Search results for: maintenance optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4682

Search results for: maintenance optimization

2792 Future trends of MED-TVC Desalination Technology

Authors: Irfan Wazeer

Abstract:

Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.

Keywords: MED-TVC, parallel feed, performance ratio, GOR

Procedia PDF Downloads 257
2791 An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems

Authors: Tirtha Raj Dhakal, Brian Davidson, Bob Farquharson

Abstract:

Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency.

Keywords: agency-managed, cost recovery, farmer-managed, institutional design

Procedia PDF Downloads 424
2790 The Effects of Aging on the Cost of Operating and Support: An Empirical Study Applied to Weapon Systems

Authors: Byungchae Kim, Jiwoo Nam

Abstract:

Aging of weapon systems can cause the failure and degeneration of components which results in increase of operating and support costs. However, whether this aging effect is significantly strong and it influences a lot on national defense spending due to the rapid increase in operating and support (O&S) costs is questionable. To figure out this, we conduct a literature review analyzing the aging effect of US weapon systems. We also conduct an empirical research using a maintenance database of Korean weapon systems, Defense Logistics Integrated Information System (DAIIS). We run regression of various types of O&S cost on weapon system age to investigate the statistical significance of aging effect and use generalized linear model to find relations between the failure of different priced components and the age. Our major finding is although aging effect exists, its impacts on weapon system cost seem to be not too large considering several characteristics of O&S cost elements not relying on the age.

Keywords: O&S cost, aging effect, weapon system, GLM

Procedia PDF Downloads 142
2789 Speed Control of Brushless DC Motor Using PI Controller in MATLAB Simulink

Authors: Do Chi Thanh, Dang Ngoc Huy

Abstract:

Nowadays, there are more and more variable speed drive systems in small-scale and large-scale applications such as the electric vehicle industry, household appliances, medical equipment, and other industrial fields led to the development of BLDC (Brushless DC) motors. BLDC drive has many advantages, such as higher efficiency, better speed torque characteristics, high power density, and low maintenance cost compared to other conventional motors. Most BLDC motors use a proportional-integral (PI) controller and a pulse width modulation (PWM) scheme for speed control. This article describes the simulation model of BLDC motor drive control with the help of MATLAB - SIMULINK simulation software. The built simulation model includes a BLDC motor dynamic block, Hall sensor signal generation block, inverter converter block, and PI controller.

Keywords: brushless DC motor, BLDC, six-step inverter, PI speed

Procedia PDF Downloads 74
2788 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to rapid expansion of wind farms. This paper explores early fault diagnosis scale technique based on a unique scheme of a 5MW wind turbine system that is optimized by genetic algorithm to be very sensitive to faults and resilient to disturbances. A quantitative model based analysis is pragmatic for primary fault diagnosis monitoring assessment to minimize downtime mostly caused by components breakdown and exploit productivity consistency. Simulation results are computed validating the wind turbine model which demonstrates system performance in a practical application of fault type examples. The results show the satisfactory effectiveness of the applied performance investigated in a Matlab/Simulink/Gatool environment.

Keywords: disturbance robustness, fault monitoring and detection, genetic algorithm, observer technique

Procedia PDF Downloads 380
2787 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 79
2786 Cost Effectiveness and Performance Study of Perpetual Pavement Using ABAQUS

Authors: Mansour Fakhri, Monire Zokaei

Abstract:

Where there are many demolitions on conventional asphalt pavements, heavy costs are paid to repair and reconstruct the pavement roads annually. Recently some research has been done in order to increase the pavement life. Perpetual pavement is regarded as one of them which can improve the pavement life and minimize the maintenance activity and cost. In this research, ABAQUS which is a finite element software is implemented for analyzing and simulation of perpetual pavement. Viscoelastic model of material is used and loading wheel is considered to be dynamic. Effect of different parameters on pavement function has been considered. Because of high primary cost these pavements are not widely used. In this regard, life cost analysis was also carried out to compare perpetual pavement to conventional asphalt concrete pavement. It was concluded that although the initial cost of perpetual pavement is higher than that of conventional asphalt pavement, life cycle cost analysis during 50 years of service life showed that the performance of this pavement is better and the whole life cost of that is less.

