Search results for: unknown input observer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3126

Search results for: unknown input observer

1296 The Economic Value of Mastitis Resistance in Dairy Cattle in Kenya

Authors: Caleb B. Sagwa, Tobias O. Okeno, Alexander K. Kahi

Abstract:

Dairy cattle production plays an important role in the Kenyan economy. However, high incidences of mastitis is a major setback to the productivity in this industry. The current dairy cattle breeding objective in Kenya does not include mastitis resistance, mainly because the economic value of mastitis resistance has not been determined. Therefore this study aimed at estimating the economic value of mastitis resistance in dairy cattle in Kenya. Initial input parameters were obtained from literature on dairy cattle production systems in the tropics. Selection index methodology was used to derive the economic value of mastitis resistance. Somatic cell count (SCC) was used an indicator trait for mastitis resistance. The economic value was estimated relative to milk yield (MY). Economic values were assigned to SCC in a selection index such that the overall gain in the breeding goal trait was maximized. The option of estimating the economic value for SCC by equating the response in the trait of interest to its index response was considered. The economic value of mastitis resistance was US $23.64 while maximum response to selection for MY was US $66.01. The findings of this study provide vital information that is a pre-requisite for the inclusion of mastitis resistance in the current dairy cattle breeding goal in Kenya.

Keywords: somatic cell count, milk quality, payment system, breeding goal

Procedia PDF Downloads 250
1295 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 129
1294 Sensitivity Analysis of Movable Bed Roughness Formula in Sandy Rivers

Authors: Mehdi Fuladipanah

Abstract:

Sensitivity analysis as a technique is applied to determine influential input factors on model output. Variance-based sensitivity analysis method has more application compared to other methods because of including linear and non-linear models. In this paper, van Rijn’s movable bed roughness formula was selected to evaluate because of its reasonable results in sandy rivers. This equation contains four variables as: flow depth, sediment size,bBed form height and bed form length. These variable’s importance was determined using the first order of Fourier Amplitude Sensitivity Test. Sensitivity index was applied to evaluate importance of factors. The first order FAST based sensitivity indices test, explain 90% of the total variance that is indicating acceptance criteria of FAST application. More value of this index is indicating more important variable. Results show that bed form height, bed form length, sediment size and flow depth are more influential factors with sensitivity index: 32%, 24%, 19% and 15% respectively.

Keywords: sdensitivity analysis, variance, movable bed roughness formula, Sandy River

Procedia PDF Downloads 250
1293 Spontaneous Pneumothorax in Mixed Poisoning Presented as Daisley Barton Syndrome

Authors: A. A. Md. Ryhan Uddin, Swarup Das, Rajesh Barua, Joheb Hasan, Rashedul Islam

Abstract:

Background: The herbicide has toxicological importance because some of them are associated with high mortality rates due to respiratory failure. Organophosphate poisoning (OPC) & Paraquat self-poisoning is a major clinical and public health problems in low and middle-income countries across much of South Asia. Paraquat was not used as a common suicidal agent previously in Bangladesh. We report a case of 15 years old female admitted to the ER with a history of nausea & vomiting after ingestion of an unknown substance in a suicidal attempt, later identified as mixed poisoning- OPC & Paraquat. She was initially asymptomatic but later developed renal shutdown & lung injuries as well as pneumothorax, referred to as Daisley Barton Syndrome. Objective: This case report aims to alert spontaneous pneumothorax in mixed poisoning on uncommon forms of presentation. Pneumothorax in a patient with paraquat poisoning is a less unusual but underdiagnosed finding. It has a high index of early mortality. Case history: The patient's attendant complained about nausea followed by vomiting, which was nonprojectile & contains undigested food materials first, then gastric juice later. After a few hours, she also complains of urinary retention. Her family members treated her with some home remedies for her initial symptoms, but all attempts failed. After admission, the patient was initially asymptomatic. Through repeated history taking, her attendant showed a bottle of OPC in liquid form, which they suspected that she may have ingested some of the liquid from that bottle accidentally or attempted Suicide. So, management started for OPC poisoning. She responded well initially, but on 4th day of admission, the patient's condition became deteriorating. After the workout with the family member, 2nd bottle of Pesticide was discovered, which was Paraquat. Conclusion: Physicians should be aware of the symptoms of mixed poisoning and the timely use of urine dithionate testing for early detection and treatment. Pneumothorax is an early predictor of mortality in patients with paraquat poisoning.

