Search results for: mean average precision
3815 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 4753814 Preparation of Nano-Sized Samarium-Doped Yttrium Aluminum Garnet
Authors: M. Tabatabaee, N. Binavayan, M. R. Nateghi
Abstract:
In this research nano-size of yttrium aluminum garnet (YAG) containing lanthanide metals was synthesized by the sol-gel method in presente citric acid as a complexing agent. Samarium (III) was used to synthesis of YAG:M3+. The prepared powders were characterized by powder X-ray diffraction (PXRD). The size distribution and morphology of the samples were analyzed by scanning electron microscopy (SEM). XRD results show that Sm, La, and ce doped YAG crystallizes in the cubic system and additional peaks compared to pure YAG can be assigned to the presence of Sm in the synthesize YAG. The SEM images show possess spherical nano-sized particle with average 50 nm in diameter.Keywords: citric acid, nano particle, samarium, yttrium aluminum garnet
Procedia PDF Downloads 3063813 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation
Authors: Deepanjali Gurav, Kun Qian
Abstract:
In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics
Procedia PDF Downloads 1423812 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition
Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri
Abstract:
This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words
Procedia PDF Downloads 5653811 Seed Quality Aspects of Nightshade (Solanum Nigrum) as Influenced by Gibberellins (GA3) on Seed
Authors: Muga Moses
Abstract:
Plant growth regulators are actively involved in the growth and yield of plants. However, limited information is available on the combined effect of gibberellic acid (GA3) on growth attributes and yield of African nightshade. This experiment will be designed to fill this gap by studying the performance of African nightshade under the application of hormones. Gibberellic acid is a plant growth hormone that promotes cell expansion and division. A greenhouse and laboratory experiment will be conducted at the University of Sussex biotechnology greenhouse and Agriculture laboratory using a growth chamber to study the effect of GA3 on the growth and development attributes of African nightshade. The experiment consists of three replications and 5 treatments and is laid out in a randomized complete block design consisting of various concentrations of GA3. 0ppm, 50ppm, 100ppm, 150ppm and 200ppm. local farmer seed was grown in plastic pots, 6 seeds then hardening off to remain with four plants per pot at the greenhouse to attain purity of germplasm, proper management until maturity of berries then harvesting and squeezing to get seeds, paper dry on the sun for 7 days. In a laboratory, place 5 Whatman filter paper on glass petri-dish subject to different concentrations of stock solution, count 50 certified and clean, healthy seeds, then arrange on the moist filter paper and mark respectively. Spray with the stock solution twice a day and protrusion of radicle termed as germination count and discard to increase the accuracy of precision. Data will be collected on the application of GA3 to compare synergistic effects on the growth, yield, and nutrient contents on African nightshade.Keywords: African nightshade, growth, yield, shoot, gibberellins
Procedia PDF Downloads 953810 Observation of the Effect of Yingyangbao Intervention on Infants and Young Children Aged 6 to 23 Months in Poor Rural Areas of China
Authors: Jin Li, Jing Sun, Xiangkun Cai, Lijuanwang, Yanbin Tang, Junsheng Huo
Abstract:
In order to improve the malnutrition of infants and young children in poor rural areas of China, Chinese government implement a project on improvement of children's nutrition in poor rural areas. Each infant or young child aged 6 to 23 months in selected poor rural areas of China was provided a package of Yingyangbao (YYB) per day, which is a full fat soy powder mixed with multiple micronutrient powders. A technical direction to implement this project comprehensively in poor rural areas of China will be provided by assessing the nutritional status of infants and feeding practices of caregiver. The nutritional intervention was conducted using Yingyangbao for infants aged 6 to 23 months in six poor counties of Shanxi, Yunnan and Hubei Provinces. The caregiver or parents of infants were educated on feeding knowledge and practice. A total of 1840 infants were assessed before the intervention and 1789 infants one year later. The length, weight, hemoglobin concentration of infants were measured to evaluate nutritional status before and after the intervention respectively. The questionnaires were designed to collect data for the basic demographic information and feeding practices. The average weight of infants aged 6 to 23 months increased from 9.59 ± 1.54kg to 9.73 ± 1.61kg one years later (p<0.01), and the average length from 76.0±6.0 to 77.0±6.1(p<0.01). The weight and length of infants aged 12 to 17 months had most obviously improving effect among the three age groups. Before the