Search results for: prototype willingness model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17551

Search results for: prototype willingness model

15691 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies

Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru

Abstract:

Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.

Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil

Procedia PDF Downloads 375
15690 Development of Geo-computational Model for Analysis of Lassa Fever Dynamics and Lassa Fever Outbreak Prediction

Authors: Adekunle Taiwo Adenike, I. K. Ogundoyin

Abstract:

Lassa fever is a neglected tropical virus that has become a significant public health issue in Nigeria, with the country having the greatest burden in Africa. This paper presents a Geo-Computational Model for Analysis and Prediction of Lassa Fever Dynamics and Outbreaks in Nigeria. The model investigates the dynamics of the virus with respect to environmental factors and human populations. It confirms the role of the rodent host in virus transmission and identifies how climate and human population are affected. The proposed methodology is carried out on a Linux operating system using the OSGeoLive virtual machine for geographical computing, which serves as a base for spatial ecology computing. The model design uses Unified Modeling Language (UML), and the performance evaluation uses machine learning algorithms such as random forest, fuzzy logic, and neural networks. The study aims to contribute to the control of Lassa fever, which is achievable through the combined efforts of public health professionals and geocomputational and machine learning tools. The research findings will potentially be more readily accepted and utilized by decision-makers for the attainment of Lassa fever elimination.

Keywords: geo-computational model, lassa fever dynamics, lassa fever, outbreak prediction, nigeria

Procedia PDF Downloads 94
15689 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR

Authors: Ivana Scidà, Francesco Alotto, Anna Osello

Abstract:

Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.

Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality

Procedia PDF Downloads 131
15688 Development of a One-Window Services Model for Accessing Cancer Immunotherapies

Authors: Rizwan Arshad, Alessio Panza, Nimra Inayat, Syeda Mariam Batool Kazmi, Shawana Azmat

Abstract:

The rapidly expanding use of immunotherapy for a wide range of cancers from late to early stages has, predictably, been accompanied by evidence of inequities in access to these highly effective but costly treatments. In this survey-based case study, we aimed to develop a One-window services model (OWSM) based on Anderson’s behavioral model to enhance competence in accessing cancer medications, particularly immunotherapies, through the analysis of 20 patient surveys conducted in the Armed forces bone marrow transplant center of the district, Rawalpindi from November to December 2022. The purposive sampling technique was used. Cronbach’s alpha coefficient was found to be 0.71. It was analyzed using SPSS version 26 with descriptive analysis, and results showed that the majority of the cancer patients were non-competent to access their prescribed cancer immunotherapy because of individual-level, socioeconomic, and organizational barriers.

Keywords: cancer immunotherapy, one-window services model, accessibility, competence

Procedia PDF Downloads 76
15687 Motivating Factors to Use Electric Vehicles Based on Behavioral Intention Model in South Korea

Authors: Seyedsamad Tahani, Samira Ghorbanpour

Abstract:

The global warming crisis forced humans to consider their place in the world and the earth's future. In this regard, Electric Vehicles (EVs) are a significant step toward protecting the environment. By identifying factors that influence people's behavior intentions toward using Electric Vehicles (EV), we proposed a theoretical model by extending the Technology Acceptance Model (TAM), including three more concepts, Subjective Norm (SN), Self-Efficacy (SE), and Perceived Behavior Control (PBC). The study was conducted in South Korea, and a random sample was taken at a specific time. In order to collect data, a questionnaire was created in a Google Form and sent via Kakao Talk, a popular social media application used in Korea. There were about 220 participants in this survey. However, 201 surveys were completely done. The findings revealed that all factors in the TAM model and the other added concepts such as subjective norms, self-efficacy and perceived behavior control significantly affect the behavioral intention of using EVs.

Keywords: electric vehicles, behavioral intention, perceived trust, perceived enjoyment, self-efficacy

Procedia PDF Downloads 135
15686 An Adaptive Controller Method Based on Full-State Linear Model of Variable Cycle Engine

Authors: Jia Li, Huacong Li, Xiaobao Han

Abstract:

Due to the more variable geometry parameters of VCE (variable cycle aircraft engine), presents an adaptive controller method based on the full-state linear model of VCE and has simulated to solve the multivariate controller design problem of the whole flight envelops. First, analyzes the static and dynamic performances of bypass ratio and other state parameters caused by variable geometric components, and develops nonlinear component model of VCE. Then based on the component model, through small deviation linearization of main fuel (Wf), the area of tail nozzle throat (A8) and the angle of rear bypass ejector (A163), setting up multiple linear model which variable geometric parameters can be inputs. Second, designs the adaptive controllers for VCE linear models of different nominal points. Among them, considering of modeling uncertainties and external disturbances, derives the adaptive law by lyapunov function. The simulation results showed that, the adaptive controller method based on full-state linear model used the angle of rear bypass ejector as input and effectively solved the multivariate control problems of VCE. The performance of all nominal points could track the desired closed-loop reference instructions. The adjust time was less than 1.2s, and the system overshoot was less than 1%, at the same time, the errors of steady states were less than 0.5% and the dynamic tracking errors were less than 1%. In addition, the designed controller could effectively suppress interference and reached the desired commands with different external random noise signals.

