Search results for: online learning tools
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12139

Search results for: online learning tools

10219 Accelerating Personalization Using Digital Tools to Drive Circular Fashion

Authors: Shamini Dhana, G. Subrahmanya VRK Rao

Abstract:

The fashion industry is advancing towards a mindset of zero waste, personalization, creativity, and circularity. The trend of upcycling clothing and materials into personalized fashion is being demanded by the next generation. There is a need for a digital tool to accelerate the process towards mass customization. Dhana’s D/Sphere fashion technology platform uses digital tools to accelerate upcycling. In essence, advanced fashion garments can be designed and developed via reuse, repurposing, recreating activities, and using existing fabric and circulating materials. The D/Sphere platform has the following objectives: to provide (1) An opportunity to develop modern fashion using existing, finished materials and clothing without chemicals or water consumption; (2) The potential for an everyday customer and designer to use the medium of fashion for creative expression; (3) A solution to address the global textile waste generated by pre- and post-consumer fashion; (4) A solution to reduce carbon emissions, water, and energy consumption with the participation of all stakeholders; (5) An opportunity for brands, manufacturers, retailers to work towards zero-waste designs and as an alternative revenue stream. Other benefits of this alternative approach include sustainability metrics, trend prediction, facilitation of disassembly and remanufacture deep learning, and hyperheuristics for high accuracy. A design tool for mass personalization and customization utilizing existing circulating materials and deadstock, targeted to fashion stakeholders will lower environmental costs, increase revenues through up to date upcycled apparel, produce less textile waste during the cut-sew-stitch process, and provide a real design solution for the end customer to be part of circular fashion. The broader impact of this technology will result in a different mindset to circular fashion, increase the value of the product through multiple life cycles, find alternatives towards zero waste, and reduce the textile waste that ends up in landfills. This technology platform will be of interest to brands and companies that have the responsibility to reduce their environmental impact and contribution to climate change as it pertains to the fashion and apparel industry. Today, over 70% of the $3 trillion fashion and apparel industry ends up in landfills. To this extent, the industry needs such alternative techniques to both address global textile waste as well as provide an opportunity to include all stakeholders and drive circular fashion with new personalized products. This type of modern systems thinking is currently being explored around the world by the private sector, organizations, research institutions, and governments. This technological innovation using digital tools has the potential to revolutionize the way we look at communication, capabilities, and collaborative opportunities amongst stakeholders in the development of new personalized and customized products, as well as its positive impacts on society, our environment, and global climate change.

Keywords: circular fashion, deep learning, digital technology platform, personalization

Procedia PDF Downloads 66
10218 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 90
10217 Introducing, Testing, and Evaluating a Unified JavaScript Framework for Professional Online Studies

Authors: Caspar Goeke, Holger Finger, Dorena Diekamp, Peter König

Abstract:

Online-based research has recently gained increasing attention from various fields of research in the cognitive sciences. Technological advances in the form of online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. However, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we propose and test a new JavaScript framework that enables researchers to conduct any kind of behavioral research in the browser without the need to program a single line of code. In particular our framework offers the possibility to manipulate and combine the experimental stimuli via a graphical editor, directly in the browser. Moreover, we included an action-event system that can be used to handle user interactions, interactively change stimuli properties or store participants’ responses. Besides traditional recordings such as reaction time, mouse and keyboard presses, the tool offers webcam based eye and face-tracking. On top of these features our framework also takes care about the participant recruitment, via crowdsourcing platforms such as Amazon Mechanical Turk. Furthermore, the build in functionality of google translate will ensure automatic text translations of the experimental content. Thereby, thousands of participants from different cultures and nationalities can be recruited literally within hours. Finally, the recorded data can be visualized and cleaned online, and then exported into the desired formats (csv, xls, sav, mat) for statistical analysis. Alternatively, the data can also be analyzed online within our framework using the integrated Ipython notebook. The framework was designed such that studies can be used interchangeably between researchers. This will support not only the idea of open data repositories but also constitutes the possibility to share and reuse the experimental designs and analyses such that the validity of the paradigms will be improved. Particularly, sharing and integrating the experimental designs and analysis will lead to an increased consistency of experimental paradigms. To demonstrate the functionality of the framework we present the results of a pilot study in the field of spatial navigation that was conducted using the framework. Specifically, we recruited over 2000 subjects with various cultural backgrounds and consequently analyzed performance difference in dependence on the factors culture, gender and age. Overall, our results demonstrate a strong influence of cultural factors in spatial cognition. Such an influence has not yet been reported before and would not have been possible to show without the massive amount of data collected via our framework. In fact, these findings shed new lights on cultural differences in spatial navigation. As a consequence we conclude that our new framework constitutes a wide range of advantages for online research and a methodological innovation, by which new insights can be revealed on the basis of massive data collection.

