Search results for: time series
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19819

Search results for: time series

19669 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Turkey: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests no effects of the CO2 emissions and energy use on the GDP in Turkey. There exists a short-run bidirectional relationship between the electricity and natural gas consumption, and also there is a negative unidirectional causality running from the GDP to electricity use. Overall, the results partly support arguments that there are relationships between energy use and economic output; however, the effects may differ due to the source of energy such as in the case of Turkey for the period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis

Procedia PDF Downloads 504
19668 A Comparative Study of Substituted Li Ferrites Sintered by the Conventional and Microwave Sintering Technique

Authors: Ibetombi Soibam

Abstract:

Li-Zn-Ni ferrite having the compositional formula Li0.4-0.5xZn0.2NixFe2.4-0.5xO4 where x = 0.02 ≤ x ≤0.1 in steps of 0.02 was fabricated by the citrate precursor method. In this method, metal nitrates and citric acid was used to prepare the gel which exhibit self-propagating combustion behavior giving the required ferrite sample. The ferrite sample was given a pre-firing at 650°C in a programmable conventional furnace for 3 hours with a heating rate of 5°C/min. A series of the sample was finally given conventional sintering (CS) at 1040°C after the pre-firing process. Another series was given microwave sintering (MS) at 1040°C in a programmable microwave furnace which uses a single magnetron operating at 2.45 GHz frequency. X- ray diffraction pattern confirmed the spinel phase structure for both the series. The theoretical and experimental density was calculated. It was observed that densification increases with the increase in Ni concentration in both the series. However, samples sintered by microwave technique was found to be denser. The microstructure of the two series of the sample was examined using scanning electron microscopy (SEM). Dielectric properties have been investigated as a function of frequency and composition for both series of samples sintered by CS and MS technique. The variation of dielectric constant with frequency show dispersion for both the series. It was explained in terms of Koop’s two layer model. From the analysis of dielectric measurement, it was observed that the value of room temperature dielectric constant decreases with the increase in Ni concentration for both the series. The microwave sintered samples show a lower dielectric constant making microwave sintering suitable for high-frequency applications. The possible mechanisms contributing to all the above behavior is being discussed.

Keywords: citrate precursor, dielectric constant, ferrites, microwave sintering

Procedia PDF Downloads 405
19667 The Effect of PM10 Dispersion from Industrial, Residential and Commercial Areas in Arid Environment

Authors: Meshari Al-Harbi

Abstract:

A comparative area-season-elemental-wise time series analysis by Dust Track monitor (2012-2013) revealed high PM10 dispersion in the outdoor environment in the sequence of industrial> express highways>residential>open areas. Time series analysis from 7AM-6AM (until next day), 30d (monthly), 3600sec. (for any given period of a month), and 12 months (yearly) showed peak PM10 dispersion during 1AM-7AM, 1d-4d and 25d-31d of every month, 1500-3600 with the exception in PM10 dispersion in residential areas, and in the months-March to June, respectively. This time-bound PM10 dispersion suggests the primary influence of human activities (peak mobility and productivity period for a given time frame) besides the secondary influence of meteorological parameters (high temperature and wind action) and, occasional dust storms. Whereas, gravimetric analysis reveals the influence of precipitation, low temperature and low volatility resulting high trace metals in PM10 during winter than in summer and primarily attributes to the influence of nature besides, the secondary attributes of smoke stack emission from various industries and automobiles. Furthermore, our study recommends residents to limit outdoor air pollution exposures and take precautionary measures to inhale PM10 pollutants from the atmosphere.

Keywords: aerosol, pollution, respirable particulates, trace-metals

Procedia PDF Downloads 307
19666 Forecasting Model to Predict Dengue Incidence in Malaysia

Authors: W. H. Wan Zakiyatussariroh, A. A. Nasuhar, W. Y. Wan Fairos, Z. A. Nazatul Shahreen

Abstract:

Forecasting dengue incidence in a population can provide useful information to facilitate the planning of the public health intervention. Many studies on dengue cases in Malaysia were conducted but are limited in modeling the outbreak and forecasting incidence. This article attempts to propose the most appropriate time series model to explain the behavior of dengue incidence in Malaysia for the purpose of forecasting future dengue outbreaks. Several seasonal auto-regressive integrated moving average (SARIMA) models were developed to model Malaysia’s number of dengue incidence on weekly data collected from January 2001 to December 2011. SARIMA (2,1,1)(1,1,1)52 model was found to be the most suitable model for Malaysia’s dengue incidence with the least value of Akaike information criteria (AIC) and Bayesian information criteria (BIC) for in-sample fitting. The models further evaluate out-sample forecast accuracy using four different accuracy measures. The results indicate that SARIMA (2,1,1)(1,1,1)52 performed well for both in-sample fitting and out-sample evaluation.

