Search results for: geometry in architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2779

Search results for: geometry in architecture

979 Analysis of Rockfall Hazard along Himalayan Road Cut Slopes

Authors: Sarada Prasad Pradhan, Vikram Vishal, Tariq Siddique

Abstract:

With a vast area of India comprising of hilly terrain and road cut slopes, landslides and rockfalls are a common phenomenon. However, while landslide studies have received much attention in the past in India, very little literature and analysis is available regarding rockfall hazard of many rockfall prone areas, specifically in Uttarakhand Himalaya, India. The subsequent lack of knowledge and understanding of the rockfall phenomenon as well as frequent incidences of rockfall led fatalities urge the necessity of conducting site-specific rockfall studies to highlight the importance of addressing this issue as well as to provide data for safe design of preventive structures. The present study has been conducted across 10 rockfall prone road cut slopes for a distance of 15 km starting from Devprayag, India along National Highway 58 (NH-58). In order to make a qualitative assessment of Rockfall Hazard posed by these slopes, Rockfall Hazard Rating using standards for Indian Rockmass has been conducted at 10 locations under different slope conditions. Moreover, to accurately predict the characteristics of the possible rockfall phenomenon, numerical simulation was carried out to calculate the maximum bounce heights, total kinetic energies, translational velocities and trajectories of the falling rockmass blocks when simulated on each of these slopes according to real-life conditions. As it was observed that varying slope geometry had more fatal impacts on Rockfall hazard than size of rock masses, several optimizations have been suggested for each slope regarding location of barriers and modification of slope geometries in order to minimize damage by falling rocks. This study can be extremely useful in emphasizing the significance of rockfall studies and construction of mitigative barriers and structures along NH-58 around Devprayag.

Keywords: rockfall, slope stability, rockmass, hazard

Procedia PDF Downloads 207
978 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 457
977 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 83
976 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 148
975 A Preliminary Study of Urban Resident Space Redundancy in the Context of Rapid Urbanization: Based on Urban Research of Hongkou District of Shanghai

Authors: Ziwei Chen, Yujiang Gao

Abstract:

The rapid urbanization has caused the massive physical space in Chinese cities to be in a state of duplication and dislocation through the rapid development, forming many daily spaces that cannot be standardized, typed, and identified, such as illegal construction. This phenomenon is known as urban spatial redundancy and is often excluded from mainstream architectural discussions because of its 'remaining' and 'excessive' derogatory label. In recent years, some practice architects have begun to pay attention to this phenomenon and tried to tap the value behind it. In this context, the author takes the redundancy phenomenon of resident space as the research object and explores the inspiration to the urban architectural renewal and the innovative residential area model, based on the urban survey of redundant living space in Hongkou District of Shanghai. On this basis, it shows that the changes accumulated in the long-term use of the building can be re-applied to the goals before the design, which is an important link and significance of the existence of an architecture.

Keywords: rapid urbanization, living space redundancy, architectural renewal, residential area model

Procedia PDF Downloads 130
974 A Collaborative Teaching and Learning Model between Academy and Industry for Multidisciplinary Engineering Education

Authors: Moon-Soo Kim

Abstract:

In order to cope with the increasing demand for multidisciplinary learning between academy and industry, a collaborative teaching and learning model and related operational tools enabling applications to engineering education are essential. This study proposes a web-based collaborative framework for interactive teaching and learning between academy and industry as an initial step for the development of a web- and mobile-based integrated system for both engineering students and industrial practitioners. The proposed web-based collaborative teaching and learning framework defines several entities such as learner, solver and supporter or sponsor for industrial problems, and also has a systematic architecture to build information system including diverse functions enabling effective interaction among the defined entities regardless of time and places. Furthermore, the framework, which includes knowledge and information self-reinforcing mechanism, focuses on the previous problem-solving records as well as subsequent learners’ creative reusing in solving process of new problems.