intervention, the hemoglobin concentration value of infants was 11.7±1.2g/L, and the anemia prevalence was 32.9%. One year later, the hemoglobin concentration value of the infants was increased to 12.0±1.1g/dL, and the anemia prevalence was decreased to 26.0%. There were both statistically significant (p <0.01). The anemia prevalence of infants aged 18 to 23 months had most obviously improving effect,which decreased from 25.0% to 17.2%(p<0.01). The proportion of infants aged 6 to 8 months who received solid, semi-solid or soft foods in time was increased from 89.4% to 91.6%, while there was no statistically significant. The proportion of 6-23 month-old infants who received minimum dietary diversity increased from 55.6% to 60.3%(p <0.01). The differences of the proportion of infants who received minimum meal frequency was no statistically significant between before and after the intervention. The nutritional intervention using Yingyangbao showed the significant effect for improving infants aged 6 to 23 months anemia status, weight and length. The feeding practices were improved through education in the process of nutritional intervention, while the effect is not significant. It is need for Chinese government to explore new publicity pattern.Keywords: nutritional intervention, infants, nutritional status, feeding practice
Procedia PDF Downloads 4463809 Implementation of Sensor Fusion Structure of 9-Axis Sensors on the Multipoint Control Unit
Authors: Jun Gil Ahn, Jong Tae Kim
Abstract:
In this paper, we study the sensor fusion structure on the multipoint control unit (MCU). Sensor fusion using Kalman filter for 9-axis sensors is considered. The 9-axis inertial sensor is the combination of 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We implement the sensor fusion structure among the sensor hubs in MCU and measure the execution time, power consumptions, and total energy. Experiments with real data from 9-axis sensor in 20Mhz show that the average power consumptions are 44mW and 48mW on Cortx-M0 and Cortex-M3 MCU, respectively. Execution times are 613.03 us and 305.6 us respectively.Keywords: 9-axis sensor, Kalman filter, MCU, sensor fusion
Procedia PDF Downloads 5073808 Best Resource Recommendation for a Stochastic Process
Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa
Abstract:
The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model
Procedia PDF Downloads 3923807 A Facile Nanocomposite of Graphene Oxide Reinforced Chitosan/Poly-Nitroaniline Polymer as a Highly Efficient Adsorbent for Extracting Polycyclic Aromatic Hydrocarbons from Tea Samples
Authors: Adel M. Al-Shutairi, Ahmed H. Al-Zahrani
Abstract:
Tea is a popular beverage drunk by millions of people throughout the globe. Tea has considerable health advantages, in-cluding antioxidant, antibacterial, antiviral, chemopreventive, and anticarcinogenic properties. As a result of environmental pollution (atmospheric deposition) and the production process, tealeaves may also include a variety of dangerous substances, such as polycyclic aromatic hydrocarbons (PAHs). In this study, graphene oxide reinforced chitosan/poly-nitroaniline polymer was prepared to develop a sensitive and reliable solid phase extraction method (SPE) for extraction of PAH7 in tea samples, followed by high-performance liquid chromatography- fluorescence detection. The prepared adsorbent was validated in terms of linearity, the limit of detection, the limit of quantification, recovery (%), accuracy (%), and precision (%) for the determination of the PAH7 (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[b]fluoranthene, Dibenzo[a,h]anthracene and Benzo[g,h,i]perylene) in tea samples. The concentration was determined in two types of tea commercially available in Saudi Arabia, including black tea and green tea. The maximum mean of Σ7PAHs in black tea samples was 68.23 ± 0.02 ug kg-1 and 26.68 ± 0.01 ug kg-1 in green tea samples. The minimum mean of Σ7PAHs in black tea samples was 37.93 ± 0.01 ug kg-1 and 15.26 ± 0.01 ug kg-1 in green tea samples. The mean value of benzo[a]pyrene in black tea samples ranged from 6.85 to 12.17 ug kg-1, where two samples exceeded the standard level (10 ug kg-1) established by the European Union (UE), while in green tea ranged from 1.78 to 2.81 ug kg-1. Low levels of Σ7PAHs in green tea samples were detected in comparison with black tea samples.Keywords: polycyclic aromatic hydrocarbons, CS, PNA and GO, black/green tea, solid phase extraction, Saudi Arabia
Procedia PDF Downloads 1023806 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review
Authors: Faisal Muhibuddin, Ani Dijah Rahajoe
Abstract:
This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review
Procedia PDF Downloads 753805 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 1033804 Device-integrated Micro-thermocouples for Reliable Temperature Measurement of GaN HEMTs
Authors: Hassan Irshad Bhatti, Saravanan Yuvaraja, Xiaohang Li
Abstract:
GaN-based devices, such as high electron mobility transistors (HEMTs), offer superior characteristics for high-power, high-frequency, and high-temperature applications [1]. However, this exceptional electrical performance is compromised by undesirable self-heating effects under high-power applications [2, 3]. Some of the issues caused by self-heating are current collapse, thermal runway and performance degradation [4, 5]. Therefore, accurate and reliable methods for measuring the temperature of individual devices on a chip are needed to monitor and control the thermal behavior of GaN-based devices [6]. Temperature measurement at the micro/nanoscale is a challenging task that requires specialized techniques such as Infrared microscopy, Raman thermometry, and thermoreflectance. Recently, micro-thermocouples (MTCs) have attracted considerable attention due to their advantages of simplicity, low cost, high sensitivity, and compatibility with standard fabrication processes [7, 8]. A micro-thermocouple is a junction of two different metal thin films, which generates a Seebeck voltage related to the temperature difference between a hot and cold zone. Integrating MTC in a device allows local temperature to be measured with high sensitivity and accuracy [9]. This work involves the fabrication and integration of micro-thermocouples (MTCs) to measure the channel temperature of GaN HEMT. Our fabricated MTC (Platinum-Chromium junction) has shown a sensitivity of 16.98 µV/K and can measure device channel temperature with high precision and accuracy. The temperature information obtained using this sensor can help improve GaN-based devices and provide thermal engineers with useful insights for optimizing their designs.Keywords: Electrical Engineering, Thermal engineering, Power Devices, Semiconuctors
Procedia PDF Downloads 283803 Decision-Making Strategies on Smart Dairy Farms: A Review
Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh
Abstract:
Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.Keywords: big data, evolutionary computing, cloud, precision technologies
Procedia PDF Downloads 1923802 The Analysis of Solar Radiation Exergy in Hakkari
Authors: Hasan Yildizhan
Abstract:
According to the Solar Energy Potential Atlas (GEPA) prepared by Turkish Ministry of Energy, Hakkari is ranked first in terms of sunshine duration and it is ranked eighth in terms of solar radiation energy. Accordingly, Hakkari has a rich potential of investment with regard to solar radiation energy. The part of the solar radiation energy arriving on the surface of the earth which is transposable to useful work is determined by means of exergy analysis. In this study, the radiation exergy values for Hakkari have been calculated and evaluated by making use of the monthly average solar radiation energy and temperature values measured by General Directorate of State Meteorology.Keywords: solar radiation exergy, Hakkari, solar energy potential, Turkey
Procedia PDF Downloads 7143801 Affective Attributes and Second Language Performance of Third Year Maritime Students: A Teacher's Compass
Authors: Sonia Pajaron, Flaviano Sentina, Ranulfo Etulle
Abstract:
Learning a second language calls for a total commitment from the learner whose response is necessary to successfully send and receive linguistic messages. It is relevant to virtually every aspect of human behaviour which is even more challenging when the components on -affective domains- are involved in second language learning. This study investigated the association between the identified affective attributes and second language performance of the one hundred seventeen (117) randomly selected third year maritime students. A descriptive-correlational method was utilized to generate data on their affective attributes while composition writing (2 series) and IELTS-based interview was done for speaking test. Additionally, to establish the respondents’ English language profile, data on their high school grades (GPA), entrance exam results in English subject (written) as well as in the interview was extracted as baseline information. Data were subjected to various statistical treatment (average means, percentages and pearson-r moment coefficient correlation) and found out that, Nautical Science and Marine Engineering students were found to have average high school grade, entrance test results, both written and in the interview turned out to be very satisfactory at 50% passing percentage. Varied results were manifested in their affective attributes towards learning the second language. On attitude, nautical science students had true positive attitude while marine engineering had only a moderate positive one. Secondly, the former were positively motivated to learn English while the latter were just moderately motivated. As regards anxiety, both groups embodied a moderate level of anxiety in the English language. Finally, data showed that nautical science students exuded real confidence while the marine engineering group had only moderate confidence with the second language. Respondents’ English academic achievement (GWA) was significantly correlated with confidence and speaking with anxiety towards the second language among the students from the nautical science group with moderate positive and low negative degree of correlation, respectively. On the other hand, the marine engineering students’ speaking test result was significantly correlated with anxiety and self-confidence with a moderate negative and low positive degree of correlation, respectively while writing was significantly correlated with motivation bearing a low positive degree of correlation.Keywords: affective attributes, second language, second language performance, anxiety, attitude, self-confidence and motivation