Keywords: cultural differences, crowdsourcing, JavaScript framework, methodological innovation, online data collection, online study, spatial cognition

Procedia PDF Downloads 257
10216 Use of Social Media in Political Communications: Example of Facebook

Authors: Havva Nur Tarakci, Bahar Urhan Torun

Abstract:

The transformation that is seen in every area of life by technology, especially internet technology changes the structure of political communications too. Internet, which is at the top of new communication technologies, affects political communications with its structure in a way that no traditional communication tools ever have and enables interaction and the channel between receiver and sender, and it becomes one of the most effective tools preferred among the political communication applications. This state as a result of technological convergence makes Internet an unobtainable place for political communication campaigns. Political communications, which means every kind of communication strategies that political parties called 'actors of political communications' use with the aim of messaging their opinions and party programmes to their present and potential voters who are a target group for them, is a type of communication that is frequently used also among social media tools at the present day. The electorate consisting of different structures is informed, directed, and managed by social media tools. Political parties easily reach their electorate by these tools without any limitations of both time and place and also are able to take the opinions and reactions of their electorate by the element of interaction that is a feature of social media. In this context, Facebook, which is a place that political parties use in social media at most, is a communication network including in our daily life since 2004. As it is one of the most popular social networks today, it is among the most-visited websites in the global scale. In this way, the research is based on the question, “How do the political parties use Facebook at the campaigns, which they conduct during the election periods, for informing their voters?” and it aims at clarifying the Facebook using practices of the political parties. In direction of this objective the official Facebook accounts of the four political parties (JDP–AKParti, PDP–BDP, RPP-CHP, NMP-MHP), which reach their voters by social media besides other communication tools, are treated, and a frame for the politics of Turkey is formed. The time of examination is constricted with totally two weeks, one week before the mayoral elections and one week after the mayoral elections, when it is supposed that the political parties use their Facebook accounts in full swing. As a research method, the method of content analysis is preferred, and the texts and the visual elements that are gotten are interpreted based on this analysis.

Keywords: Facebook, political communications, social media, electrorate

Procedia PDF Downloads 383
10215 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 134
10214 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: A Case Study of Problem-Based Learning

Authors: Nirit Raichel, Dorit Alt

Abstract:

Although university teaching is claimed to have a special task to support students in adopting ways of thinking and producing new knowledge anchored in scientific inquiry practices, it is argued that students' habits of learning are still overwhelmingly skewed toward passive acquisition of knowledge from authority sources rather than from collaborative inquiry activities. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium is aimed at developing updated instructional practices that put a premium on adaptability to the emerging requirements of present society. LLAF has created a practical guide for teachers containing updated pedagogical strategies based on the constructivist approach for learning, arranged along Delors’ four theoretical ‘pillars’ of education: Learning to know, learning to do, learning to live together, and learning to be. This presentation will be limited to problem-based learning (PBL), as a strategy introduced in the second pillar. PBL leads not only to the acquisition of technical skills, but also allows the development of skills like problem analysis and solving, critical thinking, cooperation and teamwork, decision- making and self-regulation that can be transferred to other contexts. This educational strategy will be exemplified by a case study conducted in the pre-piloting stage of the project. The case describes a three-fold process implemented in a postgraduate course for in-service teachers, including: (1) learning about PBL (2) implementing PBL in the participants' classes, and (3) qualitatively assessing the contributions of PBL to students' outcomes. An example will be given regarding the ways by which PBL was applied and assessed in civic education for high-school students. Two 9th-grade classes have participated the study; both included several students with learning disability. PBL was applied only in one class whereas traditional instruction was used in the other. Results showed a robust contribution of PBL to students' affective and cognitive outcomes as reflected in their motivation to engage in learning activities, and to further explore the subject. However, students with learning disability were less favorable with this "active" and "annoying" environment. Implications of these findings for the LLAF project will be discussed.