Keywords: ABAQUS, lifecycle cost analysis, mechanistic empirical, perpetual pavement

Procedia PDF Downloads 383
2785 Design of Residential Geothermal Cooling System in Kuwait

Authors: Tebah KH A AlFouzan, Meznah Dahlous Ali Alkreebani, Fatemah Salem Dekheel Alrasheedi, Hanadi Bandar Rughayan AlNomas, Muneerah Mohammad Sulaiman ALOjairi

Abstract:

Article spotlights the heat transfer process based beneath the earth’s surface. The process starts by exchanging the heat found in the building as fluid in the pipes absorbs it, then transports it down the soil consuming cool temperature exchange, recirculating, and rebounding to deliver cool air. This system is a renewable energy that is reliable and sustainable. The analysis showed the disposal of fossil fuels, energy preservation, 400% efficiency, long lifespan, and lower maintenance. Investigation displays the system’s types of design, whether open or closed loop and piping layout. Finally, the geothermal cooling study presents the challenges of creating a prototype in Kuwait, as constraints are applicable due to geography.

Keywords: cooling system, engineering, geothermal cooling, natural ventilation, renewable energy

Procedia PDF Downloads 85
2784 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network

Authors: Amel Ourici

Abstract:

An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.

Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network

Procedia PDF Downloads 608
2783 Use of Fault Tree Analysis for Technical Assessment of Waste-to-Energy Plants

Authors: Ying-Chu Chen

Abstract:

Waste to energy (WTE) technology is becoming increasingly important throughout the world. There are 24 WTE plants in operation in Taiwan that might be ranked the top in density (number of MSW incinerators/area) in the world. Many problems exist in WTE plants, such as low-quality construction, leakage of pipelines, irregular feedings, and lack of maintenance. These problems should be identified and analyzed for effective implementation and efficient operation of WTE plants. This research applies a fault tree analysis (FTA) to identify failures and evaluate their effects on the operation of WTE plants from a technical point of view. Five subsystems of a WTE plant were defined, including loading system, incineration system, effluent disposal system, structural components, and control system. This research results proved that FTA is suitable for WTE evaluation and is an effective analysis tool for technical evaluation in the field of WTE technology.

Keywords: delphi method, fault tree approach, municipal solid waste, waste to energy, WTE

Procedia PDF Downloads 567
2782 Armenian in the Jordanian Linguistic Landscape: Marginalisation and Revitalisation

Authors: Omar Alomoush

Abstract:

This paper examines the Armenian language in the linguistic landscape of Jordanian cities. The results indicate that Armenian is chiefly marginalised in the LL. By quantitative and qualitative methods, the current study attempts to identify the main reasons behind this marginalisation. In the light of the fact that Armenian is completely absent from the commercial streets of major Jordanian cities, all monolingual and multilingual signs in Armenian Neighbourhood in Amman city are photographed to identify them according to function and language. To provide plausible explanations for the marginalisation of the Armenian language in the LL, the current study builds upon issues of language maintenance and underlying language policy. According to the UNESCO Endangerment Framework, it can be assumed that Armenian is a vulnerable language, even though the Armenian Church exerted great efforts to revitalise Armenian in all social settings, including the LL. It was found that language policies enacted by the state of Jordan, language shift, language hostility, voluntary migration and economic pressures are among the reasons behind this marginalisation.

Keywords: linguistic landscape, multilingualism, Armenian, marginalisation and revitalisation

Procedia PDF Downloads 261
2781 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 497
2780 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
2779 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System

Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia

Abstract:

The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.

Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition

Procedia PDF Downloads 489
2778 Big Data Applications for the Transport Sector

Authors: Antonella Falanga, Armando Cartenì

Abstract:

Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, cloud computing, decision-making, mobility demand, transportation

Procedia PDF Downloads 62
2777 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation

Authors: Ju-Na Hwang, Min-Hae Park, Kee-Joe Lim

Abstract:

Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler.