Keywords: pneumothorax, suicide, dithionate, OPC, herbicide

Procedia PDF Downloads 81
1292 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 102
1291 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 125
1290 Response Surface Methodology to Optimize the Performance of a Co2 Geothermal Thermosyphon

Authors: Badache Messaoud

Abstract:

Geothermal thermosyphons (GTs) are increasingly used in many heating and cooling geothermal applications owing to their high heat transfer performance. This paper proposes a response surface methodology (RSM) to investigate and optimize the performance of a CO2 geothermal thermosyphon. The filling ratio (FR), temperature, and flow rate of the heat transfer fluid are selected as the designing parameters, and heat transfer rate and effectiveness are adopted as response parameters (objective functions). First, a dedicated experimental GT test bench filled with CO2 was built and subjected to different test conditions. An RSM was used to establish corresponding models between the input parameters and responses. Various diagnostic tests were used to assess evaluate the quality and validity of the best-fit models, which explain respectively 98.9% and 99.2% of the output result’s variability. Overall, it is concluded from the RSM analysis that the heat transfer fluid inlet temperatures and the flow rate are the factors that have the greatest impact on heat transfer (Q) rate and effectiveness (εff), while the FR has only a slight effect on Q and no effect on εff. The maximal heat transfer rate and effectiveness achieved are 1.86 kW and 47.81%, respectively. Moreover, these optimal values are associated with different flow rate levels (mc level = 1 for Q and -1 for εff), indicating distinct operating regions for maximizing Q and εff within the GT system. Therefore, a multilevel optimization approach is necessary to optimize both the heat transfer rate and effectiveness simultaneously.

Keywords: geothermal thermosiphon, co2, Response surface methodology, heat transfer performance

Procedia PDF Downloads 60
1289 A Technique for Image Segmentation Using K-Means Clustering Classification

Authors: Sadia Basar, Naila Habib, Awais Adnan

Abstract:

The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.

Keywords: clustering, image segmentation, K-means function, local and global minimum, region

Procedia PDF Downloads 363
1288 Reliability Enhancement by Parameter Design in Ferrite Magnet Process

Authors: Won Jung, Wan Emri

Abstract:

Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.

Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method

Procedia PDF Downloads 507
1287 Hybrid Beam-Forming Techniques for 6G Terahertz Communication: Challenges

Authors: Mridula Korde

Abstract:

The terahertz band is the main pillar of 6G wireless communication system. It is difficult to meet the high data rate of 1Tbps by millimeter frequency support systems. The terahertz band suffers huge propagation loss limiting wireless distance. Terahertz band imposes ultra massive multiple input multiple output antenna (UM-MIMO) systems which produce high array gain with narrow beamforming. The conventional methods for MIMO beamforming are Analog and Digital beamforming. The fully digital beamforming methods utilize dedicated structure of DAC/ADC and RF chains. These structures increase hardware complexity and are power hungry. The analog beamforming structures utilize ADC/DAC with phase shifters with less hardware complexity but support less data rates. As a result, a hybrid beamforming method can be adapted for UM-MIMO systems. This paper will investigate challenges in hybrid beamforming architecture which will address the low spatial degrees of freedom (SDoF) limitation in Terahertz (THz) Communication. The flexible hardware connections are proposed, in order to switch the system in an adaptive manner so as to minimize the power requirements.

Keywords: 6G, terahertz communication, beamforming, challenges

Procedia PDF Downloads 14
1286 Mining Coupled to Agriculture: Systems Thinking in Scalable Food Production

Authors: Jason West

Abstract:

Low profitability in agriculture production along with increasing scrutiny over environmental effects is limiting food production at scale. In contrast, the mining sector offers access to resources including energy, water, transport and chemicals for food production at low marginal cost. Scalable agricultural production can benefit from the nexus of resources (water, energy, transport) offered by mining activity in remote locations. A decision support bioeconomic model for controlled environment vertical farms was used. Four submodels were used: crop structure, nutrient requirements, resource-crop integration, and economic. They escalate to a macro mathematical model. A demonstrable dynamic systems framework is needed to prove productive outcomes are feasible. We demonstrate a generalized bioeconomic macro model for controlled environment production systems in minesites using systems dynamics modeling methodology. Despite the complexity of bioeconomic modelling of resource-agricultural dynamic processes and interactions, the economic potential greater than general economic models would assume. Scalability of production as an input becomes a key success feature.

