Keywords: graphical processing unit, software development and engineering, performance analysis, system architecture and software performance

Procedia PDF Downloads 353
2723 Parallel Opportunity for Water Conservation and Habitat Formation on Regulated Streams through Formation of Thermal Stratification in River Pools

Authors: Todd H. Buxton, Yong G. Lai

Abstract:

Temperature management in regulated rivers can involve significant expenditures of water to meet the cold-water requirements of species in summer. For this purpose, flows released from Lewiston Dam on the Trinity River in Northern California are 12.7 cms with temperatures around 11oC in July through September to provide adult spring Chinook cold water to hold in deep pools and mature until spawning in fall. The releases are more than double the flow and 10oC colder temperatures than the natural conditions before the dam was built. The high, cold releases provide springers the habitat they require but may suppress the stream food base and limit future populations of salmon by reducing the juvenile fish size and survival to adults via the positive relationship between the two. Field and modeling research was undertaken to explore whether lowering summer releases from Lewiston Dam may promote thermal stratification in river pools so that both the cold-water needs of adult salmon and warmer water requirements of other organisms in the stream biome may be met. For this investigation, a three-dimensional (3D) computational fluid dynamics (CFD) model was developed and validated with field measurements in two deep pools on the Trinity River. Modeling and field observations were then used to identify the flows and temperatures that may form and maintain thermal stratification under different meteorologic conditions. Under low flows, a pool was found to be well mixed and thermally homogenous until temperatures began to stratify shortly after sunrise. Stratification then strengthened through the day until shading from trees and mountains cooled the inlet flow and decayed the thermal gradient, which collapsed shortly before sunset and returned the pool to a well-mixed state. This diurnal process of stratification formation and destruction was closely predicted by the 3D CFD model. Both the model and field observations indicate that thermal stratification maintained the coldest temperatures of the day at ≥2m depth in a pool and provided water that was around 8oC warmer in the upper 2m of the pool. Results further indicate that the stratified pool under low flows provided almost the same daily average temperatures as when flows were an order of magnitude higher and stratification was prevented, indicating significant water savings may be realized in regulated streams while also providing a diversity in water temperatures the ecosystem requires. With confidence in the 3D CFD model, the model is now being applied to a dozen pools in the Trinity River to understand how pool bathymetry influences thermal stratification under variable flows and diurnal temperature variations. This knowledge will be used to expand the results to 52 pools in a 64 km reach below Lewiston Dam that meet the depth criteria (≥2 m) for spring Chinook holding. From this, rating curves will be developed to relate discharge to the volume of pool habitat that provides springers the temperature (<15.6oC daily average), velocity (0.15 to 0.4 m/s) and depths that accommodate the escapement target for spring Chinook (6,000 adults) under maximum fish densities measured in other streams (3.1 m3/fish) during the holding time of year (May through August). Flow releases that meet these goals will be evaluated for water savings relative to the current flow regime and their influence on indicator species, including the Foothill Yellow-Legged Frog, and aspects of the stream biome that support salmon populations, including macroinvertebrate production and juvenile Chinook growth rates.

Keywords: 3D CFD modeling, flow regulation, thermal stratification, chinook salmon, foothill yellow-legged frogs, water managment

Procedia PDF Downloads 48
2722 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 235
2721 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran

Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad

Abstract:

The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.

Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings

Procedia PDF Downloads 321
2720 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers

Authors: H. Asadi, H. Naderan Tahan

Abstract:

The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.

Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics

Procedia PDF Downloads 274
2719 The Minimum Patch Size Scale for Seagrass Canopy Restoration

Authors: Aina Barcelona, Carolyn Oldham, Jordi Colomer, Teresa Serra

Abstract:

The loss of seagrass meadows worldwide is being tackled by formulating coastal restoration strategies. Seagrass loss results in a network of vegetated patches which are barely interconnected, and consequently, the ecological services they provide may be highly compromised. Hence, there is a need to optimize coastal management efforts in order to implement successful restoration strategies, not only through modifying the architecture of the canopies but also by gathering together information on the hydrodynamic conditions of the seabeds. To obtain information on the hydrodynamics within the patches of vegetation, this study deals with the scale analysis of the minimum lengths of patch management strategies that can be effectively used on. To this aim, a set of laboratory experiments were conducted in a laboratory flume where the plant densities, patch lengths, and hydrodynamic conditions were varied to discern the vegetated patch lengths that can provide optimal ecosystem services for canopy development. Two possible patch behaviours based on the turbulent kinetic energy (TKE) production were determined: one where plants do not interact with the flow and the other where plants interact with waves and produce TKE. Furthermore, this study determines the minimum patch lengths that can provide successful management restoration. A canopy will produce TKE, depending on its density, the length of the vegetated patch, and the wave velocities. Therefore, a vegetated patch will produce plant-wave interaction under high wave velocities when it presents large lengths and high canopy densities.

