Search results for: leveraged loan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 191

Search results for: leveraged loan

41 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
40 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 38
39 Issues and Challenges of Information and Communication Technology Adoption and Application for Business-Related Performance among Agro-Based Small and Medium Entrepreneurs in the State of Selangor, Malaysia

Authors: Mohd Nizam Osman

Abstract:

This study explores issues and challenges of information and communication technology (ICT) adoption and application for business-related performance of Agro-based small and medium-scale enterprises (SMEs) in the state of Selangor, Malaysia. Globally, SMEs have championed the socio-economic development of nations across the globe, including Malaysia. Thus, the objectives of this study explore issues and challenges of agro-based SMEs' adoption and usage of ICT, the business-related performance of SMEs via the adoption of ICT, and the impact of incentives on SMEs' adoption and use of ICT. The study was conducted in Selangor, Malaysia. A qualitative research approach was deployed for the study. Data for the study emanated from semi-structured interviews and field note observation of 14 informants who are registered as small-scale business owners and operators. Based on thematic analysis, data were triangulated to ensure consistency and validation of findings for the study. Findings revealed that SMEs are faced with a lack of funding, low expertise, and lack of storage, leading to an unsustainable supply of goods and services. Although effective communication, ease of business activities/transactions, and information search by way of research were among the business performance experienced by SMEs' adoption of ICT. Further findings showed that loan conditions and personal and business interests hindered SMEs' reception and access to programs, schemes, and incentives geared at aiding the continuous growth and development of agro-based SMEs. The study suggests the need for policy change in terms of diversification of channels of funding and access to funds to enable credit guarantee schemes and peer or community-based financing. Consequently, the study recommends the engagement of SMEs in policy decision-making to ascertain the type of incentives relevant to their business operations. Likewise, from a technological standpoint, the study suggests the expansion of the framework of technology acceptance with focuses on affordability, type of users, and level of usage.

Keywords: ICT adoption, business related performance, agro-based SMEs, ICT application for SMEs

Procedia PDF Downloads 76
38 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 21
37 Demand-Side Financing for Thai Higher Education: A Reform Towards Sustainable Development

Authors: Daral Maesincee, Jompol Thongpaen

Abstract:

Thus far, most of the decisions made within the walls of Thai higher education (HE) institutions have primarily been supply-oriented. With the current supply-driven, itemized HE financing systems, the nation is struggling to systemically produce high-quality manpower that serves the market’s needs, often resulting in education mismatches and unemployment – particularly in science, technology, and innovation (STI)-related fields. With the COVID-19 pandemic challenges widening the education inequality (accessibility and quality) gap, HE becomes even more unobtainable for underprivileged students, permanently leaving some out of the system. Therefore, Thai HE needs a new financing system that produces the “right people” for the “right occupations” through the “right ways,” regardless of their socioeconomic backgrounds, and encourages the creation of non-degree courses to tackle these ongoing challenges. The “Demand-Side Financing for Thai Higher Education” policy aims to do so by offering a new paradigm of HE resource allocation via two main mechanisms: i) standardized formula-based unit-cost subsidizations that is specific to each study field and ii) student loan programs that respond to the “demand signals” from the labor market and the students, that are in line with the country’s priorities. Through in-dept reviews, extensive studies, and consultations with various experts, education committees, and related agencies, i) the method of demand signal analysis is identified, ii) the unit-cost of each student in the sample study fields is approximated, iii) the method of budget analysis is formulated, iv) the interagency workflows are established, and v) a supporting information database is created to suggest the number of graduates each HE institution can potentially produce, the study fields and skillsets that are needed by the labor market, the employers’ satisfaction with the graduates, and each study field’s employment rates. By responding to the needs of all stakeholders, this policy is expected to steer Thai HE toward producing more STI-related manpower in order to uplift Thai people’s quality of life and enhance the nation’s global competitiveness. This policy is currently in the process of being considered by the National Education Transformation Committee and the Higher Education Commission.

Keywords: demand-side financing, higher education resource, human capital, higher education

Procedia PDF Downloads 202
36 Facilitating Knowledge Transfer for New Product Development in Portfolio Entrepreneurship: A Case Study of a Sodium-Ion Battery Start-up in China

Authors: Guohong Wang, Hao Huang, Rui Xing, Liyan Tang, Yu Wang

Abstract:

Start-ups are consistently under pressure to overcome liabilities of newness and smallness. They must focus on assembling resource and engaging constant renewal and repeated entrepreneurial activities to survive and grow. As an important form of resource, knowledge is constantly vital to start-ups, which will help start-ups with developing new product in hence forming competitive advantage. However, significant knowledge is usually needed to be identified and exploited from external entities, which makes it difficult to achieve knowledge transfer; with limited resources, it can be quite challenging for start-ups balancing the exploration and exploitation of knowledge. The research on knowledge transfer has become a relatively well-developed domain by indicating that knowledge transfer can be achieved through plenty of patterns, yet it is still under-explored that what processes and organizational practices help start-ups facilitating knowledge transfer for new product in the context portfolio entrepreneurship. Resource orchestration theory emphasizes the initiative and active management of company or the manager to explain the fulfillment of resource utility, which will help understand the process of managing knowledge as a certain kind of resource in start-ups. Drawing on the resource orchestration theory, this research aims to explore how knowledge transfer can be facilitated through resource orchestration. A qualitative single-case study of a sodium-ion battery new venture was conducted. The case company is sampled deliberately from representative industrial agglomeration areas in Liaoning Province, China. It is found that distinctive resource orchestration sub-processes are leveraged to facilitate knowledge transfer: (i) resource structuring makes knowledge available across the portfolio; (ii) resource bundling makes combines internal and external knowledge to form new knowledge; and (iii) resource harmonizing balances specific knowledge configurations across the portfolio. Meanwhile, by purposefully reallocating knowledge configurations to new product development in a certain new venture (exploration) and gradually adjusting knowledge configurations to being applied to existing products across the portfolio (exploitation), resource orchestration processes as a whole make exploration and exploitation of knowledge balanced. This study contributes to the knowledge management literature through proposing a resource orchestration view and depicting how knowledge transfer can be facilitated through different resource orchestration processes and mechanisms. In addition, by revealing the balancing process of exploration and exploitation of knowledge, and laying stress on the significance of the idea of making exploration and exploitation of knowledge balanced in the context of portfolio entrepreneurship, this study also adds specific efforts to entrepreneurship and strategy management literature.