Keywords: crop production systems, mathematical model, mining, agriculture, dynamic systems

Procedia PDF Downloads 68
1285 Modification of Polyurethane Adhesive for OSB/EPS Panel Production

Authors: Stepan Hysek, Premysl Sedivka, Petra Gajdacova

Abstract:

Currently, structural composite materials contain cellulose-based particles (wood chips, fibers) bonded with synthetic adhesives containing formaldehyde (urea-formaldehyde, melamine-formaldehyde adhesives and others). Formaldehyde is classified as a volatile substance with provable carcinogenic effects on live organisms, and an emphasis has been put on continual reduction of its content in products. One potential solution could be the development of an agglomerated material which does not contain adhesives releasing formaldehyde. A potential alternative to formaldehyde-based adhesives could be polyurethane adhesives containing no formaldehyde. Such adhesives have been increasingly used in applications where a few years ago formaldehyde-based adhesives were the only option. Advantages of polyurethane adhesive in comparison with others in the industry include the high elasticity of the joint, which is able to resist dynamic stress, and resistance to increased humidity and climatic effects. These properties predict polyurethane adhesives to be used in OSB/EPS panel production. The objective of this paper is to develop an adhesive for bonding of sandwich panels made of material based on wood and other materials, e.g. SIP) and optimization of input components in order to obtain an adhesive with required properties suitable for bonding of the given materials without involvement of formaldehyde. It was found that polyurethane recyclate as a filler is suitable modification of polyurethane adhesive and results have clearly revealed that modified adhesive can be used for OSB/EPS panel production.

Keywords: adhesive, polyurethane, recyclate, SIP

Procedia PDF Downloads 259
1284 Bacterial Diversity and Antibiotic Resistance in Coastal Sediments of Izmir Bay, Aegean Sea

Authors: Ilknur Tuncer, Nihayet Bizsel

Abstract:

The scarcity of research in bacterial diversity and antimicrobial resistance in coastal environments as in Turkish coasts leads to difficulties in developing efficient monitoring and management programs. In the present study, biogeochemical analysis of sediments and antimicrobial susceptibility analysis of bacteria in Izmir Bay, eastern Aegean Sea under high anthropogenic pressure were aimed in summer period when anthropogenic input was maximum and at intertidal zone where the first terrigenious contact occurred for aquatic environment. Geochemical content of the intertidal zone of Izmir Bay was firstly illustrated such that total and organic carbon, nitrogen and phosphorus contents were high and the grain size distribution varied as sand and gravel. Bacterial diversity and antibiotic resistance were also firstly given for Izmir Bay. Antimicrobially assayed isolates underlined the multiple resistance in the inner, middle and outer bays with overall 19% high MAR (multiple antibiotic resistance) index. Phylogenetic analysis of 16S rRNA gene sequences indicated that 67 % of isolates belonged to the genus Bacillus and the rest included the families Alteromonadaceae, Bacillaceae, Exiguobacteriaceae, Halomonadaceae, Planococcaceae, and Staphylococcaceae.

Keywords: bacterial phylogeny, multiple antibiotic resistance, 16S rRNA genes, Izmir Bay, Aegean Sea

Procedia PDF Downloads 459
1283 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant

Authors: M. N. A. Azman, M. S. S. Ahamad

Abstract:

The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.

Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering

Procedia PDF Downloads 275
1282 Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Authors: T. V. K. Gupta, J. Ramkumar, Puneet Tandon, N. S. Vyas

Abstract:

Abrasive Water Jet Machining (AWJM) is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application i.e. abrasive size, flow rate, standoff distance, and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate, and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Keywords: abrasive flow rate, surface finish, abrasive size, standoff distance, traverse speed

Procedia PDF Downloads 289
1281 Ill-Posed Inverse Problems in Molecular Imaging

Authors: Ranadhir Roy

Abstract:

Inverse problems arise in medical (molecular) imaging. These problems are characterized by large in three dimensions, and by the diffusion equation which models the physical phenomena within the media. The inverse problems are posed as a nonlinear optimization where the unknown parameters are found by minimizing the difference between the predicted data and the measured data. To obtain a unique and stable solution to an ill-posed inverse problem, a priori information must be used. Mathematical conditions to obtain stable solutions are established in Tikhonov’s regularization method, where the a priori information is introduced via a stabilizing functional, which may be designed to incorporate some relevant information of an inverse problem. Effective determination of the Tikhonov regularization parameter requires knowledge of the true solution, or in the case of optical imaging, the true image. Yet, in, clinically-based imaging, true image is not known. To alleviate these difficulties we have applied the penalty/modified barrier function (PMBF) method instead of Tikhonov regularization technique to make the inverse problems well-posed. Unlike the Tikhonov regularization method, the constrained optimization technique, which is based on simple bounds of the optical parameter properties of the tissue, can easily be implemented in the PMBF method. Imposing the constraints on the optical properties of the tissue explicitly restricts solution sets and can restore uniqueness. Like the Tikhonov regularization method, the PMBF method limits the size of the condition number of the Hessian matrix of the given objective function. The accuracy and the rapid convergence of the PMBF method require a good initial guess of the Lagrange multipliers. To obtain the initial guess of the multipliers, we use a least square unconstrained minimization problem. Three-dimensional images of fluorescence absorption coefficients and lifetimes were reconstructed from contact and noncontact experimentally measured data.