Keywords: liquid silicone rubber, nano-composite, HVDC insulation, cable joints

Procedia PDF Downloads 462
2776 Optimization of the Energy Consumption of the Pottery Kilns by the Use of Heat Exchanger as Recovery System and Modeling of Heat Transfer by Conduction Through the Walls of the Furnace

Authors: Maha Bakakri, Rachid Tadili, Fatiha Lemmini

Abstract:

Morocco is one of the few countries that have kept their traditional crafts, despite the competition of modern industry and its impact on manual labor. Therefore the optimization of energy consumption becomes an obligation and this is the purpose of this document. In this work we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the furnace, values which will be used later in the calculation of its thermal losses. In order to determine the major source of the thermal losses of the furnace we have established the heat balance of the furnace. The energy consumed, the useful energy and the thermal losses through the walls and the chimney of the furnace are calculated thanks to the experimental measurements which we realized for several firings. The results show that the energy consumption of this type of furnace is very high and that the main source of energy loss is mainly due to the heat losses of the combustion gases that escape from the furnace by the chimney while the losses through the walls are relatively small. it have opted for energy recovery as a solution where we can recover some of the heat lost through the use of a heat exchanger system using a double tube introduced into the flue gas exhaust stack compartment. The study on the heat recovery system is presented and the heat balance inside the exchanger is established. In this paper we also present the numerical modeling of heat transfer by conduction through the walls of the furnace. A numerical model has been established based on the finite volume method and the double scan method. It makes it possible to determine the temperature profile of the furnace and thus to calculate the thermal losses of its walls and to deduce the thermal losses due to the combustion gases. Validation of the model is done using the experimental measurements carried out on the furnace. The results obtained in this work, relating to the energy consumed during the operation of the furnace are important and are part of the energy efficiency framework that has become a key element in global energy policies. It is the fastest and cheapest way to solve energy, environmental and economic security problems.

Keywords: energy cunsumption, energy recovery, modeling, energy eficiency

Procedia PDF Downloads 73
2775 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section

Procedia PDF Downloads 334
2774 Sustainability Assessment of Municipal Wastewater Treatment

Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar

Abstract:

In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.

Keywords: sustainability, wastewater treatment, sustainability assessment, Egypt

Procedia PDF Downloads 508
2773 Ill-Posed Inverse Problems in Molecular Imaging

Authors: Ranadhir Roy

Abstract:

Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data.

Keywords: constrained minimization, ill-conditioned inverse problems, Tikhonov regularization method, penalty modified barrier function method

Procedia PDF Downloads 271
2772 Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment

Authors: F. F. Zahra, E. G. Touria, Y. Samia, M. Ahmed, H. Hasna, B. M. Latifa

Abstract:

The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 32
2771 Women's Challenges in Access to Urban Spaces and Infrastructures: A Comparative Study of the Urban Infrastructures Conforming to Women's Needs in Tehran and Istanbul

Authors: Parastoo Kazemiyan

Abstract:

Over the past 80 years, in compliance with the advent of modernity in Iran and Turkey, the presence of women in economic and social arenas has creates serious challenges in the capacity of urban spaces to respond to their presence and transport because urban spaces up until then were based on masculine criteria and therefore, women could use such spaces in the company of their fathers or husbands. However, as modernity expanded by Reza Shah and Ataturk, women found the opportunity to work and be present in urban spaces alongside men and their presence in economic and social domains resulted in their presence in these spaces in the early and late hours of the day. Therefore, the city had to be transformed in structural, social, and environmental terms to accommodate women's activities and presence in various urban arenas, which was a huge step in transition from a masculine man-based culture to an all-inclusive human-based culture in these two countries. However, the optimization of urban space was subject to political changes in the two countries, leading to significant differences in designing urban spaces in Tehran and Istanbul. What shows the importance and novelty of the present study lie in the differences in urban planning and optimization in the two capital cities, which gave rise to different outcomes in desirability and quality of living in these two capital cities. Due to the importance of the topic, one of the most significant factors in desirability and acceptability of urban space for women was examined using a descriptive-analytic method based on qualitative methodology in Tehran and Istanbul. The results showed that the infrastructural factors in Istanbul, including safety of access, variety, and number of public transport modes, transparency, and supervision over public spaces have provided women with a safer and more constant presence compared to Tehran. It seems that challenges involved in providing access to urban spaces in Tehran in terms of infrastructure and function have made Tehran unable to respond to the most basic needs of its female citizens.