Procedia PDF Downloads 2743800 Exploring Machine Learning Techniques to Predict and Enhance Preservice Teachers’ Performance
Authors: Kimhong Ann, Nathaphon Boonnam
Abstract:
The prediction of student performance has become a key area of interest for researchers, with efforts focused on developing models to enhance student competence and improve educational institutions. These models help educators design effective teaching strategies, address specific student needs, and guide learning outcomes at all educational levels, including high school students, preservice teachers, and beyond. Therefore, we aim to identify the most accurate machine learning technique for predicting preservice teachers’ performance. Additionally, it seeks to explore the relationships between various features and identify key indicators for creating an effective prediction model. Key attributes considered in this study include courses taken during their study, course grades, cumulative grades, and student satisfaction. The data of preservice teachers will be collected from three universities in Cambodia and Thailand from 2021 to 2024. Various machine learning algorithms will be used and evaluated using classification metrics such as accuracy, precision, recall, and F1-score. Due to the characteristics of data collection and the theoretical concerns in the classification, the preliminary expectations indicate that the Random Forest algorithm may yield the highest accuracy for predicting preservice teachers’ performance, though the actual outcomes may vary based on the research findings. The outcomes of this study have the potential to assist educators in developing effective strategies for predicting and enhancing the performance of preservice teachers. By leveraging the predictive model, educators can anticipate student performance, identify challenges and difficulties faced by students, and provide timely feedback and support.Keywords: machine learning, preservice teacher, classification algorithm, predictive modeling
Procedia PDF Downloads 03799 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software
Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan
Abstract:
Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine
Procedia PDF Downloads 3963798 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis
Authors: Yongqin Zhang, John Lett
Abstract:
Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements
Procedia PDF Downloads 823797 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application
Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko
Abstract:
During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity
Procedia PDF Downloads 3873796 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water
Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella
Abstract:
Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment
Procedia PDF Downloads 1253795 Construction and Validation of a Hybrid Lumbar Spine Model for the Fast Evaluation of Intradiscal Pressure and Mobility
Authors: Dicko Ali Hamadi, Tong-Yette Nicolas, Gilles Benjamin, Faure Francois, Palombi Olivier
Abstract:
A novel hybrid model of the lumbar spine, allowing fast static and dynamic simulations of the disc pressure and the spine mobility, is introduced in this work. Our contribution is to combine rigid bodies, deformable finite elements, articular constraints, and springs into a unique model of the spine. Each vertebra is represented by a rigid body controlling a surface mesh to model contacts on the facet joints and the spinous process. The discs are modeled using a heterogeneous tetrahedral finite element model. The facet joints are represented as elastic joints with six degrees of freedom, while the ligaments are modeled using non-linear one-dimensional elastic elements. The challenge we tackle is to make these different models efficiently interact while respecting the principles of Anatomy and Mechanics. The mobility, the intradiscal pressure, the facet joint force and the instantaneous center of rotation of the lumbar spine are validated against the experimental and theoretical results of the literature on flexion, extension, lateral bending as well as axial rotation. Our hybrid model greatly simplifies the modeling task and dramatically accelerates the simulation of pressure within the discs, as well as the evaluation of the range of motion and the instantaneous centers of rotation, without penalizing precision. These results suggest that for some types of biomechanical simulations, simplified models allow far easier modeling and faster simulations compared to usual full-FEM approaches without any loss of accuracy.Keywords: hybrid, modeling, fast simulation, lumbar spine