Keywords: problem-based learning, higher education, pedagogical strategies

Procedia PDF Downloads 334
10213 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 62
10212 International Students into the Irish Higher Education System: Supporting the Transition

Authors: Tom Farrelly, Yvonne Kavanagh, Tony Murphy

Abstract:

The sharp rise in international students into Ireland has provided colleges with a number of opportunities but also a number of challenges, both at an institutional and individual lecturer level and of course for the incoming student. Previously, Ireland’s population, particularly its higher education student population was largely homogenous, largely drawn from its own shores and thus reflecting the ethnic, cultural and religious demographics of the day. However, over the twenty years Ireland witnessed considerable economic growth, downturn and subsequent growth all of which has resulted in an Ireland that has changed both culturally and demographically. Propelled by Ireland’s economic success up to the late 2000s, one of the defining features of this change was an unprecedented rise in the number of migrants, both academic and economic. In 2013, Ireland’s National Forum for the Enhancement for Teaching and Learning in Higher Education (hereafter the National Forum) invited proposals for inter-institutional collaborative projects aimed at different student groups’ transitioning in or out of higher education. Clearly, both as a country and a higher education sector we want incoming students to have a productive and enjoyable time in Ireland. One of the ways that will help the sector help the students make a successful transition is by developing strategies and polices that are well informed and student driven. This abstract outlines the research undertaken by the five colleges Institutes of Technology: Carlow; Cork; Tralee & Waterford and University College Cork) in Ireland that constitute the Southern cluster aimed at helping international students transition into the Irish higher education system. The aim of the southern clusters’ project was to develop a series of online learning units that can be accessed by prospective incoming international students prior to coming to Ireland and by Irish based lecturing staff. However, in order to make the units as relevant and informed as possible there was a strong research element to the project. As part of the southern cluster’s research strategy a large-scale online survey using SurveyMonkey was undertaken across the five colleges drawn from their respective international student communities. In total, there were 573 responses from students coming from over twenty different countries. The results from the survey have provided some interesting insights into the way that international students interact with and understand the Irish higher education system. The research and results will act as a model for consistent practice applicable across institutional clusters, thereby allowing institutions to minimise costs and focus on the unique aspects of transitioning international students into their institution.

Keywords: digital, international, support, transitions

Procedia PDF Downloads 283
10211 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
10210 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries

Authors: Ram A. Giri, Amna Bedri, Abdou Niane

Abstract:

Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.

Keywords: exclusion, inclusion, inclusive education, marginalization

Procedia PDF Downloads 230
10209 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning

Authors: Yuqing Sun

Abstract:

Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.

Keywords: Chinese, vocabulary acquisition, MALL, case

Procedia PDF Downloads 414
10208 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 107
10207 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines

Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.

Abstract:

Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.

Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition

Procedia PDF Downloads 574
10206 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 314
10205 Virtual Academy Next: Addressing Transition Challenges Through a Gamified Virtual Transition Program for Students with Disabilities

Authors: Jennifer Gallup, Joel Bocanegra, Greg Callan, Abigail Vaughn

Abstract:

Students with disabilities (SWD) engaged in a distance summer program delivered over multiple virtual mediums that used gaming principles to teach and practice self-regulated learning (SRL) through the process of exploring possible jobs. Gaming quests were developed to explore jobs and teach transition skills. Students completed specially designed quests that taught and reinforced SRL and problem-solving through individual, group, and teacher-led experiences. SRL skills learned were reinforced through guided job explorations over the context of MinecraftEDU, zoom with experts in the career, collaborations with a team over Marco Polo, and Zoom. The quests were developed and laid out on an accessible web page, with active learning opportunities and feedback conducted within multiple virtual mediums including MinecraftEDU. Gaming mediums actively engage players in role-playing, problem-solving, critical thinking, and collaboration. Gaming has been used as a medium for education since the inception of formal education. Games, and specifically board games, are pre-historic, meaning we had board games before we had written language. Today, games are widely used in education, often as a reinforcer for behavior or for rewards for work completion. Games are not often used as a direct method of instruction and assessment; however, the inclusion of games as an assessment tool and as a form of instruction increases student engagement and participation. Games naturally include collaboration, problem-solving, and communication. Therefore, our summer program was developed using gaming principles and MinecraftEDU. This manuscript describes a virtual learning summer program called Virtual Academy New and Exciting Transitions (VAN) that was redesigned from a face-to-face setting to a completely online setting with a focus on SWD aged 14-21. The focus of VAN was to address transition planning needs such as problem-solving skills, self-regulation, interviewing, job exploration, and communication for transition-aged youth diagnosed with various disabilities (e.g., learning disabilities, attention-deficit hyperactivity disorder, intellectual disability, down syndrome, autism spectrum disorder).