Keywords: exploration and exploitation, knowledge transfer, new product development, portfolio entrepreneur, resource orchestration

Procedia PDF Downloads 125
35 The Relationship between Risk and Capital: Evidence from Indian Commercial Banks

Authors: Seba Mohanty, Jitendra Mahakud

Abstract:

Capital ratio is one of the major indicators of the stability of the commercial banks. Pertinent to its pervasive importance, over the years the regulators, policy makers focus on the maintenance of the particular level of capital ratio to minimize the solvency and liquidation risk. In this context, it is very much important to identify the relationship between capital and risk and find out the factors which determine the capital ratios of commercial banks. The study examines the relationship between capital and risk of the commercial banks operating in India. Other bank specific variables like bank size, deposit, profitability, non-performing assets, bank liquidity, net interest margin, loan loss reserves, deposits variability and regulatory pressure are also considered for the analysis. The period of study is 1997-2015 i.e. the period of post liberalization. To identify the impact of financial crisis and implementation of Basel II on capital ratio, we have divided the whole period into two sub-periods i.e. 1997-2008 and 2008-2015. This study considers all the three types of commercial banks, i.e. public sector, the private sector and foreign banks, which have continuous data for the whole period. The main sources of data are Prowess data base maintained by centre for monitoring Indian economy (CMIE) and Reserve Bank of India publications. We use simultaneous equation model and more specifically Two Stage Least Square method to find out the relationship between capital and risk. From the econometric analysis, we find that capital and risk affect each other simultaneously, and this is consistent across the time period and across the type of banks. Moreover, regulation has a positive significant impact on the ratio of capital to risk-weighted assets, but no significant impact on the banks risk taking behaviour. Our empirical findings also suggest that size has a negative impact on capital and risk, indicating that larger banks increase their capital less than the other banks supported by the too-big-to-fail hypothesis. This study contributes to the existing body of literature by predicting a strong relationship between capital and risk in an emerging economy, where banking sector plays a majority role for financial development. Further this study may be considered as a primary study to find out the macro economic factors which affecting risk and capital in India.

Keywords: capital, commercial bank, risk, simultaneous equation model

Procedia PDF Downloads 327
34 AI Applications in Accounting: Transforming Finance with Technology

Authors: Alireza Karimi

Abstract:

Artificial Intelligence (AI) is reshaping various industries, and accounting is no exception. With the ability to process vast amounts of data quickly and accurately, AI is revolutionizing how financial professionals manage, analyze, and report financial information. In this article, we will explore the diverse applications of AI in accounting and its profound impact on the field. Automation of Repetitive Tasks: One of the most significant contributions of AI in accounting is automating repetitive tasks. AI-powered software can handle data entry, invoice processing, and reconciliation with minimal human intervention. This not only saves time but also reduces the risk of errors, leading to more accurate financial records. Pattern Recognition and Anomaly Detection: AI algorithms excel at pattern recognition. In accounting, this capability is leveraged to identify unusual patterns in financial data that might indicate fraud or errors. AI can swiftly detect discrepancies, enabling auditors and accountants to focus on resolving issues rather than hunting for them. Real-Time Financial Insights: AI-driven tools, using natural language processing and computer vision, can process documents faster than ever. This enables organizations to have real-time insights into their financial status, empowering decision-makers with up-to-date information for strategic planning. Fraud Detection and Prevention: AI is a powerful tool in the fight against financial fraud. It can analyze vast transaction datasets, flagging suspicious activities and reducing the likelihood of financial misconduct going unnoticed. This proactive approach safeguards a company's financial integrity. Enhanced Data Analysis and Forecasting: Machine learning, a subset of AI, is used for data analysis and forecasting. By examining historical financial data, AI models can provide forecasts and insights, aiding businesses in making informed financial decisions and optimizing their financial strategies. Artificial Intelligence is fundamentally transforming the accounting profession. From automating mundane tasks to enhancing data analysis and fraud detection, AI is making financial processes more efficient, accurate, and insightful. As AI continues to evolve, its role in accounting will only become more significant, offering accountants and finance professionals powerful tools to navigate the complexities of modern finance. Embracing AI in accounting is not just a trend; it's a necessity for staying competitive in the evolving financial landscape.

