Search results for: deep beams
648 Personality Across Different Castes: A Quantitative Study of Three Castes
Authors: Huma Aly, Caramel Rodger, Saman Zafar
Abstract:
The present study explored the role of caste system in determining and understanding various personality characteristics related to different castes. It analyzed various personality characteristics of Arains, Jutts and Sheikhs caste of Pakistan. Reasons for the emphasis on within caste marriage in relation to personality characteristics were identified. In the present study a sample of 200 unmarried students were taken from different institutes of Lahore, Pakistan. 117 students were taken from Fast University and 83 from LUMS (Lahore University of Management and Sciences) on the basis of purposive and convenience sampling. 76 Arains, 59 Sheikhs and 65 Jutts were taken. Non-probability purposive sampling, quantitative research method, big five personality scale were used. Kruskal Wallis test was used as three independent groups were taken in the study. Results revealed various personality characteristics associated with different castes namely Arain, Jutts and Sheikhs. Individuals belonging to Jutts caste were reported to be high on being talkative, findings faults, doing thorough job, being depressed, reservedness, quarrelling, reliable, tensed, deep thinker, worrying a lot, imaginative, lazy, inventive, assertive, cold aloof, preserved and rude. Arains were reported to be original, helpful, careless,relaxed, curious, enthusiastic, forgiving, quiet, trusting, moody, shy, retaining anger, routinely working, planners, nervous, playing with ideas, artistic, cooperative, easily distracted and sophisticated. Lastly, Sheikhs were reported to be energetic, disorganized, stable. This study will play a significant part in changing the traditional viewpoint of majority of elders of our society who still have immense association with the caste they belong to.Keywords: castes, personality, Arains, Jutts, Sheikhs, Pakistan
Procedia PDF Downloads 262647 Li2o Loss of Lithium Niobate Nanocrystals during High-Energy Ball-Milling
Authors: Laura Kocsor, Laszlo Peter, Laszlo Kovacs, Zsolt Kis
Abstract:
The aim of our research is to prepare rare-earth-doped lithium niobate (LiNbO3) nanocrystals, having only a few dopant ions in the focal point of an exciting laser beam. These samples will be used to achieve individual addressing of the dopant ions by light beams in a confocal microscope setup. One method for the preparation of nanocrystalline materials is to reduce the particle size by mechanical grinding. High-energy ball-milling was used in several works to produce nano lithium niobate. Previously, it was reported that dry high-energy ball-milling of lithium niobate in a shaker mill results in the partial reduction of the material, which leads to a balanced formation of bipolarons and polarons yielding gray color together with oxygen release and Li2O segregation on the open surfaces. In the present work we focus on preparing LiNbO3 nanocrystals by high-energy ball-milling using a Fritsch Pulverisette 7 planetary mill. Every ball-milling process was carried out in zirconia vial with zirconia balls of different sizes (from 3 mm to 0.1 mm), wet grinding with water, and the grinding time being less than an hour. Gradually decreasing the ball size to 0.1 mm, an average particle size of about 10 nm could be obtained determined by dynamic light scattering and verified by scanning electron microscopy. High-energy ball-milling resulted in sample darkening evidenced by optical absorption spectroscopy measurements indicating that the material underwent partial reduction. The unwanted lithium oxide loss decreases the Li/Nb ratio in the crystal, strongly influencing the spectroscopic properties of lithium niobate. Zirconia contamination was found in ground samples proved by energy-dispersive X-ray spectroscopy measurements; however, it cannot be explained based on the hardness properties of the materials involved in the ball-milling process. It can be understood taking into account the presence of lithium hydroxide formed the segregated lithium oxide and water during the ball-milling process, through chemically induced abrasion. The quantity of the segregated Li2O was measured by coulometric titration. During the wet milling process in the planetary mill, it was found that the lithium oxide loss increases linearly in the early phase of the milling process, then a saturation of the Li2O loss can be seen. This change goes along with the disappearance of the relatively large particles until a relatively narrow size distribution is achieved in accord with the dynamic light scattering measurements. With the 3 mm ball size and 1100 rpm rotation rate, the mean particle size achieved is 100 nm, and the total Li2O loss is about 1.2 wt.% of the original LiNbO3. Further investigations have been done to minimize the Li2O segregation during the ball-milling process. Since the Li2O loss was observed to increase with the growing total surface of the particles, the influence of ball-milling parameters on its quantity has also been studied.Keywords: high-energy ball-milling, lithium niobate, mechanochemical reaction, nanocrystals
Procedia PDF Downloads 133646 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions
Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh
Abstract:
Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency
Procedia PDF Downloads 204645 Competency and Strategy Formulation in Automobile Industry
Authors: Chandan Deep Singh
Abstract:
In present days, companies are facing the rapid competition in terms of customer requirements to be satisfied, new technologies to be integrated into future products, new safety regulations to be followed, new computer-based tools to be introduced into design activities that becomes more scientific. In today’s highly competitive market, survival focuses on various factors such as quality, innovation, adherence to standards, and rapid response as the basis for competitive advantage. For competitive advantage, companies have to produce various competencies: for improving the capability of suppliers and for strengthening the process of integrating technology. For more competitiveness, organizations should operate in a strategy driven way and have a strategic architecture for developing core competencies. Traditional ways to take such experience and develop competencies tend to take a lot of time and they are expensive. A new learning environment, which is built around a gaming engine, supports the development of competences in specific subject areas. Technology competencies have a significant role in firm innovation and competitiveness; they interact with the competitive environment. Technological competencies vary according to the type of competitive environment, thus enhancing firm innovativeness. Technological competency is gained through extensive experimentation and learning in its research, development and employment in manufacturing. This is a review paper based on competency and strategic success of automobile industry. The aim here is to study strategy formulation and competency tools in the industry. This work is a review of literature related to competency and strategy in automobile industry. This study involves review of 34 papers related to competency and strategy.Keywords: manufacturing competency, strategic success, competitiveness, strategy formulation
Procedia PDF Downloads 310644 Thematical and Critical Analysis of Answers of Saduddin Thafthazani and His Methodology in His Book Sharahul Aqaid
Authors: Muhsina Khadeeja
Abstract:
Introducing theological texts combined with philosophy will be useful in understanding the major difference between theology and philosophy and making a comparative study between these two epistemologies. SHARAHUL AQAID is one of them. Which originated in the Fourteenth century; the time was enriched with theological discourses and religious revisions. Meanwhile, visions of philosophy strengthened and its ideologies were discussed widely until it reflected on Islamic theology. Those philosophers initiated to interpretation of Islamic theology from a philosophical aspect. Some prominent Muslim theologists like Gazzali analyzed that this genre of interpretations and followed questions will threaten the existence of Islamic theology. Understanding these situations, prominent leaders defended Islamic theology through their intellectual works. SHARAHUL AQAID of SADUDDIN THATHAZANI is one of them, which is written as a commentary on UMAR NASAFI's work. The mentioned book is full of answers to the counters of philosophers and rectification of their interpretation. He adopted the philosophical method in this work rather than other methods to make philosophers understand his answers vividly. Because of that, the book is plentiful with philosophical terminologies. Common people can't grasp it without a deep reading. So, the researcher hopes that the analysis of this work will help to elaborate its meanings and make it graspable. The researcher chooses a thematical and critical analysis of the answers of SADUDDIN THAFTHAZANI in SHARAHUL AQAID and on his methodology. This analysis denotes theology and philosophy show similarities rather than contradictions. The researcher concludes this study by examining the difference between theology and philosophy, similarities and contradiction. Finally, researcher proves how both epistemologies coexist.Keywords: islamic theology, sharahul aqaid, saduddin thafthazani, philosophy
Procedia PDF Downloads 77643 Promoting Open Educational Resources (OER) in Theological/Religious Education in Nigeria
Authors: Miracle Ajah
Abstract:
One of the biggest challenges facing Theological/Religious Education in Nigeria is access to quality learning materials. For instance at the Trinity (Union) Theological College, Umuahia, it was difficult for lecturers to access suitable and qualitative materials for instruction especially the ones that would suit the African context and stimulate a deep rooted interest among the students. Some textbooks written by foreign authors were readily available in the School Library, but were lacking in the College bookshops for students to own copies. Even when the College was able to order some of the books from abroad, it did not usher in the needed enthusiasm expected from the students because they were either very expensive or very difficult to understand during private studies. So it became necessary to develop contextual materials which were affordable and understandable, though with little success. The National Open University of Nigeria (NOUN)’s innovation in the development and sharing of learning resources through its Open Course ware is a welcome development and of great assistance to students. Apart from NOUN students who could easily access the materials, many others from various theological/religious institutes across the nation have benefited immensely. So, the thesis of this paper is that the promotion of open educational resources in theological/religious education in Nigeria would facilitate a better informed/equipped religious leadership, which would in turn impact its adherents for a healthier society and national development. Adopting a narrative and historical approach within the context of Nigeria’s educational system, the paper discusses: educational traditions in Nigeria; challenges facing theological/religious education in Nigeria; and benefits of open educational resources. The study goes further to making recommendations on how OER could positively influence theological/religious education in Nigeria. It is expected that theologians, religious educators, and ODL practitioners would find this work very useful.Keywords: OER, theological education, religious education, Nigeria
Procedia PDF Downloads 345642 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning
Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath
Abstract:
The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.Keywords: BLIP, fMRI, latent diffusion model, neural perception.