Keywords: collaborative teaching and learning model, academy and industry, web-based collaborative framework, self-reinforcing mechanism

Procedia PDF Downloads 318
973 Religious and Architectural Transformations of Kourion in Cyprus between the 1st and 6th Centuries AD. The Case of Trypiti Bay and its Topographical Relationships to Coastal Sanctuaries

Authors: Argyroula Argyrou

Abstract:

The purpose of my current research, of which this paper form’s part, is to explore the architectural and religious transformations of Trypiti Bay in the region of Kourion, Cyprus, between the 1st and 6th centuries AD. This research aims to explore and analyse three different stages in the religious and architectural transformations of the ancient port, with evidence supporting these transformations from the main city of Kourion and the Sanctuary of Apollo Hylates between the 1st and 6th centuries. In addition, the research is using historical and archaeological comparisons with coastal sites in the Levant, North Africa, Lebanon, and Europe in an attempt to identify a pattern of development in the religious topography of Kourion and how these contributed to change in the use and symbolism of Trypiti bay as an important passageway to religious sanctuaries in the vicinity of the coast. The construction of Trypiti Bay has been proven, according to archaeological and historical evidence, gathered throughout Kourion’s fieldwork and archival research, that it served as a natural port for cargos that needed to be protected from the strong west winds of the area. The construction of Trypiti Bay is believed to be unique to the island as no similar structure has yet been discovered.

Keywords: architecture, heritage, perservation, transformation, unique

Procedia PDF Downloads 104
972 Reviewing the Public Participation Criteria in Traditional Cities: To Achieve Social Sustainability

Authors: Najmeh Malekpour Bahabadi

Abstract:

Small fast-developing Iranian cities with a historical background have no defined criteria for their social sustainability. However, their traditional architecture is well-known as a socially and environmentally sustainable role model. In today's cities, citizens' participation has been considered an effective strategy to achieve social sustainability. By scrutinizing the extent and manner of public participation in traditional Iranian cities, taking Yazd's historical context as a case study, this study examines how these criteria can be applied to developing parts of the city. The paper first reviews the concepts, levels, and approaches of public participation to analyze different modes of citizen participation. Then, exploring social behavior and activities in Yazd, using the qualitative-analytical methodology, the paper compares diverse elements influencing participation with contemporary approaches. The findings of this study would lead to suggestions for the developing parts of the city to enhance their socially sustainable development.

Keywords: citizen participation, social behaviors, traditional city, built environment, social sustainability

Procedia PDF Downloads 122
971 Bulk Transport in Strongly Correlated Topological Insulator Samarium Hexaboride Using Hall Effect and Inverted Resistance Methods

Authors: Alexa Rakoski, Yun Suk Eo, Cagliyan Kurdak, Priscila F. S. Rosa, Zachary Fisk, Monica Ciomaga Hatnean, Geetha Balakrishnan, Boyoun Kang, Myungsuk Song, Byungki Cho

Abstract:

Samarium hexaboride (SmB6) is a strongly correlated mixed valence material and Kondo insulator. In the resistance-temperature curve, SmB6 exhibits activated behavior from 4-40 K after the Kondo gap forms. However, below 4 K, the resistivity is temperature independent or weakly temperature dependent due to the appearance of a topologically protected surface state. Current research suggests that the surface of SmB6 is conductive while the bulk is truly insulating, different from conventional 3D TIs (Topological Insulators) like Bi₂Se₃ which are plagued by bulk conduction due to impurities. To better understand why the bulk of SmB6 is so different from conventional TIs, this study employed a new method, called inverted resistance, to explore the lowest temperatures, as well as standard Hall measurements for the rest of the temperature range. In the inverted resistance method, current flows from an inner contact to an outer ring, and voltage is measured outside of this outer ring. This geometry confines the surface current and allows for measurement of the bulk resistivity even when the conductive surface dominates transport (below 4 K). The results confirm that the bulk of SmB6 is truly insulating down to 2 K. Hall measurements on a number of samples show consistent bulk behavior from 4-40 K, but widely varying behavior among samples above 40 K. This is attributed to a combination of the growth process and purity of the starting material, and the relationship between the high and low temperature behaviors is still being explored.