Keywords: artificial intelligence, accounting automation, financial analysis, fraud detection, machine learning in finance

Procedia PDF Downloads 63
33 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 143
32 GenAI Agents in Product Management: A Case Study from the Manufacturing Sector

Authors: Aron Witkowski, Andrzej Wodecki

Abstract:

Purpose: This study aims to explore the feasibility and effectiveness of utilizing Generative Artificial Intelligence (GenAI) agents as product managers within the manufacturing sector. It seeks to evaluate whether current GenAI capabilities can fulfill the complex requirements of product management and deliver comparable outcomes to human counterparts. Study Design/Methodology/Approach: This research involved the creation of a support application for product managers, utilizing high-quality sources on product management and generative AI technologies. The application was designed to assist in various aspects of product management tasks. To evaluate its effectiveness, a study was conducted involving 10 experienced product managers from the manufacturing sector. These professionals were tasked with using the application and providing feedback on the tool's responses to common questions and challenges they encounter in their daily work. The study employed a mixed-methods approach, combining quantitative assessments of the tool's performance with qualitative interviews to gather detailed insights into the user experience and perceived value of the application. Findings: The findings reveal that GenAI-based product management agents exhibit significant potential in handling routine tasks, data analysis, and predictive modeling. However, there are notable limitations in areas requiring nuanced decision-making, creativity, and complex stakeholder interactions. The case study demonstrates that while GenAI can augment human capabilities, it is not yet fully equipped to independently manage the holistic responsibilities of a product manager in the manufacturing sector. Originality/Value: This research provides an analysis of GenAI's role in product management within the manufacturing industry, contributing to the limited body of literature on the application of GenAI agents in this domain. It offers practical insights into the current capabilities and limitations of GenAI, helping organizations make informed decisions about integrating AI into their product management strategies. Implications for Academic and Practical Fields: For academia, the study suggests new avenues for research in AI-human collaboration and the development of advanced AI systems capable of higher-level managerial functions. Practically, it provides industry professionals with a nuanced understanding of how GenAI can be leveraged to enhance product management, guiding investments in AI technologies and training programs to bridge identified gaps.

Keywords: generative artificial intelligence, GenAI, NPD, new product development, product management, manufacturing

Procedia PDF Downloads 49
31 Exploring Antifragility Principles in Humanitarian Supply Chain: The key Role of Information Systems

Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan

Abstract:

The COVID-19 pandemic has been a major and global disruption that has affected all supply chains on a worldwide scale. Consequently, the question posed by this communication is to understand how - in the face of such disruptions - supply chains, including their actors, management tools, and processes, react, survive, adapt, and even improve. To do so, the concepts of resilience and antifragility applied to a supply chain have been leveraged. This article proposes to perceive resilience as a step to surpass in moving towards antifragility. The research objective is to propose an analytical framework to measure and compare resilience and antifragility, with antifragility seen as a property of a system that improves when subjected to disruptions rather than merely resisting these disruptions, as is the case with resilience. A unique case study was studied - MSF logistics (France) - using a qualitative methodology. Semi-structured interviews were conducted in person and remotely in multiple phases: during and immediately after the COVID crisis (8 interviews from March 2020 to April 2021), followed by a new round from September to November 2023. A Delphi method was employed. The interviews were analyzed using coding and a thematic framework. One of the theoretical contributions is consolidating the field of supply chain resilience research by precisely characterizing the dimensions of resilience for a humanitarian supply chain (Reorganization, Collaboration mediated by IS, Humanitarian culture). In this regard, a managerial contribution of this study is providing a guide for managers to identify the four dimensions and sub-dimensions of supply chain resilience. This enables managers to focus their decisions and actions on dimensions that will enhance resilience. Most importantly, another contribution is comparing the concepts of resilience and antifragility and proposing an analytical framework for antifragility—namely, the mechanisms on which MSF logistics relied to capitalize on uncertainties, contingencies, and shocks rather than simply enduring them. For MSF Logistics, antifragility manifested through the ability to identify opportunities hidden behind the uncertainties and shocks of COVID-19, reducing vulnerability, and fostering a culture that encourages innovation and the testing of new ideas. Logistics, particularly in the humanitarian domain, must be able to adapt to environmental disruptions. In this sense, this study identifies and characterizes the dimensions of resilience implemented by humanitarian logistics. Moreover, this research goes beyond the concept of resilience to propose an analytical framework for the concept of antifragility. The organization studied emerged stronger from the COVID-19 crisis due to the mechanisms we identified, allowing us to characterize antifragility. Finally, the results show that the information system plays a key role in antifragility.

Keywords: antifragility, humanitarian supply chain, information systems, qualitative research, resilience.

Procedia PDF Downloads 64
30 The Communication of Audit Report: Key Audit Matters in United Kingdom

Authors: L. Sierra, N. Gambetta, M. A. Garcia-Benau, M. Orta

Abstract:

Financial scandals and financial crisis have led to an international debate on the value of auditing. In recent years there have been significant legislative reforms aiming to increase markets’ confidence in audit services. In particular, there has been a significant debate on the need to improve the communication of auditors with audit reports users as a way to improve its informative value and thus, to improve audit quality. The International Auditing and Assurance Standards Board (IAASB) has proposed changes to the audit report standards. The International Standard on Auditing 701, Communicating Key Audit Matters (KAM) in the Independent Auditor's Report, has introduced new concepts that go beyond the auditor's opinion and requires to disclose the risks that, from the auditor's point of view, are more significant in the audited company information. Focusing on the companies included in the Financial Times Stock Exchange 100 index, this study aims to focus on the analysis of the determinants of the number of KAM disclosed by the auditor in the audit report and moreover, the analysis of the determinants of the different type of KAM reported during the period 2013-2015. To test the hypotheses in the empirical research, two different models have been used. The first one is a linear regression model to identify the client’s characteristics, industry sector and auditor’s characteristics that are related to the number of KAM disclosed in the audit report. Secondly, a logistic regression model is used to identify the determinants of the number of each KAM type disclosed in the audit report; in line with the risk-based approach to auditing financial statements, we categorized the KAM in 2 groups: Entity-level KAM and Accounting-level KAM. Regarding the auditor’s characteristics impact on the KAM disclosure, the results show that PwC tends to report a larger number of KAM while KPMG tends to report less KAM in the audit report. Further, PwC reports a larger number of entity-level risk KAM while KPMG reports less account-level risk KAM. The results also show that companies paying higher fees tend to have more entity-level risk KAM and less account-level risk KAM. The materiality level is positively related to the number of account-level risk KAM. Additionally, these study results show that the relationship between client’s characteristics and number of KAM is more evident in account-level risk KAM than in entity-level risk KAM. A highly leveraged company carries a great deal of risk, but due to this, they are usually subject to strong capital providers monitoring resulting in less account-level risk KAM. The results reveal that the number of account-level risk KAM is strongly related to the industry sector in which the company operates assets. This study helps to understand the UK audit market, provides information to auditors and finally, it opens new research avenues in the academia.

Keywords: FTSE 100, IAS 701, key audit matters, auditor’s characteristics, client’s characteristics

Procedia PDF Downloads 231
29 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 76
28 Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health

Authors: Adam Gushgari

Abstract:

The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement.

Keywords: wastewater surveillance, wastewater-based epidemiology, smart cities, public health, pandemic management, substance abuse

Procedia PDF Downloads 108
27 Social Business Evaluation in Brazil: Analysis of Entrepreneurship and Investor Practices

Authors: Erica Siqueira, Adriana Bin, Rachel Stefanuto

Abstract:

The paper aims to identify and to discuss the impact and results of ex-ante, mid-term and ex-post evaluation initiatives in Brazilian Social Enterprises from the point of view of the entrepreneurs and investors, highlighting the processes involved in these activities and their aftereffects. The study was conducted using a descriptive methodology, primarily qualitative. A multiple-case study was used, and, for that, semi-structured interviews were conducted with ten entrepreneurs in the (i) social finance, (ii) education, (iii) health, (iv) citizenship and (v) green tech fields, as well as three representatives of various impact investments, which are (i) venture capital, (ii) loan and (iii) equity interest areas. Convenience (non-probabilistic) sampling was adopted to select both businesses and investors, who voluntarily contributed to the research. The evaluation is still incipient in most of the studied business cases. Some stand out by adopting well-known methodologies like Global Impact Investing Report System (GIIRS), but still, have a lot to improve in several aspects. Most of these enterprises use nonexperimental research conducted by their own employees, which is ordinarily not understood as 'golden standard' to some authors in the area. Nevertheless, from the entrepreneur point of view, it is possible to identify that most of them including those routines in some extent in their day-by-day activities, despite the difficulty they have of the business in general. In turn, the investors do not have overall directions to establish evaluation initiatives in respective enterprises; they are funding. There is a mechanism of trust, and this is, usually, enough to prove the impact for all stakeholders. The work concludes that there is a large gap between what the literature states in regard to what should be the best practices in these businesses and what the enterprises really do. The evaluation initiatives must be included in some extension in all enterprises in order to confirm social impact that they realize. Here it is recommended the development and adoption of more flexible evaluation mechanisms that consider the complexity involved in these businesses’ routines. The reflections of the research also suggest important implications for the field of Social Enterprises, whose practices are far from what the theory preaches. It highlights the risk of the legitimacy of these enterprises that identify themselves as 'social impact', sometimes without the proper proof based on causality data. Consequently, this makes the field of social entrepreneurship fragile and susceptible to questioning, weakening the ecosystem as a whole. In this way, the top priorities of these enterprises must be handled together with the results and impact measurement activities. Likewise, it is recommended to perform further investigations that consider the trade-offs between impact versus profit. In addition, research about gender, the entrepreneur motivation to call themselves as Social Enterprises, and the possible unintended consequences from these businesses also should be investigated.

Keywords: evaluation practices, impact, results, social enterprise, social entrepreneurship ecosystem

Procedia PDF Downloads 119
26 Bank Internal Controls and Credit Risk in Europe: A Quantitative Measurement Approach

Authors: Ellis Kofi Akwaa-Sekyi, Jordi Moreno Gené

Abstract:

Managerial actions which negatively profile banks and impair corporate reputation are addressed through effective internal control systems. Disregard for acceptable standards and procedures for granting credit have affected bank loan portfolios and could be cited for the crises in some European countries. The study intends to determine the effectiveness of internal control systems, investigate whether perceived agency problems exist on the part of board members and to establish the relationship between internal controls and credit risk among listed banks in the European Union. Drawing theoretical support from the behavioural compliance and agency theories, about seventeen internal control variables (drawn from the revised COSO framework), bank-specific, country, stock market and macro-economic variables will be involved in the study. A purely quantitative approach will be employed to model internal control variables covering the control environment, risk management, control activities, information and communication and monitoring. Panel data from 2005-2014 on listed banks from 28 European Union countries will be used for the study. Hypotheses will be tested and the Generalized Least Squares (GLS) regression will be run to establish the relationship between dependent and independent variables. The Hausman test will be used to select whether random or fixed effect model will be used. It is expected that listed banks will have sound internal control systems but their effectiveness cannot be confirmed. A perceived agency problem on the part of the board of directors is expected to be confirmed. The study expects significant effect of internal controls on credit risk. The study will uncover another perspective of internal controls as not only an operational risk issue but credit risk too. Banks will be cautious that observing effective internal control systems is an ethical and socially responsible act since the collapse (crisis) of financial institutions as a result of excessive default is a major contagion. This study deviates from the usual primary data approach to measuring internal control variables and rather models internal control variables in a quantitative approach for the panel data. Thus a grey area in approaching the revised COSO framework for internal controls is opened for further research. Most bank failures and crises could be averted if effective internal control systems are religiously adhered to.

Keywords: agency theory, credit risk, internal controls, revised COSO framework

Procedia PDF Downloads 316
25 Digital Twins: Towards an Overarching Framework for the Built Environment

Authors: Astrid Bagireanu, Julio Bros-Williamson, Mila Duncheva, John Currie

Abstract:

Digital Twins (DTs) have entered the built environment from more established industries like aviation and manufacturing, although there has never been a common goal for utilising DTs at scale. Defined as the cyber-physical integration of data between an asset and its virtual counterpart, DT has been identified in literature from an operational standpoint – in addition to monitoring the performance of a built asset. However, this has never been translated into how DTs should be implemented into a project and what responsibilities each project stakeholder holds in the realisation of a DT. What is needed is an approach to translate these requirements into actionable DT dimensions. This paper presents a foundation for an overarching framework specific to the built environment. For the purposes of this research, the UK widely used the Royal Institute of British Architects (RIBA) Plan of Work from 2020 is used as a basis for itemising project stages. The RIBA Plan of Work consists of eight stages designed to inform on the definition, briefing, design, coordination, construction, handover, and use of a built asset. Similar project stages are utilised in other countries; therefore, the recommendations from the interviews presented in this paper are applicable internationally. Simultaneously, there is not a single mainstream software resource that leverages DT abilities. This ambiguity meets an unparalleled ambition from governments and industries worldwide to achieve a national grid of interconnected DTs. For the construction industry to access these benefits, it necessitates a defined starting point. This research aims to provide a comprehensive understanding of the potential applications and ramifications of DT in the context of the built environment. This paper is an integral part of a larger research aimed at developing a conceptual framework for the Architecture, Engineering, and Construction (AEC) sector following a conventional project timeline. Therefore, this paper plays a pivotal role in providing practical insights and a tangible foundation for developing a stage-by-stage approach to assimilate the potential of DT within the built environment. First, the research focuses on a review of relevant literature, albeit acknowledging the inherent constraint of limited sources available. Secondly, a qualitative study compiling the views of 14 DT experts is presented, concluding with an inductive analysis of the interview findings - ultimately highlighting the barriers and strengths of DT in the context of framework development. As parallel developments aim to progress net-zero-centred design and improve project efficiencies across the built environment, the limited resources available to support DTs should be leveraged to propel the industry to reach its digitalisation era, in which AEC stakeholders have a fundamental role in understanding this, from the earliest stages of a project.

Keywords: digital twins, decision-making, design, net-zero, built environment

Procedia PDF Downloads 122
24 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 64
23 Empowering Youth Through Pesh Poultry: A Transformative Approach to Addressing Unemployment and Fostering Sustainable Livelihoods in Busia District, Uganda

Authors: Bisemiire Anthony,

Abstract:

PESH Poultry is a business project proposed specifically to solve unemployment and income-related problems affecting the youths in the Busia district. The project is intended to transform the life of the youth in terms of economic, social and behavioral, as well as the domestic well-being of the community at large. PESH Poultry is a start-up poultry farm that will be engaged in the keeping of poultry birds, broilers and layers for the production of quality and affordable poultry meat and eggs respectively and other poultry derivatives targeting consumers in eastern Uganda, for example, hotels, restaurants, households and bakeries. We intend to use a semi-intensive system of farming, where water and some food are provided in a separate nighttime shelter for the birds; our location will be in Lumino, Busia district. The poultry project will be established and owned by Bisemiire Anthony, Nandera Patience, Naula Justine, Bwire Benjamin and other investors. The farm will be managed and directed by Nandera Patience, who has five years of work experience and business administration knowledge. We will sell poultry products, including poultry eggs, chicken meat, feathers and poultry manure. We also offer consultancy services for poultry farming. Our eggs and chicken meat are hygienic, rich in protein and high quality. We produce processes and packages to meet the standard organization of Uganda and international standards. The business project shall comprise five (5) workers on the key management team who will share various roles and responsibilities in the identified business functions such as marketing, finance and other related poultry farming activities. PESH Poultry seeks 30 million Ugandan shillings in long-term financing to cover start-up costs, equipment, building expenses and working capital. Funding for the launch of the business will be provided primarily by equity from the investors. The business will reach positive cash flow in its first year of operation, allowing for the expected repayment of its loan obligations. Revenue will top UGX 11,750,000, and net income will reach about UGX115 950,000 in the 1st year of operation. The payback period for our project is 2 years and 3 months. The farm plans on starting with 1000 layer birds and 1000 broiler birds, 20 workers in the first year of operation.