Procedia PDF Downloads 66641 Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis
Authors: Samim Khair Mohammad, Takeshi Tsuji, Chanmaly Chhun
Abstract:
The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks.Keywords: The Afghan Tajik basin, seismic lines, spectral decomposition, thrust folds, hydrocarbon reservoirs
Procedia PDF Downloads 111640 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 94639 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 151638 Exploring the Process of Cultivating Tolerance: The Case of a Pakistani University
Authors: Uzma Rashid, Mommnah Asad
Abstract:
As more and more people fall victim to the intolerance that has become a plague globally, academicians are faced with the herculean task of sowing the roots for more tolerant individuals. Being the multilayered task that it is, promoting an acceptance of diversity and pushing an agenda to push back hate requires efforts on multiple levels. Not only does the curriculum need to be in line with such goals, but teachers also need to be trained to cater to the sensitivities surrounding conversations of tolerance and diversity. In addition, institutional support needs to be there to provide conducive conditions for a diversity driven learning process to take place. In reality, teachers have to struggle with forwarding ideas about diversity and tolerance which do not sound particularly risky to be shared but given the current socio-political and religious milieu, can put the teacher in a difficult position and can make the task exponentially challenging. This paper is based on an auto-ethnographic account of teaching undergraduate and graduate courses at a private university in Pakistan. These courses were aimed at teaching tolerance to adult learners through classes focused on key notions pertaining to religion, culture, gender, and society. Authors’ classroom experiences with the students in these courses indicate a marked heightening of religious sensitivities that can potentially threaten a teacher’s life chances and become a hindrance in deep, meaningful conversations, thus lending a superficiality to the whole endeavor. The paper will discuss in detail the challenges that this teacher dealt with in the process, how those were addressed, and locate them in the larger picture of how tolerance can be materialized in current times in the universities in Pakistan and in similar contexts elsewhere.Keywords: tolerance, diversity, gender, Pakistani Universities
Procedia PDF Downloads 153637 Language Development and Learning about Violence
Authors: Karen V. Lee
Abstract:
The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.Keywords: intervention, language development and learning, sexual violence, story
Procedia PDF Downloads 330636 Physics-Informed Convolutional Neural Networks for Reservoir Simulation
Authors: Jiangxia Han, Liang Xue, Keda Chen
Abstract:
Despite the significant progress over the last decades in reservoir simulation using numerical discretization, meshing is complex. Moreover, the high degree of freedom of the space-time flow field makes the solution process very time-consuming. Therefore, we present Physics-Informed Convolutional Neural Networks(PICNN) as a hybrid scientific theory and data method for reservoir modeling. Besides labeled data, the model is driven by the scientific theories of the underlying problem, such as governing equations, boundary conditions, and initial conditions. PICNN integrates governing equations and boundary conditions into the network architecture in the form of a customized convolution kernel. The loss function is composed of data matching, initial conditions, and other measurable prior knowledge. By customizing the convolution kernel and minimizing the loss function, the neural network parameters not only fit the data but also honor the governing equation. The PICNN provides a methodology to model and history-match flow and transport problems in porous media. Numerical results demonstrate that the proposed PICNN can provide an accurate physical solution from a limited dataset. We show how this method can be applied in the context of a forward simulation for continuous problems. Furthermore, several complex scenarios are tested, including the existence of data noise, different work schedules, and different good patterns.Keywords: convolutional neural networks, deep learning, flow and transport in porous media, physics-informed neural networks, reservoir simulation
Procedia PDF Downloads 142635 Comprehensive Framework for Pandemic-Resilient Cities to Avert Future Migrant Crisis: A Case of Mumbai
Authors: Vasudha Thapa, Kiran Chappa
Abstract:
There is a pressing need to prepare cities in the developing countries of the global south such as India against the chaos created by COVID 19 pandemic and future disaster risks. This pandemic posed the nation with an unprecedented challenge of dealing with a wave of stranded migrant workers. These workers comprise the most vulnerable section of the society in case of any pandemic or disaster risks. The COVID 19 pandemic exposed the vulnerability of migrant workers in the urban form and the need for capacity-building strategies against future pandemics. This paper highlights the challenges of these migrant workers in the case of Mumbai city in lockdown, post lockdown, and the current uncertain scenarios. The paper deals with a thorough investigation of the existing and the recent policies and strategies taken by the Urban Local Bodies (ULBs), state, and central government to assist these migrants in the city during this mayhem of uncertainties. The paper looks further deep into the challenges and opportunities presented in the current scenario through the assessment of existing data and response to policy measures taken by the government organizations. The ULBs are at the forefront in the response to any disaster risk, hence the paper assesses the capacity gaps of the Urban local bodies in mitigating the risks posed by any pandemic-like situation. The study further recommends capacity-building strategies at various levels of governance and uniform policy measures to assist the migrant population of the city.Keywords: urban resilience, covid 19, migrant population, India, capacity building, governance
Procedia PDF Downloads 183634 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects
Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov
Abstract:
The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.Keywords: effective properties, scale effects, surface defects, voids elasticity
Procedia PDF Downloads 417633 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes
Authors: Peng Zhang, Cai Liang
Abstract:
The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.Keywords: plastic waste, recycling, hydrogen, microwave
Procedia PDF Downloads 67632 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 88631 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 130630 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 80629 Modifying the Electrical Properties of Liquid Crystal Cells by Including TiO₂ Nanoparticles on a Substrate
Authors: V. Marzal, J. C. Torres, B. Garcia-Camara, Manuel Cano-Garcia, Xabier Quintana, I. Perez Garcilopez, J. M. Sanchez-Pena
Abstract:
At the present time, the use of nanostructures in complex media, like liquid crystals, is widely extended to manipulate their properties, either electrical or optical. In addition, these media can also be used to control the optical properties of the nanoparticles, for instance when they are resonant. In this work, the change on electrical properties of a liquid crystal cell by adding TiO₂ nanoparticles on one of the alignment layers has been analyzed. These nanoparticles, with a diameter of 100 nm and spherical shape, were deposited in one of the substrates (ITO + polyimide) by spin-coating in order to produce a homogeneous layer. These substrates were checked using an optical microscope (objective x100) to avoid potential agglomerates. The liquid crystal cell is then fabricated, using one of these substrates and another without nanoparticles, and filled with E7. The study of the electrical response was done through impedance measurements in a long range of frequencies (3 Hz- 6 MHz) and at ambient temperature. Different nanoparticle concentrations were considered, as well as pure E7 and an empty cell for comparison purposes. Results about the effective dielectric permittivity and conductivity are presented along with models of equivalent electric circuits and its physical interpretation. As a summary, it has been observed the clear influence of the presence of the nanoparticles, strongly modifying the electric response of the device. In particular, a variation of both the effective permittivity and the conductivity of the device have been observed. This result requires a deep analysis of the effect of these nanoparticles on the trapping of free ions in the device, allowing a controlled manipulation and frequency tuning of the electrical response of these devices.Keywords: alignment layer, electrical behavior, liquid crystal, TiO₂ nanoparticles
Procedia PDF Downloads 212628 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 136627 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.Keywords: sensor, wireless sensor network, oil, sensor, on-shore level
Procedia PDF Downloads 444626 Oi̇l Absorption Behavior and Its Effect on Charpy Impact Test of Glass Reinforced Polyester Composites Used in the Manufacture of Naval Ship Hulls
Authors: Bouhafara Djaber, Menail Younes, Mesrafet Farouk, Aissaoui Mohammed Islem
Abstract:
This article presents results of experimental investigations of the durability of (GFRP) composite exposed to typical environments of marine industries applications,The use of fiber-glass reinforced polyester composites in marine applications such as Hulls of voyage boats and hulls of small vessels for the military navy , this type of composite is becoming attractive because of their reduced weight and improved corrosion resistance. However,a deep understating of oil ageing effect on composite structures is essential to ensure long-term performance and durability. in this work evaluate the effect of oil ageing on absorptıon behavıor and ımpact properties of glass/polyester composites manufactured with two types of fiber fabrics (fibreglass mat and fiberglass woven roving) and isophthalic polyester resin. The specimens obtained from commercial (GFRP) profiles made of unsaturated polyester resin were subjected to immersion in (i) marine oil for boats and (ii) salt water at ambient temperature for up to 1 month. The effects of such exposure conditions on this types of profile we analysed in what concerns their (i) mass change,(ii) mechanical response in impact, namely on the mechanical response – oil immersion caused a higher level of degradation, compared with salt water immersion;fracture surface examination by scanning electron microscopy revealed delamination, fiber debonding and resin crumbling due to oil effect.Keywords: Marine Engine Oil, Absorption, Polyester, Glass Fibre
Procedia PDF Downloads 79625 A Review of Research on Pre-training Technology for Natural Language Processing
Authors: Moquan Gong
Abstract:
In recent years, with the rapid development of deep learning, pre-training technology for natural language processing has made great progress. The early field of natural language processing has long used word vector methods such as Word2Vec to encode text. These word vector methods can also be regarded as static pre-training techniques. However, this context-free text representation brings very limited improvement to subsequent natural language processing tasks and cannot solve the problem of word polysemy. ELMo proposes a context-sensitive text representation method that can effectively handle polysemy problems. Since then, pre-training language models such as GPT and BERT have been proposed one after another. Among them, the BERT model has significantly improved its performance on many typical downstream tasks, greatly promoting the technological development in the field of natural language processing, and has since entered the field of natural language processing. The era of dynamic pre-training technology. Since then, a large number of pre-trained language models based on BERT and XLNet have continued to emerge, and pre-training technology has become an indispensable mainstream technology in the field of natural language processing. This article first gives an overview of pre-training technology and its development history, and introduces in detail the classic pre-training technology in the field of natural language processing, including early static pre-training technology and classic dynamic pre-training technology; and then briefly sorts out a series of enlightening technologies. Pre-training technology, including improved models based on BERT and XLNet; on this basis, analyze the problems faced by current pre-training technology research; finally, look forward to the future development trend of pre-training technology.Keywords: natural language processing, pre-training, language model, word vectors
Procedia PDF Downloads 55624 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-Fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.Keywords: fact checking, claim verification, deep learning, natural language processing
Procedia PDF Downloads 60623 Student's Difficulties with Classes That Involve Laboratory Education Approach
Authors: Kayondoamunmose Kamafrika
Abstract:
Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.Keywords: experimental, engineering, innovation, practicability
Procedia PDF Downloads 187622 The Role of 'Hindu Tantrism' in Conceptualization of the Divine Manifestations in Vajrayana Tradition of Tibetan Buddhism
Authors: Mohammed T. Shabeer
Abstract:
Hoary moorlands of Tibet bear bundle of religious traditions. Vajrayana tradition of Tibetan Buddhism is one of the deep rooted religious orders of the area. It demands the homage to a variety of gods and diverse worships, especially to manifestations like the Dalai Lamas. This divine diversity has been conceptualized by remoteness of the area and transcontinental intrusion of Asiatic philosophies like Indian Buddhism, Mongolian Shamanism and Hindu Tantrism. This study reveals the role of Hindu Tantrism in conceptualizing the manifestations in Vajrayana Tradition of Tibetan Buddhism in a comparative way. Nowadays, the academic explorations and researches in the field of ‘Tibetology’ are widely tolerable in east and west alike. International community concerns such studies supportive of the restless campaigns for ‘free Tibet’. Moreover, the scientific sources on the topic are rarest and precious in the field of comparative