Keywords: bulk transport, Hall effect, inverted resistance, Kondo insulator, samarium hexaboride, topological insulator

Procedia PDF Downloads 157
970 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 306
969 Excited State Structural Dynamics of Retinal Isomerization Revealed by a Femtosecond X-Ray Laser

Authors: Przemyslaw Nogly, Tobias Weinert, Daniel James, Sergio Carbajo, Dmitry Ozerov, Antonia Furrer, Dardan Gashi, Veniamin Borin, Petr Skopintsev, Kathrin Jaeger, Karol Nass, Petra Bath, Robert Bosman, Jason Koglin, Matthew Seaberg, Thomas Lane, Demet Kekilli, Steffen Brünle, Tomoyuki Tanaka, Wenting Wu, Christopher Milne, Thomas A. White, Anton Barty, Uwe Weierstall, Valerie Panneels, Eriko Nango, So Iwata, Mark Hunter, Igor Schapiro, Gebhard Schertler, Richard Neutze, Jörg Standfuss

Abstract:

Ultrafast isomerization of retinal is the primary step in a range of photoresponsive biological functions including vision in humans and ion-transport across bacterial membranes. We studied the sub-picosecond structural dynamics of retinal isomerization in the light-driven proton pump bacteriorhodopsin using an X-ray laser. Twenty snapshots with near-atomic spatial and temporal resolution in the femtosecond regime show how the excited all-trans retinal samples conformational states within the protein binding pocket prior to passing through a highly-twisted geometry and emerging in the 13-cis conformation. The aspartic acid residues and functional water molecules in proximity of the retinal Schiff base respond collectively to formation and decay of the initial excited state and retinal isomerization. These observations reveal how the protein scaffold guides this remarkably efficient photochemical reaction.

Keywords: bacteriorhodopsin, free-electron laser, retinal isomerization mechanism, time-resolved crystallography

Procedia PDF Downloads 240
968 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering

Procedia PDF Downloads 309
967 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip

Authors: Sina Saadati

Abstract:

Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.

Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence

Procedia PDF Downloads 98
966 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases

Authors: Xavier Bertrand, Alexandre Cayrel

Abstract:

The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.

Keywords: aerodynamics, lifting line, surrogate model, CFD

Procedia PDF Downloads 347
965 Challenges and Pedagogical Strategies in Teaching Chemical Bonding: Perspectives from Moroccan Educators

Authors: Sara atibi, Azzeddine Atibi, Salim Ahmed, Khadija El Kababi

Abstract:

The concept of chemical bonding is fundamental in chemistry education, ubiquitous in school curricula, and essential to numerous topics in the field. Mastery of this concept enables students to predict and explain the physical and chemical properties of substances. However, chemical bonding is often regarded as one of the most complex concepts for secondary and higher education students to comprehend, due to the underlying complex theory and the use of abstract models. Teachers also encounter significant challenges in conveying this concept effectively. This study aims to identify the difficulties and alternative conceptions faced by Moroccan secondary school students in learning about chemical bonding, as well as the pedagogical strategies employed by teachers to overcome these obstacles. A survey was conducted involving 150 Moroccan secondary school physical science teachers, using a structured questionnaire comprising closed, open-ended, and multiple-choice questions. The results reveal frequent student misconceptions, such as the octet rule, molecular geometry, and molecular polarity. Contributing factors to these misconceptions include the abstract nature of the concepts, the use of models, and teachers' difficulties in explaining certain aspects of chemical bonding. The study proposes improvements for teaching chemical bonding, such as integrating information and communication technologies (ICT), diversifying pedagogical tools, and considering students' pre-existing conceptions. These recommendations aim to assist teachers, curriculum developers, and textbook authors in making chemistry more accessible and in addressing students' misconceptions.

Keywords: chemical bonding, alternative conceptions, chemistry education, pedagogical strategies

Procedia PDF Downloads 16
964 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets

Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe

Abstract:

Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.