Keywords: seagrass, minimum patch size, turbulent kinetic energy, oscillatory flow

Procedia PDF Downloads 180
2718 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor

Authors: Y. Muto, S. Araki, H. Yamamoto

Abstract:

The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.

Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor

Procedia PDF Downloads 506
2717 Study of Oxidative Stability, Cold Flow Properties and Iodine Value of Macauba Biodiesel Blends

Authors: Acacia A. Salomão, Willian L. Gomes da Silva, Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

Biodiesel physical and chemical properties depend on the raw material composition used in its synthesis. Saturated fatty acid esters confer high oxidative stability, while unsaturated fatty acid esters improve the cold flow properties. In this study, an alternative vegetal source - the macauba kernel oil - was used in the biodiesel synthesis instead of conventional sources. Macauba can be collected from native palm trees and is found in several regions in Brazil. Its oil is a promising source when compared to several other oils commonly obtained from food products, such as soybean, corn or canola oil, due to its specific characteristics. However, the usage of biodiesel made from macauba oil alone is not recommended due to the difficulty of producing macauba in large quantities. For this reason, this project proposes the usage of blends of the macauba oil with conventional oils. These blends were prepared by mixing the macauba biodiesel with biodiesels obtained from soybean, corn, and from residual frying oil, in the following proportions: 20:80, 50:50 e 80:20 (w/w). Three parameters were evaluated, using the standard methods, in order to check the quality of the produced biofuel and its blends: oxidative stability, cold filter plugging point (CFPP), and iodine value. The induction period (IP) expresses the oxidative stability of the biodiesel, the CFPP expresses the lowest temperature in which the biodiesel flows through a filter without plugging the system and the iodine value is a measure of the number of double bonds in a sample. The biodiesels obtained from soybean, residual frying oil and corn presented iodine values higher than 110 g/100 g, low oxidative stability and low CFPP. The IP values obtained from these biodiesels were lower than 8 h, which is below the recommended standard value. On the other hand, the CFPP value was found within the allowed limit (5 ºC is the maximum). Regarding the macauba biodiesel, a low iodine value was observed (31.6 g/100 g), which indicates the presence of high content of saturated fatty acid esters. The presence of saturated fatty acid esters should imply in a high oxidative stability (which was found accordingly, with IP = 64 h), and high CFPP, but curiously the latter was not observed (-3 ºC). This behavior can be explained by looking at the size of the carbon chains, as 65% of this biodiesel is composed by short chain saturated fatty acid esters (less than 14 carbons). The high oxidative stability and the low CFPP of macauba biodiesel are what make this biofuel a promising source. The soybean, corn and residual frying oil biodiesels also have low CFPP, but low oxidative stability. Therefore the blends proposed in this work, if compared to the common biodiesels, maintain the flow properties but present enhanced oxidative stability.

Keywords: biodiesel, blends, macauba kernel oil, stability oxidative

Procedia PDF Downloads 515
2716 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement

Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh

Abstract:

The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.

Keywords: glass waste, strength properties, cement mortar, environmental friendly

Procedia PDF Downloads 43
2715 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence

Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang

Abstract:

Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.

Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics

Procedia PDF Downloads 60
2714 Into Composer’s Mind: Understanding the Process of Translating Emotions into Music

Authors: Sanam Preet Singh

Abstract:

Music in comparison to any other art form is more reactive and alive. It has the capacity to directly interact with the listener's mind and generate an emotional response. All the major research conducted in the area majorly relied on the listener’s perspective to draw an understanding of music and its effects. There is a very small number of studies which focused on the source from which music originates, the music composers. This study aims to understand the process of how music composers understand and perceive emotions and how they translate them into music, in simpler terms how music composers encode their compositions to express determining emotions. One-to-one in-depth semi structured interviews were conducted, with 8 individuals both male and female, who were professional to intermediate-level music composers and Thematic analysis was conducted to derive the themes. The analysis showed that there is no single process on which music composers rely, rather there are combinations of multiple micro processes, which constitute the understanding and translation of emotions into music. In terms of perception of emotions, the role of processes such as Rumination, mood influence and escapism was discovered in the analysis. Unique themes about the understanding of their top down and bottom up perceptions were also discovered. Further analysis also revealed the role of imagination and emotional trigger explaining how music composers make sense of emotions. The translation process of emotions revealed the role of articulation and instrumentalization, in encoding or translating emotions to a composition. Further, applications of the trial and error method, nature influences and flow in the translation process are also discussed. In the end themes such as parallels between musical patterns and emotions, comfort zones and relatability also emerged during the analysis.

Keywords: comfort zones, escapism, flow, rumination

Procedia PDF Downloads 72