Keywords: variable cycle engine (VCE), full-state linear model, adaptive control, by-pass ratio

Procedia PDF Downloads 318
15685 Damage Identification Using Experimental Modal Analysis

Authors: Niladri Sekhar Barma, Satish Dhandole

Abstract:

Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.

Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification

Procedia PDF Downloads 116
15684 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 447
15683 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 122
15682 Tape-Shaped Multiscale Fiducial Marker: A Design Prototype for Indoor Localization

Authors: Marcell Serra de Almeida Martins, Benedito de Souza Ribeiro Neto, Gerson Lima Serejo, Carlos Gustavo Resque Dos Santos

Abstract:

Indoor positioning systems use sensors such as Bluetooth, ZigBee, and Wi-Fi, as well as cameras for image capture, which can be fixed or mobile. These computer vision-based positioning approaches are low-cost to implement, mainly when it uses a mobile camera. The present study aims to create a design of a fiducial marker for a low-cost indoor localization system. The marker is tape-shaped to perform a continuous reading employing two detection algorithms, one for greater distances and another for smaller distances. Therefore, the location service is always operational, even with variations in capture distance. A minimal localization and reading algorithm were implemented for the proposed marker design, aiming to validate it. The accuracy tests consider readings varying the capture distance between [0.5, 10] meters, comparing the proposed marker with others. The tests showed that the proposed marker has a broader capture range than the ArUco and QRCode, maintaining the same size. Therefore, reducing the visual pollution and maximizing the tracking since the ambient can be covered entirely.

Keywords: multiscale recognition, indoor localization, tape-shaped marker, fiducial marker

Procedia PDF Downloads 134
15681 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 339
15680 The Delone and McLean Model: A Review and Reconceptualisation for Explaining Organisational IS Success

Authors: Probir Kumar Banerjee

Abstract:

Though the revised DeLone and McLean (DM) model of IS success is found to be effective at the individual level of analysis, there is lack of consensus in regard to its effectiveness at the organisational level. This research reviews the DM model in the light of business/IT alignment theory and supporting literature, and suggests its reconceptualization. Specifically, arguments are made for augmenting it with business process quality. Business process quality, it is argued, captures the effect of intent to use, use and user satisfaction interactions, thus eliminating the need to capture their interaction effects in explaining organisational IS success. It is also argued that ‘operational performance’ driven by systems and business process quality, and higher order measures of organisational performance tied to operational performance are appropriate measures of ‘net benefit’. Suggestions are made for reconceptualisation of the other constructs and an adapted model of organisational IS success is proposed.

Keywords: organisational IS success, business/IT alignment, systems quality, business process quality, operational performance, market performance

Procedia PDF Downloads 395
15679 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models

Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed

Abstract:

The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE.  Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.

Keywords: simulation model, misalignment, cogs missing, vibration analysis

Procedia PDF Downloads 284
15678 External Strengthening of RC Continuous Beams Using FRP Plates: Finite Element Model

Authors: Mohammed A. Sakr, Tarek M. Khalifa, Walid N. Mansour

Abstract:

Fiber reinforced polymer (FRP) installation is a very effective way to repair and strengthen structures that have become structurally weak over their life span. This technique attracted the concerning of researchers during the last two decades. This paper presents a simple uniaxial nonlinear finite element model (UNFEM) able to accurately estimate the load-carrying capacity, different failure modes and the interfacial stresses of reinforced concrete (RC) continuous beams flexurally strengthened with externally bonded FRP plates on the upper and lower fibers. Results of the proposed finite element (FE) model are verified by comparing them with experimental measurements available in the literature. The agreement between numerical and experimental results is very good. Considering fracture energy of adhesive is necessary to get a realistic load carrying capacity of continuous RC beams strengthened with FRP. This simple UNFEM is able to help design engineers to model their strengthened structures and solve their problems.

Keywords: continuous beams, debonding, finite element, fibre reinforced polymer

Procedia PDF Downloads 482
15677 Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops

Authors: Nikolaos Katsoulas, Ioannis Naounoulis, Sofia Faliagka

Abstract:

Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858.