Keywords: biomedical research, genomics, information systems, software

Procedia PDF Downloads 263
963 Significance of Preservation of Cultural Resources: A Case of Walled City of Lahore as a Micro-Destination

Authors: Menaahyl Seraj, Gokce Ozdemir

Abstract:

Tourism at destinations is dependent on various resources such as archeology and architecture. The need to preserve those resources is of the utmost importance when long-term tourism development is aimed. Shahi Guzargah (Royal Trail) was subject to a preservation project that is a linear historical passage within the Walled City of Lahore. Even though Lahore with its congested streets, lacks proper infrastructure and economically weak but yet it has the potential of transforming it into a tourist destination. This study highlights the potential hidden in the preservation of cultural resources through proper and concrete planning of living heritage city, and how it improves socio-economic standards of the community and affects tourism. Semi-structured open-ended interview question-forms were used to collect qualitative data from 14 respective stakeholders of the walled city and 10 concerned officials. The results of the study show that the preservation of cultural resources impacts and accelerates positively the development process of a destination. All opinions and gathered information reflect the importance of cultural preservation and its effect on increasing tourism.

Keywords: cultural tourism, cultural resources, destination, preservation

Procedia PDF Downloads 162
962 Biological Studies of N-O Donor 4-Acypyrazolone Heterocycle and Its Pd/Pt Complexes of Therapeutic Importance

Authors: Omoruyi Gold Idemudia, Alexander P. Sadimenko

Abstract:

The synthesis of N-heterocycles with novel properties, having broad spectrum biological activities that may become alternative medicinal drugs, have been attracting a lot of research attention due to the emergence of medicinal drug’s limitations such as disease resistance and their toxicity effects among others. Acylpyrazolones have been employed as pharmaceuticals as well as analytical reagent and their application as coordination complexes with transition metal ions have been well established. By way of a condensation reaction with amines acylpyrazolone ketones form a more chelating and superior group of compounds known as azomethines. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one was reacted with phenylhydrazine to get a new phenylhydrazone which was further reacted with aqueous solutions of palladium and platinum salts, in an effort towards the discovery of transition metal based synthetic drugs. The compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one phenylhydrazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group based on x-ray crystallography. The bidentate ON ligand formed a square planar geometry on coordinating with metal ions based on FTIR, electronic and NMR spectra as well as magnetic moments. Reported compounds showed antibacterial activities against the nominated bacterial isolates using the disc diffusion technique at 20 mg/ml in triplicates. The metal complexes exhibited a better antibacterial activity with platinum complex having an MIC value of 0.63 mg/ml. Similarly, ligand and complexes also showed antioxidant scavenging properties against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 0.5mg/ml relative to ascorbic acid (standard drug).

Keywords: acylpyrazolone, antibacterial studies, metal complexes, phenylhydrazone, spectroscopy

Procedia PDF Downloads 248
961 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 83
960 Distributed Multi-Agent Based Approach on Intelligent Transportation Network

Authors: Xiao Yihong, Yu Kexin, Burra Venkata Durga Kumar

Abstract:

With the accelerating process of urbanization, the problem of urban road congestion is becoming more and more serious. Intelligent transportation system combining distributed and artificial intelligence has become a research hotspot. As the core development direction of the intelligent transportation system, Cooperative Intelligent Transportation System (C-ITS) integrates advanced information technology and communication methods and realizes the integration of humans, vehicle, roadside infrastructure, and other elements through the multi-agent distributed system. By analyzing the system architecture and technical characteristics of C-ITS, the report proposes a distributed multi-agent C-ITS. The system consists of Roadside Sub-system, Vehicle Sub-system, and Personal Sub-system. At the same time, we explore the scalability of the C-ITS and put forward incorporating local rewards in the centralized training decentralized execution paradigm, hoping to add a scalable value decomposition method. In addition, we also suggest introducing blockchain to improve the safety of the traffic information transmission process. The system is expected to improve vehicle capacity and traffic safety.

