Search results for: optimized network
4454 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 804453 Managing Networks and Systems in the Modern Security Landscape: An Integrated Approach to Infrastructure Resilience
Authors: Oussama Yadine, Abdellah Jamali
Abstract:
The rapid evolution of today's technology ecosystem, marked by the fusion of cloud computing, IoT, and distributed systems, has introduced complex security challenges in network and systems administration. Our research develops a framework that seamlessly merges contemporary systems administration with advanced security engineering methodologies, particularly focusing on DevSecOps implementation and zero-trust architectural principles. Comprehensive testing and analysis across diverse organizational environments reveal that this unified approach achieves remarkable results: a 47% decrease in security-related incidents while consistently maintaining 99.9% system uptime. The framework delivers actionable guidelines for deploying secure infrastructure architectures, automating compliance oversight, and implementing dynamic security protocols. This integration effectively eliminates the historical divide between systems administration and security engineering, fostering an environment where operational efficiency and security resilience coexist harmoniously.Keywords: network security, systems administration, security engineering, infrastructure resilience
Procedia PDF Downloads 64452 The Three-Zone Composite Productivity Model of Multi-Fractured Horizontal Wells under Different Diffusion Coefficients in a Shale Gas Reservoir
Authors: Weiyao Zhu, Qian Qi, Ming Yue, Dongxu Ma
Abstract:
Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interference of the fractures. In regard to the fractured horizontal wells, the free gas was found to majorly contribute to the productivity, while the contribution of the desorption increased with the increased pressure differences.Keywords: multi-scale, fracture network, composite model, productivity
Procedia PDF Downloads 2724451 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 1434450 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation
Authors: Zhaoyang Liu
Abstract:
It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions
Procedia PDF Downloads 1794449 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community
Authors: Mohamed Ghorab
Abstract:
Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.Keywords: distributed energy resources, network energy system, optimization, microgeneration system
Procedia PDF Downloads 1954448 Botnet Detection with ML Techniques by Using the BoT-IoT Dataset
Authors: Adnan Baig, Ishteeaq Naeem, Saad Mansoor
Abstract:
The Internet of Things (IoT) gadgets have advanced quickly in recent years, and their use is steadily rising daily. However, cyber-attackers can target these gadgets due to their distributed nature. Additionally, many IoT devices have significant security flaws in their implementation and design, making them vulnerable to security threats. Hence, these threats can cause important data security and privacy loss from a single attack on network devices or systems. Botnets are a significant security risk that can harm the IoT network; hence, sophisticated techniques are required to mitigate the risk. This work uses a machine learning-based method to identify IoT orchestrated by botnets. The proposed technique identifies the net attack by distinguishing between legitimate and malicious traffic. This article proposes a hyperparameter tuning model to improvise the method to improve the accuracy of existing processes. The results demonstrated an improved and more accurate indication of botnet-based cyber-attacks.Keywords: Internet of Things, Botnet, BoT-IoT dataset, ML techniques
Procedia PDF Downloads 214447 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation
Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu
Abstract:
Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.Keywords: POI, road network, selection method, spatial information expression, distribution pattern
Procedia PDF Downloads 4154446 A Neural Network Classifier for Identifying Duplicate Image Entries in Real-Estate Databases
Authors: Sergey Ermolin, Olga Ermolin
Abstract:
A Deep Convolution Neural Network with Triplet Loss is used to identify duplicate images in real-estate advertisements in the presence of image artifacts such as watermarking, cropping, hue/brightness adjustment, and others. The effects of batch normalization, spatial dropout, and various convergence methodologies on the resulting detection accuracy are discussed. For comparative Return-on-Investment study (per industry request), end-2-end performance is benchmarked on both Nvidia Titan GPUs and Intel’s Xeon CPUs. A new real-estate dataset from San Francisco Bay Area is used for this work. Sufficient duplicate detection accuracy is achieved to supplement other database-grounded methods of duplicate removal. The implemented method is used in a Proof-of-Concept project in the real-estate industry.Keywords: visual recognition, convolutional neural networks, triplet loss, spatial batch normalization with dropout, duplicate removal, advertisement technologies, performance benchmarking