Keywords: constrained minimization, ill-conditioned inverse problems, Tikhonov regularization method, penalty modified barrier function method

Procedia PDF Downloads 261
1280 Calling the Shots: How Others’ Mistakes May Influence Vaccine Take-up

Authors: Elizabeth Perry, Jylana Sheats

Abstract:

Scholars posit that there is an overlap between the fields of Behavioral Economics (BE) and Behavior Science (BSci)—and that consideration of concepts from both may facilitate a greater understanding of health decision-making processes. For example, the ‘intention-action gap’ is one BE concept to explain sup-optimal decision-making. It is described as having knowledge that does not translate into behavior. Complementary best BSci practices may provide insights into behavioral determinants and relevant behavior change techniques (BCT). Within the context of BSci, this exploratory study aimed to apply a BE concept with demonstrated effectiveness in financial decision-making to a health behavior: influenza (flu) vaccine uptake. Adults aged >18 years were recruited on Amazon’s Mechanical Turk, a digital labor market where anonymous users perform simple tasks at low cost. Eligible participants were randomized into 2 groups, reviewed a scenario, and then completed a survey on the likelihood of receiving a flu shot. The ‘usual care’ group’s scenario included standard CDC guidance that supported the behavior. The ‘intervention’ group’s scenario included messaging about people who did not receive the flu shot. The framing was such that participants could learn from others’ (strangers) mistakes and the subsequent health consequences: ‘Last year, other people who didn’t get the vaccine were about twice as likely to get the flu, and a number of them were hospitalized or even died. Don’t risk it.’ Descriptive statistics and chi-square analyses were performed on the sample. There were 648 participants (usual care, n=326; int., n=322). Among racial/ethnic minorities (n=169; 57% aged < 40), the intervention group was 22% more likely to report that they were ‘extremely’ or ‘moderately’ likely to get the flu vaccine (p = 0.11). While not statistically significant, findings suggest that framing messages from the perspective of learning from the mistakes of unknown others coupled with the BCT ‘knowledge about the health consequences’ may help influence flu vaccine uptake among the study population. With the widely documented disparities in vaccine uptake, exploration of the complementary application of these concepts and strategies may be critical.

Keywords: public health, decision-making, vaccination, behavioral science

Procedia PDF Downloads 15
1279 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali

Abstract:

This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.

Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control

Procedia PDF Downloads 127
1278 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market

Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua

Abstract:

Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.

Keywords: candlestick chart, deep learning, neural network, stock market prediction

Procedia PDF Downloads 425
1277 Psychological Well-Being and Perception of Disease Severity in People with Multiple Sclerosis, Who Underwent a Program of Self-Regulation to Promote Physical Activity

Authors: Luísa Pedro, José Pais-Ribeiro, João Páscoa Pinheiro

Abstract:

Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. After this, a set of exercises was implemented to be used in daily life activities, according to studies developed with MS patients. We asked the subjects the question “Please classify the severity of your disease?” and used the domain of psychological well-being, the Mental Health Inventory (MHI-38) at the beginning (time A) and end (time B) of the program of self-regulation. We used the Statistical Package for the Social Sciences (SPSS) version 20. A non-parametric statistical hypothesis test (Wilcoxon test) was used for the variable analysis. The intervention followed the recommendations of the Helsinki Declaration. The age range of the subjects was between 20 and 58 years with a mean age of 44 years. 58.3 % were women, 37.5 % were currently married, 67% were retired and the mean level of education was 12.5 years. In the correlation between the severity of the disease perception and psychological well before the self-regulation program, an obtained result (r = 0.26, p <0.05), then the self-regulation program, was (r = 0.37, p <0.01), from a low to moderate correlation. We conclude that the program of self-regulation for physical activity in patients with MS can improve the relationship between the perception of disease severity and psychological well-being.