Keywords: distributed system, artificial intelligence, multi-agent, cooperative intelligent transportation system

Procedia PDF Downloads 210
959 Analysis of Senior Secondary II Students Performance/Approaches Exhibited in Solving Circle Geometry

Authors: Mukhtari Hussaini Muhammad, Abba Adamu

Abstract:

The paper will examine the approaches and solutions that will be offered by Senior Secondary School II Students (Demonstration Secondary School, Azare Bauchi State Northern Nigeria – Hausa/ Fulani predominant area) toward solving exercises related to the circle theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of the circumference. The Students will be divided in to 2 groups by given them numbers 1, 2; 1, 2; 1, 2, then all 1s formed group I and all 2s formed group II. Group I will be considered as control group in which the traditional method will be applied during instructions. Thus, the researcher will revise the concept of circle, state the theorem, prove the theorem and then solve examples. Group II, experimental group in which the concept of circle will be revised to the students and then the students will be asked to draw different circles, mark arcs, draw angle at the center, angle at the circumference then measure the angles constructed. The students will be asked to explain what they can infer/deduce from the angles measured and lastly, examples will be solved. During the next contact day, both groups will be subjected to solving exercises in the classroom related to the theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of circumference. The solution to the exercises will be marked, the scores compared/analysed using relevant statistical tool. It is expected that group II will perform better because of the method/ technique followed during instructions is more learner-centered. By exploiting the talents of the individual learners through listening to the views and asking them how they arrived at a solution will really improve learning and understanding.

Keywords: circle theorem, control group, experimental group, traditional method

Procedia PDF Downloads 187
958 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels

Authors: Shih-Yu Wang, Shun-Wen Hsiao

Abstract:

In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.

Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels

Procedia PDF Downloads 82
957 Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners

Authors: Merve Sagiroglu

Abstract:

The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined.

Keywords: top and seat angle connection, stiffener, moment-rotation curves, analytical study

Procedia PDF Downloads 171
956 Identity and Access Management for Medical Cyber-Physical Systems: New Technology and Security Solutions

Authors: Abdulrahman Yarali, Machica McClain

Abstract:

In the context of the increasing use of Cyber-Physical Systems (CPS) across critical infrastructure sectors, this paper addresses a crucial and emerging topic: the integration of Identity and Access Management (IAM) with Internet of Things (IoT) devices in Medical Cyber-Physical Systems (MCPS). It underscores the significance of robust IAM solutions in the expanding interconnection of IoT devices in healthcare settings, leveraging AI, ML, DL, Zero Trust Architecture (ZTA), biometric authentication advancements, and blockchain technologies. The paper advocates for the potential benefits of transitioning from traditional, static IAM frameworks to dynamic, adaptive solutions that can effectively counter sophisticated cyber threats, ensure the integrity and reliability of CPS, and significantly bolster the overall security posture. The paper calls for strategic planning, collaboration, and continuous innovation to harness these benefits. By emphasizing the importance of securing CPS against evolving threats, this research contributes to the ongoing discourse on cybersecurity and advocates for a collaborative approach to foster innovation and enhance the resilience of critical infrastructure in the digital era.

Keywords: CPS, IAM, IoT, AI, ML, authentication, models, policies, healthcare

Procedia PDF Downloads 0
955 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 294
954 Design and Development of Real-Time Optimal Energy Management System for Hybrid Electric Vehicles

Authors: Masood Roohi, Amir Taghavipour

Abstract:

This paper describes a strategy to develop an energy management system (EMS) for a charge-sustaining power-split hybrid electric vehicle. This kind of hybrid electric vehicles (HEVs) benefit from the advantages of both parallel and series architecture. However, it gets relatively more complicated to manage power flow between the battery and the engine optimally. The applied strategy in this paper is based on nonlinear model predictive control approach. First of all, an appropriate control-oriented model which was accurate enough and simple was derived. Towards utilization of this controller in real-time, the problem was solved off-line for a vast area of reference signals and initial conditions and stored the computed manipulated variables inside look-up tables. Look-up tables take a little amount of memory. Also, the computational load dramatically decreased, because to find required manipulated variables the controller just needed a simple interpolation between tables.