Keywords: time series modeling, Box-Jenkins, SARIMA, forecasting

Procedia PDF Downloads 486
19665 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models

Authors: Manisha Mukherjee, Diptarka Saha

Abstract:

Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.

Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function

Procedia PDF Downloads 165
19664 Automatic Detection and Update of Region of Interest in Vehicular Traffic Surveillance Videos

Authors: Naydelis Brito Suárez, Deni Librado Torres Román, Fernando Hermosillo Reynoso

Abstract:

Automatic detection and generation of a dynamic ROI (Region of Interest) in vehicle traffic surveillance videos based on a static camera in Intelligent Transportation Systems is challenging for computer vision-based systems. The dynamic ROI, being a changing ROI, should capture any other moving object located outside of a static ROI. In this work, the video is represented by a Tensor model composed of a Background and a Foreground Tensor, which contains all moving vehicles or objects. The values of each pixel over a time interval are represented by time series, and some pixel rows were selected. This paper proposes a pixel entropy-based algorithm for automatic detection and generation of a dynamic ROI in traffic videos under the assumption of two types of theoretical pixel entropy behaviors: (1) a pixel located at the road shows a high entropy value due to disturbances in this zone by vehicle traffic, (2) a pixel located outside the road shows a relatively low entropy value. To study the statistical behavior of the selected pixels, detecting the entropy changes and consequently moving objects, Shannon, Tsallis, and Approximate entropies were employed. Although Tsallis entropy achieved very high results in real-time, Approximate entropy showed results slightly better but in greater time.

Keywords: convex hull, dynamic ROI detection, pixel entropy, time series, moving objects

Procedia PDF Downloads 74
19663 Spontaneous Transformation in U. Maritimus: A Case Series

Authors: Lur N. Dreier

Abstract:

Spontaneous transformation in Ursus maritimus is generally considered to be seldom, albeit not, to this author's best knowledge, previously unpublished in the medical literature. However, no case series has to date described transformative spontaneous processes to filios hominum species. Norwegian public hospital system, is, however, especially the grounds of the specific climate in the Northern hemisphere, and because of a high suited to observe such transformations, both on income level. Hence, this paper describes, to our knowledge, the first case series of 25 patients undergoing treatment for spontaneous transformation in four Norwegian hospitals. The methodology was to include patients on a consecutive basis, identifying clinically and laboratory the typology in each of the four hospitals. The major findings were that the archetypes were heterogeneous, with coercive laboratory findings, with a high degree of redundancy of the process. This might potentially lead to many advances in the diagnostics.

Keywords: case series, transformation, hominum species, maritimus species

Procedia PDF Downloads 266
19662 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study

Authors: Chokri Slim

Abstract:

The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.

Keywords: stationarity, cointegration, dynamic models, causality, VECM models

Procedia PDF Downloads 364
19661 Forecasting Residential Water Consumption in Hamilton, New Zealand

Authors: Farnaz Farhangi

Abstract:

Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.

Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model

Procedia PDF Downloads 337
19660 Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy

Authors: Lal Hussain, Wajid Aziz, Sajjad Ahmed Nadeem, Saeed Arif Shah, Abdul Majid

Abstract:

Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE.

Keywords: electroencephalogram (EEG), multiscale permutation entropy (MPE), multiscale sample entropy (MSE), permutation entropy (PE), mann whitney test (MMT), receiver operator curve (ROC), complexity measure

Procedia PDF Downloads 495
19659 Series Solutions to Boundary Value Differential Equations

Authors: Armin Ardekani, Mohammad Akbari

Abstract:

We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.

Keywords: computational mathematics, differential equations, engineering, series

Procedia PDF Downloads 336
19658 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method

Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh

Abstract:

The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.

Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method

Procedia PDF Downloads 358
19657 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 147
19656 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria

Authors: J. Julius Adebayo

Abstract:

The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.

Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security

Procedia PDF Downloads 144
19655 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system

Procedia PDF Downloads 298
19654 Time Series Modelling for Forecasting Wheat Production and Consumption of South Africa in Time of War

Authors: Yiseyon Hosu, Joseph Akande

Abstract:

Wheat is one of the most important staple food grains of human for centuries and is largely consumed in South Africa. It has a special place in the South African economy because of its significance in food security, trade, and industry. This paper modelled and forecast the production and consumption of wheat in South Africa in the time covid-19 and the ongoing Russia-Ukraine war by using annual time series data from 1940–2021 based on the ARIMA models. Both the averaging forecast and selected models forecast indicate that there is the possibility of an increase with respect to production. The minimum and maximum growth in production is projected to be between 3million and 10 million tons, respectively. However, the model also forecast a possibility of depression with respect to consumption in South Africa. Although Covid-19 and the war between Ukraine and Russia, two major producers and exporters of global wheat, are having an effect on the volatility of the prices currently, the wheat production in South African is expected to increase and meat the consumption demand and provided an opportunity for increase export with respect to domestic consumption. The forecasting of production and consumption behaviours of major crops play an important role towards food and nutrition security, these findings can assist policymakers and will provide them with insights into the production and pricing policy of wheat in South Africa.

Keywords: ARIMA, food security, price volatility, staple food, South Africa

Procedia PDF Downloads 102
19653 Nonlinear Analysis in Investigating the Complexity of Neurophysiological Data during Reflex Behavior

Authors: Juliana A. Knocikova

Abstract:

Methods of nonlinear signal analysis are based on finding that random behavior can arise in deterministic nonlinear systems with a few degrees of freedom. Considering the dynamical systems, entropy is usually understood as a rate of information production. Changes in temporal dynamics of physiological data are indicating evolving of system in time, thus a level of new signal pattern generation. During last decades, many algorithms were introduced to assess some patterns of physiological responses to external stimulus. However, the reflex responses are usually characterized by short periods of time. This characteristic represents a great limitation for usual methods of nonlinear analysis. To solve the problems of short recordings, parameter of approximate entropy has been introduced as a measure of system complexity. Low value of this parameter is reflecting regularity and predictability in analyzed time series. On the other side, increasing of this parameter means unpredictability and a random behavior, hence a higher system complexity. Reduced neurophysiological data complexity has been observed repeatedly when analyzing electroneurogram and electromyogram activities during defence reflex responses. Quantitative phrenic neurogram changes are also obvious during severe hypoxia, as well as during airway reflex episodes. Concluding, the approximate entropy parameter serves as a convenient tool for analysis of reflex behavior characterized by short lasting time series.

Keywords: approximate entropy, neurophysiological data, nonlinear dynamics, reflex

Procedia PDF Downloads 300
19652 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
19651 Inflating the Public: A Series of Urban Interventions

Authors: Veronika Antoniou, Rene Carraz, Yiorgos Hadjichristou

Abstract:

The Green Urban Lab took the form of public installations that were placed at various locations in four cities in Cyprus. These installations - through which a series of events, activities, workshops and research took place - were the main tools in regenerating a series of urban public spaces in Cyprus. The purpose of this project was to identify issues and opportunities related to public space and to offer guidelines on how design and participatory democracy improvements could strengthen civil society, while raising the quality of the urban public scene. Giant inflatable structures were injected in important urban fragments in order to accommodate series of events. The design and playful installation generated a wide community engagement. The fluid presence of the installations acted as a catalyst for social interaction. They were accessed and viewed effortlessly and surprisingly, creating opportunities to rediscover public spaces.

Keywords: bottom-up initiatives, creativity, public space, social innovation, urban environments

Procedia PDF Downloads 516
19650 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663
19649 Impact of Burning Incense/Joss Paper on Outdoor Air Pollution: An Interrupted Time Series Analysis Using Hanoi Air Quality Data in 2020

Authors: Chi T. L. Pham, L. Vu, Hoang T. Le, Huong T. T. Le, Quyen T. T. Bui

Abstract:

Burning joss paper and incense during religious and cultural ceremonies is common in Vietnam. This study aims to measure the impact of burning joss paper and incense during Vu Lai festival (full moon of July) in Vietnam. Data of Hanoi air quality in year 2020 was used. Interrupted time series analysis was employed to examine the changes in pattern of various air quality indicators before and after the festival period. The results revealed that burning joss paper and incense led to an immediate increase of 15.94 units in the air quality index on the first day, which gradually rose to 47.4 units by the end of the full moon period. Regarding NO2, PM10, and PM25, there was no significant immediate change at the start of the intervention period (August 29th, 2020). However, significant increases in levels and an upward trend were observed during the intervention time, followed by substantial decreases after the intervention period ended (September 3rd, 2020). This analysis did not find a significant impact on CO, SO2, and O3 due to burning joss paper and incense. These findings provide valuable insights for policymakers and stakeholders involved in managing and enhancing air quality in regions where such practices are prevalent.