Keywords: hydroponics, salinity, water use efficiencu, nutrients use efficiency

Procedia PDF Downloads 82
15676 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction

Procedia PDF Downloads 112
15675 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 448
15674 Design of a Compact Microstrip Patch Antenna for LTE Applications by Applying FDSC Model

Authors: Settapong Malisuwan, Jesada Sivaraks, Peerawat Promkladpanao, Nattakit Suriyakrai, Navneet Madan

Abstract:

In this paper, a compact microstrip patch antenna is designed for mobile LTE applications by applying the frequency-dependent Smith-Chart (FDSC) model. The FDSC model is adopted in this research to reduce the error on the frequency-dependent characteristics. The Ansoft HFSS and various techniques is applied to meet frequency and size requirements. The proposed method within this research is suitable for use in computer-aided microstrip antenna design and RF integrated circuit (RFIC) design.

Keywords: frequency-dependent, smith-chart, microstrip, antenna, LTE, CAD

Procedia PDF Downloads 374
15673 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 67
15672 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 84
15671 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 13
15670 Social Entrepreneurship as an Innovative Women Empowerment Model against the Poverty in Türkiye

Authors: Rumeysa Terzioglu

Abstract:

Social entrepreneurship is not only a new concept but also an engaging factor of development that utilizes opportunities in economic and social areas for women. Social entrepreneurs have experience in determining and solving social problems with community participation. Social entrepreneurship is a consequence of individual social and economic initiatives contributing to women’s social and economic development against poverty. Women’s empowerment is an essential point for development. Türkiye has been developing an alternative empowerment model for women affected by the national development plan. Social entrepreneurship is an alternative model of social and economic empowerment of women’s status in Türkiye.

Keywords: social entrepreneurship, women, women empowerment, development

Procedia PDF Downloads 95
15669 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes

Authors: Zhuang Guo

Abstract:

In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.

Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty

Procedia PDF Downloads 76
15668 Tail-Binding Effect of Kinesin-1 Auto Inhibition Using Elastic Network Model

Authors: Hyun Joon Chang, Jae In Kim, Sungsoo Na

Abstract:

Kinesin-1 (hereafter called kinesin) is a molecular motor protein that moves cargos toward the end of microtubules using the energy of adenosine triphosphate (ATP) hydrolysis. When kinesin is inactive, its tail autoinhibits the motor chain in order to prevent from reacting with the ATP by cross-linking of the tail domain to the motor domains at two positions. However, the morphological study of kinesin during autoinhibition is yet remained obscured. In this study, we report the effect of the binding site of the tail domain using the normal mode analysis of the elastic network model on kinesin in the tail-free form and tail-bind form. Considering the relationship between the connectivity of conventional network model with respect to the cutoff length and the functionality of the binding site of the tail, we revaluated the network model to observe the key role of the tail domain in its structural aspect. Contingent on the existence of the tail domain, the results suggest the morphological stability of the motor domain. Furthermore, employing the results from normal mode analysis, we have determined the strain energy of the neck linker, an essential portion of the motor domain for ATP hydrolysis. The results of the neck linker also converge to the same indication, i.e. the morphological analysis of the motor domain.

Keywords: elastic network model, Kinesin-1, autoinhibition

Procedia PDF Downloads 455
15667 Optimal Evaluation of Weather Risk Insurance for Wheat

Authors: Slim Amami

Abstract:

A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients.

Keywords: agriculture, database, meteorological factors, production model, optimal price

Procedia PDF Downloads 222
15666 Conceptual Framework of Continuous Academic Lecturer Model in Islamic Higher Education

Authors: Lailial Muhtifah, Sirtul Marhamah

Abstract:

This article forwards the conceptual framework of continuous academic lecturer model in Islamic higher education (IHE). It is intended to make a contribution to the broader issue of how the concept of excellence can promote adherence to standards in higher education and drive quality enhancement. This model reveals a process and steps to increase performance and achievement of excellence regular lecturer gradually. Studies in this model are very significant to realize excellence academic culture in IHE. Several steps were identified from previous studies through literature study and empirical findings. A qualitative study was conducted at institute. Administrators and lecturers were interviewed, and lecturers learning communities observed to explore institute culture policies, and procedures. The original in this study presents and called Continuous Academic Lecturer Model (CALM) with its components, namely Standard, Quality, and Excellent as the basis for this framework (SQE). Innovation Excellence Framework requires Leaders to Support (LS) lecturers to achieve a excellence culture. So, the model named CALM-SQE+LS. Several components of performance and achievement of CALM-SQE+LS Model should be disseminated and cultivated to all lecturers in university excellence in terms of innovation. The purpose of this article is to define the concept of “CALM-SQE+LS”. Originally, there were three components in the Continuous Academic Lecturer Model i.e. standard, quality, and excellence plus leader support. This study is important to the community as specific cases that may inform educational leaders on mechanisms that may be leveraged to ensure successful implementation of policies and procedures outline of CALM with its components (SQE+LS) in institutional culture and professional leader literature. The findings of this study learn how continuous academic lecturer is part of a group's culture, how it benefits in university. This article blends the available criteria into several sub-component to give new insights towards empowering lecturer the innovation excellence at the IHE. The proposed conceptual framework is also presented.