Keywords: autism, disabilities, transition, summer program, gaming, simulations

Procedia PDF Downloads 75
10204 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 142
10203 Commentary on Successful and Emerging Bullying Control Programs: A Comparison between Eighteen Bullying Interventions Applied Worldwide

Authors: Sohni Siddiqui, Anja Schultze-Krumbholz

Abstract:

Our lives now revolve more around online-related tasks, as the internet has become a necessity. One of the disturbance concerns with high internet usage is the multiplication of cyber-associated risky behaviors such as cyber aggression and/or cyberbullying. Cyber Bullying is an emerging issue that needs immediate attention from many stakeholders such as parents, doctors, school administrators, policymakers, researchers, and others, especially in the COVID-19 pandemic when online learning has been adopted as an instructional strategy, and there is a continuous rise in cyberbullying cases. The aim of the article is to review existing successful and emerging interventions designed to control bullying and cyberbullying by engaging individuals through teachers’ professional development and adopting a whole-school approach. The study identified the strengths and limitations of the programs and suggested improvements to existing interventions. Preparing interventions with a strong theoretical framework, integrating applications of emerging theories in interventions, promoting proactive and reactive strategies in combination, beginning with the baseline needs assessment surveys, reducing digital time and digital divide among parents and children, promoting the concept of lead trainer, peer trainer, and hot spots, focusing on physical activities, use of landmarks are some of the recommendations proposed by authors. In addition to face-to-face intervention, the researchers recommend updating and improving previous intervention programs with games and apps. Especially in the time of pandemic crises, when face-to-face interactions are limited and cyberbullying is triggered, the use of apps, web-based interventions, and games can be an effective way to control electronic perpetration and victimization.

Keywords: anti bullying programs, cyber bullying, individualized trainings, teachers’ professional development, whole school interventions

Procedia PDF Downloads 151
10202 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 48
10201 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386
10200 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 196
10199 A Study on the Usage of Library versus the Internet as Sources of Information with Reference to the Undergraduate Students in the Faculties of Humanities, Social Sciences, Science and Commerce and Management in the University of Kelaniya

Authors: Dilini Bodhinayaka, Aunsha Sajeewanie Rubasinghe

Abstract:

The library of the University of Kelaniya plays a significant role in supporting the academic work of the university. As at July, 2016 the library of the University of Kelaniya comprised of 250301 printed books, 2157 CD-ROMs, 1203 theses and 800 non-book materials. Furthermore, the library is subscribed to about 60 local journals, access to over 12,500 full text academic journals and around 100,000 e-books. The library provides the services and resources that support in teaching, doing research and learning. On the other hand, undergraduate students have adopted and continued to use the online information retrieval for their academic and research work. This study aims to compare the usage of internet and the usage of library among undergraduates in the faculties of Humanities, Social Sciences, Science and Commerce & Management in the University of Kelaniya. Also, the research attempts to determine the factors of enthusiasm or the disinterest in the students in using library and Internet. All the undergraduate students in the University (8440 students at the time of the study) were taken as the population of the study and the sample of 15% was selected out of the population using stratified sampling method. A total of 1266 questionnaires were distributed among undergraduates of the above mentioned faculties. The qualitative data were analyzed using Descriptive Statistical Method. Findings, of the study indicated that undergraduate students of the faculties of Humanities, Social Sciences, Science and Commerce & Management use both the library and the internet to fulfill their information needs. But, the students in the faculty of Science and Commerce & Management use the internet sources more than the library. The undergraduates in the faculties of Humanities and Social Sciences frequently use the university library than the internet. Although, majority agreed that the internet is the most preferred source of information they have no an adequate awareness about the available internet resources in the E-library of the University of Kelaniya.

Keywords: university libraries, University of Kelaniya, online resources, undergraduates in Sri Lanka

Procedia PDF Downloads 238
10198 Online Language Tandem: Focusing on Intercultural Communication Competence and Non-Verbal Cues

Authors: Amira Benabdelkader

Abstract:

Communication presents the channel by which humankind create and maintain their relationship with others, express themselves, exchange information, learn and teach etc. The context of communication plays a distinctive role in deciding about the language to be used. The term context is mainly used to refer to the interlocutors, their cultures, languages, relationship, physical surrounding that is the communication setting, type of the information to be transmitted, the topic etc. Cultures, on one hand, impose on humans certain behaviours, attitudes, gestures and beliefs. On the other hand, the focus on language is inevitable as it is with its verbal and non-verbal components, a key tool in and for communication. Moreover, each language has its particularity in how people voice, address and express their thoughts, feelings and beliefs. Being in the same setting with people from different cultures and languages and having conversations with them would call upon the intercultural communicative competence. This latter would promote the success of their conversations. Additionally, this competence could manifest in several ways during their interactions, to the extent that no one can predict when and how the interlocutors would use it. The only thing probably that could be confirmed is that the setting and culture would in a way or another intervene and often shape the flow of their communication, if not the whole communication. Therefore, this paper will look at the intercultural communicative competence of language learners when introducing their cultures to each other in an online language tandem (henceforth OLT) using their second and/or foreign language with the L1 language speakers. The participants of this study are Algerian (use L2: French, FL: English), British (L1: English, L2/FL: French). In other words, this current paper will provide a qualitative analysis of the OLT experiment by emphasising how language learners can overcome the cultural differences in an intercultural setting while communicating online using Skype (video conversations) with people from different countries, cultures and L1. The non-verbal cues will have the lion share in the analysis by focusing on how they have been used to maintain this intercultural communication or hinder it through the misinterpretation of gestures, head movements, grimaces etc.

Keywords: intercultural communicative competence, non-verbal cues, online language tandem, Skype

Procedia PDF Downloads 281
10197 Media Framing of Media Regulators in Ghana: A Content Analysis of Selected News Articles on Four Ghanaian Online Newspapers

Authors: Elizabeth Owusu Asiamah

Abstract:

The Ghanaian news media play a crucial role in shaping people's thinking patterns through the nature of the coverage they give to issues, events and personalities. Since the media do not work in a vacuum but within a broader spectrum, which is society, whatever stories they cover and the nature of frames used to narrate such stories go a long way to influence how citizens perceive issues in the country. Consequently, the National Media Commission and the National Communications Authority were instituted to monitor and direct the activities of the media to ensure professionalism that prioritizes society's interest over commercial interest. As the two media regulators go about their routine task of monitoring the operations of the media, they receive coverage from various media outlets (newspapers, radio, television and online). Some people believe that the kind of approach the regulators adopt depends on the nature of coverage the media give them in their reportage. This situation demands an investigation into how the media, regulated by these regulatory bodies, are representing the regulators in the public's eye and the issues arising from such coverage. Extant literature indicates that studies on media framing have centered on politics, environmental issues, public health issues, conflict and wars, etc. However, there appear to be no studies on media framing of media regulators, especially in the Ghanaian context. Since online newspapers have assumed more mainstream positions in the Ghanaian media and have attracted more audiences in recent times, this study investigates the nature of coverage given to media regulators by four purposively sampled online newspapers in Ghana. 96 news articles are extracted from the websites of the Daily Graphic, Ghanaian Times, Daily Guide and Chronicle newspapers within a five-year period to identify the prominence given to stories about the two media regulators and the frames used to narrate stories about them. Data collected are thematically analyzed through the lens of agenda-setting and media-framing theories. The findings of the study revealed that the two regulators were not given much coverage by way of frequency; however, much prominence was given to them in terms of enhancements such as images. The study further disclosed that most of the news articles framed the regulators as weak and incompetent, which is likely to affect how the public also views the regulators. The study concludes that since frames around the supportive nature of the regulators to issues of the media were not hammered by the online newspapers, the public will not perceive the regulators as playing their roles effectively. Thus, a need for more positive frames to be used to narrate stories about the National Media Commission and the National Communication Authority to promote a cordial relationship between the two institutions and a good image to the public.

Keywords: agenda setting, media framing, media regulators, online newspapers

Procedia PDF Downloads 69
10196 The Implementation of Social Responsibility with the Approach of Indonesian Realistic Mathematics Education in Teaching and Learning Mathematics on Students' Engagement and Learning

Authors: Nurwati Djaman, Suradi Tahmir, Nurdin Arsyad

Abstract:

The major objective of this study was to implement and evaluate the use of the implementation of social responsibility with the approach of Indonesian Realistic Mathematics Education (PMRI) in teaching and learning mathematics on students’ engagement and learning. The research problems investigated in this research: 1) What were the effects of the implementation of social responsibility with PMRI approach to learning mathematics? 2) What were the effects of the approach to students’ engagement? An action research and grounded theory methodology were adopted for the study. This study used mixed methods to collect, describe, and interpret the data. The data were collected through focus group discussion, classroom observations, questionnaire, interview, and students’ work. The participants in this study consisted of 45 students. The study revealed that the approach has given students the opportunity to develop their understanding of concepts and procedures, problem-solving ability, and communication ability. Also, students’ involvement in the approach improved their engagement in learning mathematics in the three domains of cognitive engagement, effective engagement, and behavioral engagement. In particular, the data collection from the focus group, classroom observations, and interviews suggest that, during this study, the students became more active participants in the mathematics lessons.