Keywords: gender differences, urban space security, access to transportation systems, women's challenges

Procedia PDF Downloads 125
2770 Refactoring Object Oriented Software through Community Detection Using Evolutionary Computation

Authors: R. Nagarani

Abstract:

An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the extent of research on software refactoring at the package level is less. This work presents a novel approach to refactor the package structures of object oriented software using genetic algorithm based community detection. It uses software networks to represent classes and their dependencies. It uses a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. It finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures.

Keywords: community detection, complex network, genetic algorithm, package, refactoring

Procedia PDF Downloads 418
2769 Energy Trading for Cooperative Microgrids with Renewable Energy Resources

Authors: Ziaullah, Shah Wahab Ali

Abstract:

Micro-grid equipped with heterogeneous energy resources present the idea of small scale distributed energy management (DEM). DEM helps in minimizing the transmission and operation costs, power management and peak load demands. Micro-grids are collections of small, independent controllable power-generating units and renewable energy resources. Micro-grids also motivate to enable active customer participation by giving accessibility of real-time information and control to the customer. The capability of fast restoration against faulty situation, integration of renewable energy resources and Information and Communication Technologies (ICT) make micro-grid as an ideal system for distributed power systems. Micro-grids can have a bank of energy storage devices. The energy management system of micro-grid can perform real-time energy forecasting of renewable resources, energy storage elements and controllable loads in making proper short-term scheduling to minimize total operating costs. We present a review of existing micro-grids optimization objectives/goals, constraints, solution approaches and tools used in micro-grids for energy management. Cost-benefit analysis of micro-grid reveals that cooperation among different micro-grids can play a vital role in the reduction of import energy cost and system stability. Cooperative micro-grids energy trading is an approach to electrical distribution energy resources that allows local energy demands more control over the optimization of power resources and uses. Cooperation among different micro-grids brings the interconnectivity and power trading issues. According to the literature, it shows that open area of research is available for cooperative micro-grids energy trading. In this paper, we proposed and formulated the efficient energy management/trading module for interconnected micro-grids. It is believed that this research will open new directions in future for energy trading in cooperative micro-grids/interconnected micro-grids.

Keywords: distributed energy management, information and communication technologies, microgrid, energy management

Procedia PDF Downloads 375
2768 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
2767 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 248
2766 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes

Authors: Misra Ayse Adsiz, Selim Selvi

Abstract:

In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.

Keywords: agile, design, missile, scrum

Procedia PDF Downloads 168
2765 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems

Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille

Abstract:

Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.

Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable

Procedia PDF Downloads 399
2764 Adaptive Routing in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. E. H. Benyamina, T. Djeradi, P. Boulet

Abstract:

In this paper, we propose adaptive routing that considers the routing of communications in order to optimize the overall performance. The routing technique uses a newly proposed Algorithm to route communications between the tasks. The routing we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed routing approach provides significant performance improvements when compared to those using static routing.

Keywords: multi-processor systems-on-chip (mpsocs), network-on-chip (noc), heterogeneous architectures, adaptive routin

Procedia PDF Downloads 375
2763 Evaluation of Top-down and Bottom-up Leadership Development Programs in a Finnish Company

Authors: Kati Skarp, Keijo Varis, Juha Kettunen

Abstract:

The purpose of this paper is to examine and evaluate the top-down and bottom-up leadership development programs focused on human capital that improve the performance of a company. This study reports on the external top-down leadership development program supported by a consulting company and the internal participatory action research of the bottom-up program. The sickness rate and the lost time incident failure rate decreased and the ideas produced for cost savings improved, leading to increased earnings during the top-down program. The estimated cost savings potential of the bottom-up program was 3.8 million euro based on the cost savings of meeting habits, maintenance practices and the way of working in production. The results of this study are useful for those who plan and evaluate leadership development and human capital productivity consultation programs to improve the performance of a company.

Keywords: leadership, development, human resources, company, indicators, evaluation

Procedia PDF Downloads 326