Keywords: continuous academic lecturer model, excellence, quality, standard

Procedia PDF Downloads 201
15665 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries

Authors: Oktofa Y. Sudrajad, Didier V. Caillie

Abstract:

Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.

Keywords: bank business model, banking competition, Boone indicator, market power

Procedia PDF Downloads 227
15664 Using Mathematical Models to Predict the Academic Performance of Students from Initial Courses in Engineering School

Authors: Martín Pratto Burgos

Abstract:

The Engineering School of the University of the Republic in Uruguay offers an Introductory Mathematical Course from the second semester of 2019. This course has been designed to assist students in preparing themselves for math courses that are essential for Engineering Degrees, namely Math1, Math2, and Math3 in this research. The research proposes to build a model that can accurately predict the student's activity and academic progress based on their performance in the three essential Mathematical courses. Additionally, there is a need for a model that can forecast the incidence of the Introductory Mathematical Course in the three essential courses approval during the first academic year. The techniques used are Principal Component Analysis and predictive modelling using the Generalised Linear Model. The dataset includes information from 5135 engineering students and 12 different characteristics based on activity and course performance. Two models are created for a type of data that follows a binomial distribution using the R programming language. Model 1 is based on a variable's p-value being less than 0.05, and Model 2 uses the stepAIC function to remove variables and get the lowest AIC score. After using Principal Component Analysis, the main components represented in the y-axis are the approval of the Introductory Mathematical Course, and the x-axis is the approval of Math1 and Math2 courses as well as student activity three years after taking the Introductory Mathematical Course. Model 2, which considered student’s activity, performed the best with an AUC of 0.81 and an accuracy of 84%. According to Model 2, the student's engagement in school activities will continue for three years after the approval of the Introductory Mathematical Course. This is because they have successfully completed the Math1 and Math2 courses. Passing the Math3 course does not have any effect on the student’s activity. Concerning academic progress, the best fit is Model 1. It has an AUC of 0.56 and an accuracy rate of 91%. The model says that if the student passes the three first-year courses, they will progress according to the timeline set by the curriculum. Both models show that the Introductory Mathematical Course does not directly affect the student’s activity and academic progress. The best model to explain the impact of the Introductory Mathematical Course on the three first-year courses was Model 1. It has an AUC of 0.76 and 98% accuracy. The model shows that if students pass the Introductory Mathematical Course, it will help them to pass Math1 and Math2 courses without affecting their performance on the Math3 course. Matching the three predictive models, if students pass Math1 and Math2 courses, they will stay active for three years after taking the Introductory Mathematical Course, and also, they will continue following the recommended engineering curriculum. Additionally, the Introductory Mathematical Course helps students to pass Math1 and Math2 when they start Engineering School. Models obtained in the research don't consider the time students took to pass the three Math courses, but they can successfully assess courses in the university curriculum.

Keywords: machine-learning, engineering, university, education, computational models

Procedia PDF Downloads 95
15663 Hidden Markov Movement Modelling with Irregular Data

Authors: Victoria Goodall, Paul Fatti, Norman Owen-Smith

Abstract:

Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data.

Keywords: hidden Markov Models, irregular observations, animal movement modelling, nocturnal predator

Procedia PDF Downloads 244
15662 Learning Communities and Collaborative Reflection for Teaching Improvement

Authors: Mariana Paz Sajon, Paula Cecilia Primogerio, Mariana Albarracin

Abstract:

This study recovers an experience of teacher training carried out in an Undergraduate Business School from a private university in Buenos Aires, Argentina. The purpose of the project was to provide teachers with an opportunity to reflect on their teaching practices at the university. The aim of the study is to systematize lessons and challenges that emerge from this teacher training experience. A group of teachers who showed a willingness to learn teaching abilities was selected to work. They completed a formative journey working in learning communities starting from the immersion in different aspects of teaching and learning, class observations, and an individual and collaborative reflection exercise in a systematic way among colleagues. In this study, the productions of the eight teachers who are members of the learning communities are analyzed, framed in an e-portfolio that they prepared during the training journey. The analysis shows that after the process of shared reflection, traits related to powerful teaching and meaningful learning have appeared in the classes. For their part, teachers reflect having reached an awareness of their own practices, identifying strengths and opportunities for improvement, and the experience of sharing their own way and knowing the successes and failures of others was valued. It is an educational journey of pedagogical transformation of the teachers, which is infrequent in business education, which could lead to a change in teaching practices for the entire Business School. The present study involves theoretical and pedagogic aspects of education in a business school in Argentina and its flow-on implications for the workplace that may be transferred to other educational contexts.

Keywords: Argentina, learning community, meaningful learning, powerful teaching, reflective practice

Procedia PDF Downloads 224