Keywords: chicken, pullets, turkey, ducks

Procedia PDF Downloads 93
22 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 305
21 Collaborative Procurement in the Pursuit of Net- Zero: A Converging Journey

Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John

Abstract:

The Architecture, Engineering, and Construction (AEC) sector plays a critical role in the global transition toward sustainable and net-zero built environments. However, the industry faces unique challenges in planning for net-zero while struggling with low productivity, cost overruns and overall resistance to change. Traditional practices fall short due to their inability to meet the requirements for systemic change, especially as governments increasingly demand transformative approaches. Working in silos and rigid hierarchies and a short-term, client-centric approach prioritising immediate gains over long-term benefit stands in stark contrast to the fundamental requirements for the realisation of net-zero objectives. These practices have limited capacity to effectively integrate AEC stakeholders and promote the essential knowledge sharing required to address the multifaceted challenges of achieving net-zero. In the context of built environment, procurement may be described as the method by which a project proceeds from inception to completion. Collaborative procurement methods under the Integrated Practices (IP) umbrella have the potential to align more closely with net-zero objectives. This paper explores the synergies between collaborative procurement principles and the pursuit of net zero in the AEC sector, drawing upon the shared values of cross-disciplinary collaboration, Early Supply Chain involvement (ESI), use of standards and frameworks, digital information management, strategic performance measurement, integrated decision-making principles and contractual alliancing. To investigate the role of collaborative procurement in advancing net-zero objectives, a structured research methodology was employed. First, the study focuses on a systematic review on the application of collaborative procurement principles in the AEC sphere. Next, a comprehensive analysis is conducted to identify common clusters of these principles across multiple procurement methods. An evaluative comparison between traditional procurement methods and collaborative procurement for achieving net-zero objectives is presented. Then, the study identifies the intersection between collaborative procurement principles and the net-zero requirements. Lastly, an exploration of key insights for AEC stakeholders focusing on the implications and practical applications of these findings is made. Directions for future development of this research are recommended. Adopting collaborative procurement principles can serve as a strategic framework for guiding the AEC sector towards realising net-zero. Synergising these approaches overcomes fragmentation, fosters knowledge sharing, and establishes a net-zero-centered ecosystem. In the context of the ongoing efforts to amplify project efficiency within the built environment, a critical realisation of their central role becomes imperative for AEC stakeholders. When effectively leveraged, collaborative procurement emerges as a powerful tool to surmount existing challenges in attaining net-zero objectives.

Keywords: collaborative procurement, net-zero, knowledge sharing, architecture, built environment

Procedia PDF Downloads 73
20 Time Travel Testing: A Mechanism for Improving Renewal Experience

Authors: Aritra Majumdar

Abstract:

While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.

Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas

Procedia PDF Downloads 159
19 Optimization of the Jatropha curcas Supply Chain as a Criteria for the Implementation of Future Collection Points in Rural Areas of Manabi-Ecuador

Authors: Boris G. German, Edward Jiménez, Sebastián Espinoza, Andrés G. Chico, Ricardo A. Narváez

Abstract:

The unique flora and fauna of The Galapagos Islands has leveraged a tourism-driven growth in the islands. Nonetheless, such development is energy-intensive and requires thousands of gallons of diesel each year for thermoelectric electricity generation. The needed transport of fossil fuels from the continent has generated oil spillages and affectations to the fragile ecosystem of the islands. The Zero Fossil Fuels initiative for The Galapagos proposed by the Ecuadorian government as an alternative to reduce the use of fossil fuels in the islands, considers the replacement of diesel in thermoelectric generators, by Jatropha curcas vegetable oil. However, the Jatropha oil supply cannot entirely cover yet the demand for electricity generation in Galapagos. Within this context, the present work aims to provide an optimization model that can be used as a selection criterion for approving new Jatropha Curcas collection points in rural areas of Manabi-Ecuador. For this purpose, existing Jatropha collection points in Manabi were grouped under three regions: north (7 collection points), center (4 collection points) and south (9 collection points). Field work was carried out in every region in order to characterize the collection points, to establish local Jatropha supply and to determine transportation costs. Data collection was complemented using GIS software and an objective function was defined in order to determine the profit associated to Jatropha oil production. The market price of both Jatropha oil and residual cake, were considered for the total revenue; whereas Jatropha price, transportation and oil extraction costs were considered for the total cost. The tonnes of Jatropha fruit and seed, transported from collection points to the extraction plant, were considered as variables. The maximum and minimum amount of the collected Jatropha from each region constrained the optimization problem. The supply chain was optimized using linear programming in order to maximize the profits. Finally, a sensitivity analysis was performed in order to find a profit-based criterion for the acceptance of future collection points in Manabi. The maximum profit reached a value of $ 4,616.93 per year, which represented a total Jatropha collection of 62.3 tonnes Jatropha per year. The northern region of Manabi had the biggest collection share (69%), followed by the southern region (17%). The criteria for accepting new Jatropha collection points in the rural areas of Manabi can be defined by the current maximum profit of the zone and by the variation in the profit when collection points are removed one at a time. The definition of new feasible collection points plays a key role in the supply chain associated to Jatropha oil production. Therefore, a mathematical model that assists decision makers in establishing new collection points while assuring profitability, contributes to guarantee a continued Jatropha oil supply for Galapagos and a sustained economic growth in the rural areas of Ecuador.

Keywords: collection points, Jatropha curcas, linear programming, supply chain

Procedia PDF Downloads 433
18 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications

Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky

Abstract:

InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.

Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor

Procedia PDF Downloads 255
17 Investigating the English Speech Processing System of EFL Japanese Older Children

Authors: Hiromi Kawai

Abstract:

This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.

Keywords: EFL older children, english segments, perception, production, speech processing system

Procedia PDF Downloads 243
16 Beyond Personal Evidence: Using Learning Analytics and Student Feedback to Improve Learning Experiences

Authors: Shawndra Bowers, Allie Brandriet, Betsy Gilbertson

Abstract:

This paper will highlight how Auburn Online’s instructional designers leveraged student and faculty data to update and improve online course design and instructional materials. When designing and revising online courses, it can be difficult for faculty to know what strategies are most likely to engage learners and improve educational outcomes in a specific discipline. It can also be difficult to identify which metrics are most useful for understanding and improving teaching, learning, and course design. At Auburn Online, the instructional designers use a suite of data based student’s performance, participation, satisfaction, and engagement, as well as faculty perceptions, to inform sound learning and design principles that guide growth-mindset consultations with faculty. The consultations allow the instructional designer, along with the faculty member, to co-create an actionable course improvement plan. Auburn Online gathers learning analytics from a variety of sources that any instructor or instructional design team may have access to at their own institutions. Participation and performance data, such as page: views, assignment submissions, and aggregate grade distributions, are collected from the learning management system. Engagement data is pulled from the video hosting platform, which includes unique viewers, views and downloads, the minutes delivered, and the average duration each video is viewed. Student satisfaction is also obtained through a short survey that is embedded at the end of each instructional module. This survey is included in each course every time it is taught. The survey data is then analyzed by an instructional designer for trends and pain points in order to identify areas that can be modified, such as course content and instructional strategies, to better support student learning. This analysis, along with the instructional designer’s recommendations, is presented in a comprehensive report to instructors in an hour-long consultation where instructional designers collaborate with the faculty member on how and when to implement improvements. Auburn Online has developed a triage strategy of priority 1 or 2 level changes that will be implemented in future course iterations. This data-informed decision-making process helps instructors focus on what will best work in their teaching environment while addressing which areas need additional attention. As a student-centered process, it has created improved learning environments for students and has been well received by faculty. It has also shown to be effective in addressing the need for improvement while removing the feeling the faculty’s teaching is being personally attacked. The process that Auburn Online uses is laid out, along with the three-tier maintenance and revision guide that will be used over a three-year implementation plan. This information can help others determine what components of the maintenance and revision plan they want to utilize, as well as guide them on how to create a similar approach. The data will be used to analyze, revise, and improve courses by providing recommendations and models of good practices through determining and disseminating best practices that demonstrate an impact on student success.

Keywords: data-driven, improvement, online courses, faculty development, analytics, course design

Procedia PDF Downloads 60
15 Support for Refugee Entrepreneurs Through International Aid

Authors: Julien Benomar

Abstract:

The World Bank report published in April 2023 called “Migrants, Refugees and Society” allows us to first distinguish migrants in search of economic opportunities and refugees that flee a situation of danger and choose their destination based on their immediate need for safety. Amongst those two categories, the report distinguished people having professional skills adapted to the labor market of the host country and those who have not. Out of that distinction of four categories, we choose to focus our research on refugees that do not have professional skills adapted to the labor market of the host country. Given that refugees generally have no recourse to public assistance schemes and cannot count on the support of their entourage or support network, we propose to examine the extent to which external assistance, such as international humanitarian action, is likely to accompany refugees' transition to financial empowerment through entrepreneurship. To this end, we propose to carry out a case study structured in three stages: (i) an exchange with a Non-Governmental Organisation (NGO) active in supporting refugee populations from Congo and Burundi to Rwanda, enabling us to (i.i) define together a financial empowerment income, and (i. ii) learn about the content of the support measures taken for the beneficiaries of the humanitarian project; (ii) monitor the population of 118 beneficiaries, including 73 refugees and 45 Rwandans (reference population); (iii) conduct a participatory analysis to identify the level of performance of the project and areas for improvement. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO that has been funding this economic aid project through entrepreneurship since 2021. The case study thus involved the staff of an international NGO active in helping refugees from Rwanda since 2015 and the staff of a Luxembourg NGO, which has been funding this economic aid through an entrepreneurship project since 2021, and took place over a 48-day period between April and May 2023. The main results are of two types: (i) the need to associate indicators for monitoring the impact of the project on the indirect beneficiaries of the project (refugee community) and (ii) the identification of success factors making it possible to bring concrete and relevant responses to the constraints encountered. The first result thus made it possible to identify the following indicators: Indicator of community potential ((jobs, training or mentoring) promoted by the activity of the entrepreneur), Indicator of social contribution (tax paid by the entrepreneur), Indicator of resilience (savings and loan capacity generated, and finally impact on social cohesion. The second result made it possible to identify that among the 7 success factors tested, the sector of activity chosen and the level of experience in the sector of the future activity are those that stand out the most clearly.

Keywords: entrepreuneurship, refugees, financial empowerment, international aid

Procedia PDF Downloads 78
14 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising

Authors: Mokhlisur Rahman

Abstract:

Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.

Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer

Procedia PDF Downloads 68
13 The Symbolic Power of the IMF: Looking through Argentina’s New Period of Indebtedness

Authors: German Ricci

Abstract:

The research aims to analyse the symbolic power of the International Monetary Fund (IMF) in its relationship with a borrowing country, drawing upon Pierre Bourdieu’s Field Theory. This theory of power, typical of constructivist structuralism, has been minor used in international relations. Thus, selecting this perspective offers a new understanding of how the IMF's power operates and is structured. The IMF makes periodic economic reviews in which the staff evaluates the Government's performance. It also offers “last instance” loans when private external credit is not accessible. This relationship generates great expectations in financial agents because the IMF’s statements indicate the capacity of the Nation-State to meet its payment obligations (or not). Therefore, it is argued that the IMF is a legitimate actor for financial agents concerned about a government facing an economic crisis both for the effects of its immediate economic contribution through loans and the promotion of adjustment programs, helpful to guarantee the payment of the external debt. This legitimacy implies a symbolic power relationship in addition to the already known economic power relationship. Obtaining the IMF's consent implies that the government partially puts its political-economic decisions into play since the monetary policy must be agreed upon with the Fund. This has consequences at the local level. First, it implies that the debtor state must establish a daily relationship with the Fund. This everyday interaction with the Fund influences how officials and policymakers internalize the meaning of political management. On the other hand, if the Government has access to the IMF's seal of approval, the State will be again in a position to re-enter the financial market and go back into debt to face external debt. This means that private creditors increase the chances of collecting the debt and, again, grant credits. Thus, it is argued that the borrowing country submits to the relationship with the IMF in search of the latter's economic and symbolic capital. Access to this symbolic capital has objective and subjective repercussions at the national level that might tend to reproduce the relevance of the financial market and legitimizes the IMF’s intervention during economic crises. The paper has Argentina as its case study, given its historical relationship with the IMF and the relevance of the current indebtedness period, which remains largely unexplored. Argentina’s economy is characterized by recurrent financial crises, and it is the country to which the Fund has lent the most in its entire history. It surpasses more than three times the second, Egypt. In addition, Argentina is currently the country that owes the most to the Fund after receiving the largest loan ever granted by the IMF in 2018, and a new agreement in 2022. While the historical strong association with the Fund culminated in the most acute economic and social crisis in the country’s contemporary history, producing an unprecedented political and institutional crisis in 2001, Argentina still recognized the IMF as the only way out during economic crises.

Keywords: IMF, fields theory, symbolic power, Argentina, Bourdieu

Procedia PDF Downloads 71
12 Supporting a Moral Growth Mindset Among College Students

Authors: Kate Allman, Heather Maranges, Elise Dykhuis

Abstract:

Moral Growth Mindset (MGM) is the belief that one has the capacity to become a more moral person, as opposed to a fixed conception of one’s moral ability and capacity (Han et al., 2018). Building from Dweck’s work in incremental implicit theories of intelligence (2008), Moral Growth Mindset (Han et al., 2020) extends growth mindsets into the moral dimension. The concept of MGM has the potential to help researchers understand how both mindsets and interventions can impact character development, and it has even been shown to have connections to voluntary service engagement (Han et al., 2018). Understanding the contexts in which MGM might be cultivated could help to promote the further cultivation of character, in addition to prosocial behaviors like service engagement, which may, in turn, promote larger scale engagement in social justice-oriented thoughts, feelings, and behaviors. In particular, college may be a place to intentionally cultivate a growth mindset toward moral capacities, given the unique developmental and maturational components of the college experience, including contextual opportunity (Lapsley & Narvaez, 2006) and independence requiring the constant consideration, revision, and internalization of personal values (Lapsley & Woodbury, 2016). In a semester-long, quasi-experimental study, we examined the impact of a pedagogical approach designed to cultivate college student character development on participants’ MGM. With an intervention (n=69) and a control group (n=97; Pre-course: 27% Men; 66% Women; 68% White; 18% Asian; 2% Black; <1% Hispanic/Latino), we investigated whether college courses that intentionally incorporate character education pedagogy (Lamb, Brant, Brooks, 2021) affect a variety of psychosocial variables associated with moral thoughts, feelings, identity, and behavior (e.g. moral growth mindset, honesty, compassion, etc.). The intervention group consisted of 69 undergraduate students (Pre-course: 40% Men; 52% Women; 68% White; 10.5% Black; 7.4% Asian; 4.2% Hispanic/Latino) that voluntarily enrolled in five undergraduate courses that encouraged students to engage with key concepts and methods of character development through the application of research-based strategies and personal reflection on goals and experiences. Moral Growth Mindset was measured using the four-item Moral Growth Mindset scale (Han et al., 2020), with items such as You can improve your basic morals and character considerably on a six-point Likert scale from 1 (strongly disagree) to 6 (strongly agree). Higher scores of MGM indicate a stronger belief that one can become a more moral person with personal effort. Reliability at Time 1 was Cronbach’s ɑ= .833, and at Time 2 Cronbach’s ɑ= .772. An Analysis of Covariance (ANCOVA) was conducted to explore whether post-course MGM scores were different between the intervention and control when controlling for pre-course MGM scores. The ANCOVA indicated significant differences in MGM between groups post-course, F(1,163) = 8.073, p = .005, R² = .11, where descriptive statistics indicate that intervention scores were higher than the control group at post-course. Results indicate that intentional character development pedagogy can be leveraged to support the development of Moral Growth Mindset and related capacities in undergraduate settings.

Keywords: moral personality, character education, incremental theories of personality, growth mindset

Procedia PDF Downloads 146