Procedia PDF Downloads 3073794 Investigating the Contribution of Road Construction on Soil Erosion, a Case Study of Engcobo Local Municipality, Chris Hani District, South Africa
Authors: Yamkela Zitwana
Abstract:
Soil erosion along the roads and/or road riparian areas has become a norm in the Eastern Cape. Soil erosion refers to the detachment and transportation of soil from one area (onsite) to another (offsite). This displacement or removal of soil can be caused by water, air and sometimes gravity. This will focus on accelerated soil erosion which is the result of human interference with the environment. Engcobo local municipality falls within the Eastern Cape Province in the eastern side of CHRIS HANI District municipality. The focus road is R61 protruding from the Engcobo town outskirts along the Nyanga SSS on the way to Umtata although it will cover few Kilometers away from Engcobo. This research aims at looking at the contribution made by road construction to soil erosion. Steps to achieve the result will involve revisiting the phases of road construction through unstructured interviews, identifying the types of soil erosion evident in the area by doing a checklist, checking the material, utensils and equipment used for road construction and the contribution of road construction through stratified random sampling checking the soil color and texture. This research will use a pragmatic approach which combines related methods and consider the flaws of each method so as to ensure validity, precision and accuracy. Both qualitative and quantitative methods will be used. Statistical methods and GIS analysis will be used to analyze the collected data.Keywords: soil erosion, road riparian, accelerated soil erosion, road construction, sampling, universal soil loss model, GIS analysis, focus groups, qualitative, quantitative method, research, checklist questionnaires, unstructured interviews, pragmatic approach
Procedia PDF Downloads 3973793 Digital Athena – Contemporary Commentaries and Greek Mythology Explored through 3D Printing
Authors: Rose Lastovicka, Bernard Guy, Diana Burton
Abstract:
Greek myth and art acted as tools to think with, and a lens through which to explore complex topics as a form of social media. In particular, coins were a form of propaganda to communicate the wealth and power of the city-states they originated from as they circulated from person to person. From this, how can the application of 3D printing technologies explore the infusion of ancient forms with contemporary commentaries to promote discussion? The digital reconstruction of artifacts is a topic that has been researched by various groups all over the globe. Yet, the exploration of Greek myth through artifacts infused with contemporary issues is currently unexplored in this medium. Using the Stratasys J750 3D printer - a multi-material, full-colour 3D printer - a series of coins inspired by ancient Greek currency and myth was created to present commentaries on the adversities surrounding individuals in the LGBT+ community. Using the J750 as the medium for expression allows for complete control and precision of the models to create complex high-resolution iconography. The coins are printed with a hard, translucent material with coloured 3D visuals embedded into the coin to then be viewed in close contact by the audience. These coins as commentaries present an avenue for wider understanding by drawing perspectives not only from sources concerned with the contemporary LGBT+ community but also from sources exploring ancient homosexuality and the perception and regulation of it in antiquity. By displaying what are usually points of contention between anti- and pro-LGBT+ parties, this visual medium opens up a discussion to both parties, suggesting heritage can play a vital interpretative role in the contemporary world.Keywords: 3D printing, design, Greek mythology, LGBT+ community
Procedia PDF Downloads 1223792 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.Keywords: climate change, ETP, MODIS, GIEC scenarios
Procedia PDF Downloads 1063791 Application of Fractional Model Predictive Control to Thermal System
Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi
Abstract:
The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control
Procedia PDF Downloads 4153790 English Language Competency among the Mathematics Teachers as the Precursor for Performance in Mathematics
Authors: Mirriam M. Moleko, Sekanse A. Ntsala
Abstract:
Language in mathematics instruction enables the teacher to communicate mathematical knowledge to the learners with precision. It also enables the learner to deal with mathematical activities effectively. This scholarly piece was motivated by the fact that mathematics performance in the South African primary classrooms has not been satisfactory, and English, which is a Language of Learning and Teaching (LoLT) for the majority of the learners, has been singled out as one of the major impediments. This is not only on the part of the learners, but also on the part of the teachers as well. The study thus focused on the lack of competency in English among the primary school teachers as one of the possible causes of poor performance in mathematics in primary classrooms. The qualitative processes, which were premised on the social interaction theory as a lens, sourced the narratives of 10 newly qualified primary school mathematics teachers from the disadvantaged schools on the matter. This was achieved through the use of semi-structured interviews and focus group discussions. The data, which were analyzed thematically, highlighted the actuality that the challenges cut across the pre-service stage to the in-service stage. The findings revealed that the undergraduate mathematics courses in the number of the institutions neglect the importance of language. The study further revealed that the in-service mathematics teachers lack adequate linguistic command, thereby finding it difficult to successfully teach some mathematical concepts, or even to outline instructions clearly. The study thus suggests the need for training institutions to focus on improving the teachers’ English language competency. The need for intensive in-service training targeting the problem areas was also highlighted. The study thus contributes to the body of knowledge by providing suggestions on how the mathematics teachers’ language incompetency can be mitigated.Keywords: Competency, English language proficiency, language of learning and teaching, primary mathematics teachers
Procedia PDF Downloads 1833789 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques
Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar
Abstract:
The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion
Procedia PDF Downloads 833788 Microaggressions as Hidden Barriers: The Influence on Women as Underrepresented Minority Faculty Research
Authors: Mojdeh Mardani, Robert Stupnisky
Abstract:
Microaggressions are discriminatory and degrading slights manifested from negative and often unconscious beliefs about marginalised groups, including women and people of colour. This quantitative research analyses survey data collected from 10 USA Universities. This research presents the impacts of microaggressions on productivity and motivation of Underrepresented Minority (URM) faculty, especially women and those with intersecting marginalized identities, such as women who identify with a race other than white. Results of this study revealed that on average, URM women were 50% more susceptible to gender microaggressions, which correlated negatively with autonomy and competence, and positively with a motivation.Keywords: gender microaggressions, gender discrimination, underrepresented minority, female faculty, URM faculty, motivation, productivity, STEM
Procedia PDF Downloads 1373787 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 323786 Issues in Organizational Assessment: The Case of Frustration Tolerance Measurement in Mexico
Authors: David Ruiz, Carlos Nava, Roberto Carbajal
Abstract:
The psychological profile has become one of the most important sources of information when it comes to individual selection and the hiring process in any organization. Psychological instruments are used to collect data about variables that are considered critically important for performance in work. However, because of conceptual chaos in organizational psychology, most of the information provided by psychological testing is not directly useful for Mexican human resources professionals to take hiring decisions. The aims of this paper are 1) to underline the lack of conceptual precision in theoretical testing foundations in Mexico and 2) presenting a reliability and validity analysis of a frustration tolerance instrument created as an alternative to a heuristically conduct individual assessment in organizations. First, a description of assessment conditions in Mexico is made. Second, an instrument and a theoretical framework is presented as an alternative to the assessment practices in the country. A total of 65 Psychology Iztacala Superior Studies Faculty students were assessed. Cronbach´s alpha coefficient was calculated and an exploratory factor analysis was carried out to prove the scale unidimensionality. Reliability analysis revealed good internal consistency of the scale (Cronbach’s α = 0.825). Factor analysis produced 4 factors for the scale. However, factor loadings and explained variation give proof to the scale unidimensionality. It is concluded that the instrument has good psychometric properties that will allow human resources professionals to collect useful data. Different possibilities to conduct psychological assessment are suggested for future development.Keywords: psychological assessment, frustration tolerance, human resources, organizational psychology
Procedia PDF Downloads 313