Keywords: Indonesian Realistic Mathematics Education, PMRI, learning mathematics, social responsibility, students' engagement

Procedia PDF Downloads 144
10195 The Impact of Virtual Learning Strategy on Youth Learning Motivation in Malaysian Higher Learning Instituitions

Authors: Hafizah Harun, Habibah Harun, Azlina Kamaruddin

Abstract:

Virtual reality has become a powerful and promising tool in education because of their unique technological characteristics that differentiate them from the other ICT applications. Despite the numerous interpretations of its definition, virtual reality can be concisely and precisely described as the integration of computer graphics and various input and display technologies to create the illusion of immersion in a computer generated reality. Generally, there are two major types based on the level of interaction and immersive environment that are immersive and non-immersive virtual reality. In the study of the role of virtual reality in built environment education, Horne and Thompson were reported as saying that the benefits of using visualization technologies were seen as having the potential to improve and extend the learning process, increase student motivation and awareness, and add to the diversity of teaching methods. Youngblut reported that students enjoy working with virtual worlds and this experience can be highly motivating. The impact of virtual reality on youth learning in Malaysia is currently not well explored because the technology is still not widely used here. Only a handful of the universities, such as University Malaya, MMU, and Unimas are applying virtual reality strategy in some of their undergraduate programs. From the literature, it has been identified that there are several virtual reality learning strategies currently available. Therefore, this study aims to investigate the impact of Virtual Reality strategy on Youth Learning Motivation in Malaysian higher learning institutions. We will explore the relationship between virtual reality (gaming, laboratory, simulation) and youth leaning motivation. Another aspect that we will explore is the framework for virtual reality implementation at higher learning institution in Malaysia. This study will be carried out quantitatively by distributing questionnaires to respondents from sample universities. Data analysis are descriptive and multiple regression. Researcher will carry out a pilot test prior to distributing the questionnaires to 300 undergraduate students who are undergoing their courses in virtual reality environment. The respondents come from two universities, MMU CyberJaya and University Malaya. The expected outcomes from this study are the identification of which virtual reality strategy has most impact on students’ motivation in learning and a proposed framework of virtual reality implementation at higher learning.

Keywords: virtual reality, learning strategy, youth learning, motivation

Procedia PDF Downloads 389
10194 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning

Authors: Huixuan Xu

Abstract:

The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.

Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning

Procedia PDF Downloads 256
10193 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 177
10192 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 435
10191 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 175
10190 Project-Based Learning and Evidence Based Nursing as Tools for Developing Students' Integrative Critical Thinking Skills: Content Analysis of Final Students' Projects

Authors: E. Maoz

Abstract:

Background: As a teaching method, project-based learning is strongly linked to developing students’ critical thinking skills. It combines creative independent thinking, team work, and disciplinary subject-field integration. In the 'Introduction to Nursing Research Methods' course (year 3, Generic Track), project based learning is used to teach the topic of 'Evidence-Based Nursing'. This topic examines a clinical care issue encountered by students in the field. At the end of their project, students present proposals for managing the said issue. Proposals are the product of independent integrative thinking integrating a wide range of factors influencing the issue’s management. Method: Papers by 27 groups of students (165 students) were content analyzed to identify which themes emerged from the students' recommendations for managing the clinical issue. Findings: Five main themes emerged—current management approach; adapting procedures in line with current recent research recommendations; training for change (veteran nursing staff, beginner students, patients, significant others); analysis of 'economic benefit vs. patient benefit'; multidisciplinary team engagement in implementing change in practice. Two surprising themes also emerged: advertising and marketing using new technologies, which reflects how the new generation thinks. Summary and Recommendations: Among the main challenges in nursing education is training nursing graduates to think independently, integratively, and critically. Combining PBL with classical teaching methods stimulates students cognitively while opening new vistas with implications on all levels of the profession: management, research, education, and practice. Advanced students can successfully grasp and interpret the current state of clinical practice. They are competent and open to leading change and able to consider the diverse factors and interconnections that characterize the nurse's work.

Keywords: evidence based nursing, critical thinking skills, project based learning, students education

Procedia PDF Downloads 91