religion. This study reveals a clear account of god concept of Vajrayana tradition and insists that the god concept of the tradition is conceptualized from the amalgamation of Indian Hindu Tantrism, Mongolian Shamanism, and Indian Buddhism. Primly, it sheds the light upon the mysterious similarities between Indian and Tibetan concepts of manifestation of gods. The scientific examination of this problem lasts in the conclusion that the transcontinental transmission of Hindu Tantrism in the special occasion of Buddhist Diaspora of 12th century in consequence of the invasion of Muslim Ghorid Sultanate had paved a vital role in shaping the Vajrayana tradition especially conceptualizing the manifestation of Tibetan gods.Keywords: Buddhist diaspora, Hindu tantrism, manifestation of god, Vajrayana tradition of Tibetan Buddhism
Procedia PDF Downloads 205621 Political Transition in Nepal: Challenges and Limitations to Post-Conflict Peace-Building
Authors: Sourina Bej
Abstract:
Since the process of decolonization in 1940, several countries in South Asia have witnessed intra-state conflicts owing to ineffective political governance. The conflicts have remained protracted as the countries have failed to make a holistic transition to a democratic state. Nepal is one such South Asian country facing a turmultous journey from monarchy to republicanism. The paper aims to focus on the democratic transition in the context of Nepal’s political, legal and economic institutions. The presence of autocratic feudalistic and centralised state structure with entrenched socio-economic inequalities has resulted in mass uprising only to see the country slip back to the old order. Even a violent civil war led by the Maoists could not overhaul the political relations or stabilize the democratic space. The paper aims to analyse the multiple political, institutional and operational challenges in the implementation of the peace agreement with the Maoist. Looking at the historical background, the paper will examine the problematic nation-building that lies at the heart of fragile peace process in Nepal. Regional dynamics have played a big role in convoluting the peace-building. The new constitution aimed at conflict resolution brought to the open, deep seated hatred among different ethnic groups in Nepal. Apart from studying the challenges to the peace process and the role of external players like India and China in the political reconstruction, the paper will debate on a viable federal solution to the ethnic conflict in Nepal. If the current government fails to pass a constitution accepted by most ethnic groups, Nepal will remain on the brink of new conflict outbreaks.Keywords: democratisation, ethnic conflict, Nepal, peace process
Procedia PDF Downloads 276620 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System
Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin
Abstract:
The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.Keywords: TB smears, automated microscope, artificial intelligence, medical imaging
Procedia PDF Downloads 227619 Influence of Yōmeigaku and Emerson on Meiji Intelligentsia: With Special Reference to Kitamura Tōkoku
Authors: Arpita Paul
Abstract:
Wang Yang-ming introduced a revolutionary dimension to Japanese thought through his philosophy on intuitive moral consciousness. Post-Meiji Restoration,Emerson struck a chord with the Japanese due to the striking similarities his theories on transcendentalism had with doctrines of Wang Yang-ming'sschool of thought (Yōmeigaku), as pointed out by HomeiIwano (1873-1920). Wang's philosophy, chiefly anchored in the idea of the fundamental unity of thought and action, resembles the non-dualistic aspect of Brahman, a subject of Emerson's deep interest. Kitamura Tōkoku's (1868-1894) ardent reading of Emerson corroborated what he had learned in Wang Yang-ming's philosophy. This essay shall begin with a discussion on Emerson's discoveries of Vedanta that later, on a parallel ground with Yōmeigaku, significantly influenced Tōkoku. This essay will then demonstrate how Tōkokutransforms these philosophies to portray the advent of modern consciousness in Japan in his magnum opus"Naibuseimeiron." In his attempt to undo the blindfold of past feudalism,Tōkoku repeatedly championed the mental process of a self-reliant individual in his essays which showcase the metamorphosis of Japanese individualism in the final decades of the Meiji Period. In seeking to express Japan's budding intellectual enterprise,Tōkoku asserts securing one's vantage point in the world through an awakened consciousness. In his desire to articulate this, Tōkoku becomes, as argued in this paper's penultimate and final sections, a fascinating merging point of the philosophical doctrines of Vedanta, Yōmeigaku, and Emerson, a rare depiction in the existing scholarship.Keywords: meiji intellengtsia, yomeigaku, vedanta, modern consciousness
Procedia PDF Downloads 130