Keywords: hybrid electric vehicles, energy management system, nonlinear model predictive control, real-time

Procedia PDF Downloads 344
953 The Golden Ratio as a Common ‘Topos’ of Architectural, Musical and Stochastic Research of Iannis Xenakis

Authors: Nikolaos Mamalis

Abstract:

The work of the eminent architect and composer has undoubtedly been influenced both by his architecture and collaboration with Le Corbusier and by the conquests of the musical avant-garde of the 20th century (Schoenberg, Messian, Bartock, electroacoustic music). It is known that the golden mean and the Fibonacci sequence played a momentous role in the Architectural Avant-garde (Modulor) and expanded on musical pursuits. Especially in the 50s (serialism), it was a structural tool for composition. Xenakis' architectural and musical work (Sacrifice, Metastasis, Rebonds, etc.) received the influence of the Golden Section, as has been repeatedly demonstrated. However, the idea of this retrospective sequence and the reflection raised by the search for new proportions, both in the architectural and the musical work of Xenakis, was not limited to constituting a step, a workable formula that acted unifyingly with regard to the other parameters of the musical work, or as an aesthetic model that makes sense - philosophically and poetically - an anthropocentric dimension as in other composers (see Luigi Nono) ̇ triggered a qualitative leap, an opening of the composer to the assimilation of mathematical concepts and scientific types in music and the consolidation of new sound horizons of stochastic music.

Keywords: golden ratio, music, space, stochastic music

Procedia PDF Downloads 46
952 Toward Automatic Chest CT Image Segmentation

Authors: Angely Sim Jia Wun, Sasa Arsovski

Abstract:

Numerous studies have been conducted on the segmentation of medical images. Segmenting the lungs is one of the common research topics in those studies. Our research stemmed from the lack of solutions for automatic bone, airway, and vessel segmentation, despite the existence of multiple lung segmentation techniques. Consequently, currently, available software tools used for medical image segmentation do not provide automatic lung, bone, airway, and vessel segmentation. This paper presents segmentation techniques along with an interactive software tool architecture for segmenting bone, lung, airway, and vessel tissues. Additionally, we propose a method for creating binary masks from automatically generated segments. The key contribution of our approach is the technique for automatic image thresholding using adjustable Hounsfield values and binary mask extraction. Generated binary masks can be successfully used as a training dataset for deep-learning solutions in medical image segmentation. In this paper, we also examine the current software tools used for medical image segmentation, discuss our approach, and identify its advantages.

Keywords: lung segmentation, binary masks, U-Net, medical software tools

Procedia PDF Downloads 91
951 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 169
950 Negative Sequence-Based Protection Techniques for Microgrid Connected Power Systems

Authors: Isabelle Snyder, Travis Smith

Abstract:

Microgrid protection presents challenges to conventional protection techniques due to the low-induced fault current. Protection relays present in microgrid applications require a combination of settings groups to adjust based on the architecture of the microgrid in islanded and grid-connected modes. In a radial system where the microgrid is at the other end of the feeder, directional elements can be used to identify the direction of the fault current and switch settings groups accordingly (grid-connected or microgrid-connected). However, with multiple microgrid connections, this concept becomes more challenging, and the direction of the current alone is not sufficient to identify the source of the fault current contribution. ORNL has previously developed adaptive relaying schemes through other DOE-funded research projects that will be evaluated and used as a baseline for this research. The four protection techniques in this study are labeled as follows: (1) Adaptive Current only Protection System (ACPS), Intentional (2) Unbalanced Control for Protection Control (IUCPC), (3) Adaptive Protection System with Communication Controller (APSCC) (4) Adaptive Model-Driven Protective Relay (AMDPR).

Keywords: adaptive relaying, microgrid protection, sequence components, islanding detection

Procedia PDF Downloads 86