Keywords: psychological well-being, multiple sclerosis, self-regulation, physical activity

Procedia PDF Downloads 474
1276 Climate Change and Health in Policies

Authors: Corinne Kowalski, Lea de Jong, Rainer Sauerborn, Niamh Herlihy, Anneliese Depoux, Jale Tosun

Abstract:

Climate change is considered one of the biggest threats to human health of the 21st century. The link between climate change and health has received relatively little attention in the media, in research and in policy-making. A long term and broad overview of how health is represented in the legislation on climate change is missing in the legislative literature. It is unknown if or how the argument for health is referred in legal clauses addressing climate change, in national and European legislation. Integrating scientific based evidence into policies regarding the impacts of climate change on health could be a key step to inciting the political and societal changes necessary to decelerate global warming. This may also drive the implementation of new strategies to mitigate the consequences on health systems. To provide an overview of this issue, we are analyzing the Global Climate Legislation Database provided by the Grantham Research Institute on Climate Change and the Environment. This institution was established in 2008 at the London School of Economics and Political Science. The database consists of (updated as of 1st January 2015) legislations on climate change in 99 countries around the world. This tool offers relevant information about the state of climate related policies. We will use the database to systematically analyze the 829 identified legislations to identify how health is represented as a relevant aspect of climate change legislation. We are conducting explorative research of national and supranational legislations and anticipate health to be addressed in various forms. The goal is to highlight how often, in what specific terms, which aspects of health or health risks of climate change are mentioned in various legislations. The position and recurrence of the mention of health is also of importance. Data will be extracted with complete quotation of the sentence which mentions health, which will allow for second qualitative stage to analyze which aspects of health are represented and in what context. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, explorative research, health, policies

Procedia PDF Downloads 348
1275 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: adaptive differentiators, second order sliding modes, dynamic adaptation of the gains, microsoft flight simulator, Zlin-142, MQ-1 predator

Procedia PDF Downloads 412
1274 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 164
1273 FLIME - Fast Low Light Image Enhancement for Real-Time Video

Authors: Vinay P., Srinivas K. S.

Abstract:

Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.

Keywords: low light image enhancement, real-time video, computer vision, machine learning

Procedia PDF Downloads 184
1272 Production Sharing Contracts Transparency Simulation

Authors: Chariton Christou, David Cornwell

Abstract:

Production Sharing Contract (PSC) is the type of contract that is being used widely in our time. The financial crisis made the governments tightfisted and they do not have the resources to participate in a development of a field. Therefore, more and more countries introduce the PSC. The companies have the power and the money to develop the field with their own way. The main problem is the transparency of oil and gas companies especially in the PSC and how this can be achieved. Many discussions have been made especially in the U.K. What we are suggesting is a dynamic financial simulation with the help of a flow meter. The flow meter will count the production of each field every day (it will be installed in a pipeline). The production will be the basic input of the simulation. It will count the profit, the costs and more according to the information of the flow meter. In addition it will include the terms of the contract and the costs that have been paid. By all these parameters the simulation will be able to present in real time the information of a field (taxes, employees, R-factor). By this simulation the company will share some information with the government but not all of them. The government will know the taxes that should be paid and what is the sharing percentage of it. All of the other information could be confidential for the company. Furthermore, oil company could control the R-factor by changing the production each day to maximize its sharing percentages and as a result of this the profit. This idea aims to change the way that governments 'control' oil companies and bring a transparency evolution in the industry. With the help of a simulation every country could be next to the company and have a better collaboration.

Keywords: production sharing contracts, transparency, simulation

Procedia PDF Downloads 362
1271 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 404
1270 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 149
1269 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal

Authors: Jugal Bhandari, K. Hari Priya

Abstract:

The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.

Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language

Procedia PDF Downloads 355
1268 Advanced Electrocoagulation for Textile Wastewater Treatment

Authors: Alemi Asefa Wordofa

Abstract:

The textile industry is among the biggest industries in the world, producing a wide variety of products. Industry plays an important role in the world economy as well as in our daily lives. In Ethiopia, this has also been aided by the country’s impressive economic growth over the years. However, Textile industries consume large amounts of water and produce colored wastewater, which results in polluting the environment. In this study, the efficiency of the electrocoagulation treatment process using Iron electrodes to treat textile wastewater containing Reactive black everzol was studied. The effects of parameters such as voltage, time of reaction, and inter-electrode distance on Chemical oxygen demand (COD) and dye removal efficiency were investigated. In addition, electrical energy consumption at optimum conditions has been investigated. The results showed that COD and dye removals were 90.76% and 97.66%, respectively, at the optimum point of input voltage of 14v, inter-electrode distance of 7.24mm, and 47.86min electrolysis time. Energy consumption at the optimum point is also 2.9*10-3. It can be concluded that the electrocoagulation process by the iron electrode is a very efficient and clean process for COD and reactive black removal from wastewater.

Keywords: iron electrode, electrocoagulation, chemical oxygen demand, wastewater

Procedia PDF Downloads 51
1267 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 439