Keywords: air pollution, incense, ITSA, joss paper, religious activities

Procedia PDF Downloads 49
19648 'Detective Chinatown' Series: Writing and Rewriting of Orientalism through the Lens of Culture Industry

Authors: Cai Yiting

Abstract:

As China's globalization has accelerated, Chinese films have begun to explore and express foreign cultures with greater frequency while simultaneously disseminating Chinese culture. Films shot abroad, including Finding Mr. Right (2013), Somewhere Only We Know (2015), and Wolf Warrior 2 (2017), and others, can be viewed as a reflection of how Chinese cinema conceptualizes and represents foreign countries in the context of globalization. Furthermore, they facilitate the exchange of Chinese and foreign cultures in the context of China's ‘going out’ policy and the Belt and Road Initiative. Nevertheless, it is apparent that these films are primarily motivated by commercial considerations with regard to their initial release. The consistent placement of the Chinatown Detective' film series in the Chinese New Year slot is indicative of the significant influence of the cultural industry on the series' creation. Moreover, the series represents Chen Sicheng's inaugural venture into filming in a multitude of international locations. This paper examines the film series Detective Chinatown through the lens of the cultural industry, analyzing how its production and presentation cater to the demands of the cultural industry by presenting Orientalism and contributing new connotations to it. The series, a product of standardized mass production, commodification and global appeal, reflects Orientalist representations through the exoticization of Chinese culture and the stereotypical and commercial-oriented imagination of Bangkok, New York and Tokyo. This study provides an understanding of the film series' role in contributing to contemporary Orientalism in the context of the culture industry.

Keywords: orientalism, culture industry, Chinese globalisation, Detective Chinatown

Procedia PDF Downloads 16
19647 Supplemental VisCo-friction Damping for Dynamical Structural Systems

Authors: Sharad Singh, Ajay Kumar Sinha

Abstract:

Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.

Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping

Procedia PDF Downloads 158
19646 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey

Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ

Abstract:

A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.

Keywords: cointegration, economic growth, periodogram ordinate, tourism

Procedia PDF Downloads 270
19645 Geochemical Characteristics of Aromatic Hydrocarbons in the Crude Oils from the Chepaizi Area, Junggar Basin, China

Authors: Luofu Liu, Fei Xiao Jr., Fei Xiao

Abstract:

Through the analysis technology of gas chromatography-mass spectrometry (GC-MS), the composition and distribution characteristics of aromatic hydrocarbons in the Chepaizi area of the Junggar Basin were analyzed in detail. Based on that, the biological input, maturity of crude oils and sedimentary environment of the corresponding source rocks were determined and the origin types of crude oils were divided. The results show that there are three types of crude oils in the study area including Type I, Type II and Type III oils. The crude oils from the 1st member of the Neogene Shawan Formation are the Type I oils; the crude oils from the 2nd member of the Neogene Shawan Formation are the Type II oils; the crude oils from the Cretaceous Qingshuihe and Jurassic Badaowan Formations are the Type III oils. For the Type I oils, they show a single model in the late retention time of the chromatogram of total aromatic hydrocarbons. The content of triaromatic steroid series is high, and the content of dibenzofuran is low. Maturity parameters related to alkyl naphthalene, methylphenanthrene and alkyl dibenzothiophene all indicate low maturity for the Type I oils. For the Type II oils, they have also a single model in the early retention time of the chromatogram of total aromatic hydrocarbons. The content of naphthalene and phenanthrene series is high, and the content of dibenzofuran is medium. The content of polycyclic aromatic hydrocarbon representing the terrestrial organic matter is high. The aromatic maturity parameters indicate high maturity for the Type II oils. For the Type III oils, they have a bi-model in the chromatogram of total aromatic hydrocarbons. The contents of naphthalene series, phenanthrene series, and dibenzofuran series are high. The aromatic maturity parameters indicate medium maturity for the Type III oils. The correlation results of triaromatic steroid series fingerprint show that the Type I and Type III oils have similar source and are both from the Permian Wuerhe source rocks. Because of the strong biodegradation and mixing from other source, the Type I oils are very different from the Type III oils in aromatic hydrocarbon characteristics. The Type II oils have the typical characteristics of terrestrial organic matter input under oxidative environment, and are the coal oil mainly generated by the mature Jurassic coal measure source rocks. However, the overprinting effect from the low maturity Cretaceous source rocks changed the original distribution characteristics of aromatic hydrocarbons to some degree.

Keywords: oil source, geochemistry, aromatic hydrocarbons, crude oils, chepaizi area, Junggar Basin

Procedia PDF Downloads 353
19644 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals

Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh

Abstract:

Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.

Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly

Procedia PDF Downloads 52
19643 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

Authors: Seyedvahid Najafi, Viliam Makis

Abstract:

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems

Procedia PDF Downloads 123
19642 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 369
19641 Effects of a Brisk-Walking Program on Anxiety, Depression and Self-Concept in Adolescents: A Time-Series Design

Authors: Ming Yi Hsu, Hui Jung Chao

Abstract:

The anxiety and depression adolescents in Taiwan experience can cause suicide attempts and result in unfortunate deaths. An effective method for relieving anxiety and depression is brisk walking; a moderate and low intensity aerobic exercise, which uses large muscle groups rhythmically. The research purpose was to investigate the effects of a 12-week, school-based, brisk-walking program in decreasing anxiety and depression, and in improving self-concept among high school students living in central Taiwan. A quasi-experiment using the time series design (T1 T2 X T3 T4) was conducted. The Beck Youth Inventories 2 (BYI-II) Chinese version was given four times: the first time T1 was in the 4th week prior to intervention, T2 was in the intervention week, T3 was in the 6th week after the start of the intervention period and T4 was in the 12th week post intervention. The baseline phase of the time series constituted T1 and T2. The intervention phase constituted T2, T3, and T4. The amounts of brisk walking were recorded by self-report The Generalized Estimating Equation (GEE) was used to examine the effects of brisk walking on anxiety, depression, and self-concept. The independent t-test was used to compare mean scores on three dependent variables between brisk walking over and less than 90-minutes per week. Findings revealed that levels of anxiety and self-concept had nonsignificant change during the baseline phase, while the level of depression increased significantly. In contrast, the study demonstrated significant decreases in anxiety and depression as well as increases in positive self-concept (p=.001, p<.001, p=.017) during the intervention phase. Furthermore, a subgroup analysis was completed on participants who demonstrated elevated anxiety (23.4%), and depression (29.7%), and below average self-concept (18.6%) at baseline (T2). The subgroup of anxious, depressed, or low self-concept participants who received the brisk-walking intervention demonstrated significant decreases in anxiety and depression, and significant increases in self-concept scores. Participants who engaged in brisk walking over 90 minutes per week reported decreased mean scores on anxiety (t=-2.395, p=.035) and depression (t=-2.142, p=.036) in contrast with those who engaged in brisk-walking time less than 90 minutes per week. Regarding the effects on participants whose anxiety, scores were within the normal range at baseline, there was demonstrated significant decrease in the level of anxiety when they increased their time on brisk walking before each term examination. Overall, the brisk-walking program was effective and feasible to promote adolescents’ mental health by decreasing anxiety and depression as well as elevating self-concept. It also helped adolescents from anxiety before term examinations.

Keywords: adolescents, anxiety, depression, self-concept

Procedia PDF Downloads 198
19640 Tooth Fractures Following the Placement of Adjacent Dental Implants: A Case Series and a Systematic Review of the Literature

Authors: Eyal Rosen

Abstract:

This study is aimed to report a possible effect of the presence of dental implants on the development of crown or root fractures in adjacent natural teeth. A series of 26 cases of teeth diagnosed with crown or root fractures following the placement of adjacent dental implants is presented. In addition, a comprehensive systematic review of the literature was performed to detect other studies that evaluated this possible complication. The case series analysis revealed that all crown-fractured teeth were non-endodontically treated teeth (n=18), and all root fractured teeth were endodontically treated teeth (n=8). The time from implant loading to the diagnosis of a fracture in an adjacent tooth was longer than 1 year in 78% of cases. The majority of crown or root fractures occurred in female patients, over 50 years of age, with an average age of 59 in the crown fractures group, and 54 in the root fractures group. Most of the patients received 2 or more implants. Nine (50%) of the teeth with crown fracture were molars, 7 (39%) were mandibular premolars, and 2 (11%) were incisor teeth. The majority of teeth with root fracture were premolar or mandibular molar teeth (6 (75%)). The systematic review of the literature did not reveal additional studies that reported on this possible complication. To the best of the author’s knowledge this case series, although limited in its extent, is the first clinical report of a possible serious complication of implants, associated fractures in adjacent endodontically and non-endodontically treated natural teeth. The most common patient profile found in this series was a woman over 50 years of age, having a fractured premolar tooth, which was diagnosed more than 1 year after reconstruction that was based on multiple adjacent implants. Additional clinical studies are required in order to shed light on this potential serious complication.

Keywords: complications, dental implants, endodontics, fractured teeth

Procedia PDF Downloads 138