Procedia PDF Downloads 3424445 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 1064444 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference
Authors: Jang kyun Cho, Jeong-dong Lee
Abstract:
The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.Keywords: innovation diffusion, agent based model, small-world network, demand forecasting
Procedia PDF Downloads 3424443 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari
Abstract:
Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites
Procedia PDF Downloads 1254442 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain
Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain
Procedia PDF Downloads 5504441 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption
Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda
Abstract:
The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming
Procedia PDF Downloads 924440 An Energy Efficient Clustering Approach for Underwater Wireless Sensor Networks
Authors: Mohammad Reza Taherkhani
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: underwater sensor networks, clustering, learning automata, energy consumption
Procedia PDF Downloads 3674439 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario
Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad
Abstract:
One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)
Procedia PDF Downloads 3074438 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 1704437 Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks
Authors: Alaa Allakany, Koji Okamura
Abstract:
Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events).Keywords: multicast tree, software define networks, tabu search, OpenFlow
Procedia PDF Downloads 2674436 A Sufficient Fuzzy Controller for Improving the Transient Response in Electric Motors
Authors: Aliasghar Baziar, Hassan Masoumi, Alireza Ale Saadi
Abstract:
The control of the response of electric motors plays a significant role in the damping of transient responses. In this regard, this paper presents a static VAR compensator (SVC) based on a fuzzy logic which is applied to an industrial power network consisting of three phase synchronous, asynchronous and DC motor loads. The speed and acceleration variations of a specific machine are the inputs of the proposed fuzzy logic controller (FLC). In order to verify the effectiveness and proficiency of the proposed Fuzzy Logic based SVC (FLSVC), several non-linear time-domain digital simulation tests are performed. The proposed fuzzy model can properly control the response of electric motors. The results show that the FLSVC is successful to improve the voltage profile significantly over a wide range of operating conditions and disturbances thus improving the overall dynamic performance of the network.Keywords: fuzzy logic controller, VAR compensator, single cage asynchronous motor, DC motor
Procedia PDF Downloads 6334435 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent
Procedia PDF Downloads 1304434 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 694433 Spatial Correlation of Channel State Information in Real Long Range Measurement
Authors: Ahmed Abdelghany, Bernard Uguen, Christophe Moy, Dominique Lemur
Abstract:
The Internet of Things (IoT) is developed to ensure monitoring and connectivity within different applications. Thus, it is critical to study the channel propagation characteristics in Low Power Wide Area Network (LPWAN), especially Long Range Wide Area Network (LoRaWAN). In this paper, an in-depth investigation of the reciprocity between the uplink and downlink Channel State Information (CSI) is done by performing an outdoor measurement campaign in the area of Campus Beaulieu in Rennes. At each different location, the CSI reciprocity is quantified using the Pearson Correlation Coefficient (PCC) which shows a very high linear correlation between the uplink and downlink CSI. This reciprocity feature could be utilized for the physical layer security between the node and the gateway. On the other hand, most of the CSI shapes from different locations are highly uncorrelated from each other. Hence, it can be anticipated that this could achieve significant localization gain by utilizing the frequency hopping in the LoRa systems by getting access to a wider band.Keywords: IoT, LPWAN, LoRa, effective signal power, onsite measurement
Procedia PDF Downloads 1684432 The Use of Flipped Classroom as a Teaching Method in a Professional Master's Program in Network, in Brazil
Authors: Carla Teixeira, Diana Azevedo, Jonatas Bessa, Maria Guilam
Abstract:
The flipped classroom is a blended learning modality that combines face-to-face and virtual activities of self-learning, mediated by digital information and communication technologies, which reverses traditional teaching approaches and presents, as a presupposition, the previous study of contents by students. In the following face-to-face activities, the contents are discussed, producing active learning. This work aims to describe the systematization process of the use of flipped classrooms as a method to develop complementary national activities in PROFSAÚDE, a professional master's program in the area of public health, offered as a distance learning course, in the network, in Brazil. The complementary national activities were organized with the objective of strengthening and qualifying students´ learning process. The network gathers twenty-two public institutions of higher education in the country. Its national coordination conducted a survey to detect complementary educational needs, supposed to improve the formative process and align important content sums for the program nationally. The activities were organized both asynchronously, making study materials available in Google classrooms, and synchronously in a tele presential way, organized on virtual platforms to reach the largest number of students in the country. The asynchronous activities allowed each student to study at their own pace and the synchronous activities were intended for deepening and reflecting on the themes. The national team identified some professors' areas of expertise, who were contacted for the production of audiovisual content such as video classes and podcasts, guidance for supporting bibliographic materials and also to conduct synchronous activities together with the technical team. The contents posted in the virtual classroom were organized by modules and made available before the synchronous meeting; these modules, in turn, contain “pills of experience” that correspond to reports of teachers' experiences in relation to the different themes. In addition, activity was proposed, with questions aimed to expose doubts about the contents and a learning challenge, as a practical exercise. Synchronous activities are built with different invited teachers, based on the participants 'discussions, and are the forum where teachers can answer students' questions, providing feedback on the learning process. At the end of each complementary activity, an evaluation questionnaire is available. The responses analyses show that this institutional network experience, as pedagogical innovation, provides important tools to support teaching and research due to its potential in the participatory construction of learning, optimization of resources, the democratization of knowledge and sharing and strengthening of practical experiences on the network. One of its relevant aspects was the thematic diversity addressed through this method.Keywords: active learning, flipped classroom, network education experience, pedagogic innovation
Procedia PDF Downloads 1644431 The Impact of Information and Communication Technology in Knowledge Fraternization
Authors: Muhammad Aliyu
Abstract:
Significant improvement in Information and Communication Technology (ICT) and the enforced global competition are revolutionizing the way knowledge is managed and the way organizations compete. The emergence of new organizations calls for a new way to fraternize knowledge, which is known as 'knowledge fraternization.' In this modern economy, it is the knowledge if properly managed that can harness the organization's competitive advantage. This competitive advantage is realized through the full utilization of information and data coupled with the harnessing of people’s skills and ideas as well as their commitment and motivations, which can be accomplished through socializing the knowledge management processes. A fraternize network for knowledge management is a web-based system designed using PHP that is Dreamweaver web development tool, with the help of CS4 Adobe Dreamweaver as the PHP code Editor that supports the use of Cascadian Style Sheet (CSS), MySQL with Xamp, Php My Admin (Version 3.4.7) localhost server via TCP/IP for containing the databases of the system to support this in a distributed way, spreading the workload over the whole organization. This paper reviews the technologies and the technology tools to be used in the development of social networks in an organization.Keywords: Information and Communication Technology (ICT), knowledge, fraternization, social network
Procedia PDF Downloads 3984430 Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease
Authors: Krishna Pal Singh, Shailendra Kumar Gupta, Olaf Wolkenhauer
Abstract:
Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases.Keywords: melanoma metastasis, rheumatoid arthritis, inflammatory bowel diseases, integrated bioinformatics analysis
Procedia PDF Downloads 934429 The Impacts of Cultural Event on Networking: Liverpool's Cultural Sector in the Aftermath of 2008
Authors: Yi-De Liu
Abstract:
The aim of this paper is to discuss how the construct of networking and social capital can be used to understand the effect events can have on the cultural sector. Based on case study, this research sought the views of those working in the cultural sector on Liverpool’s year as the European Capital of Culture (ECOC). Methodologically, this study involves literature review to prompt theoretical sensitivity, the collection of primary data via online survey (n= 42) and follow-up telephone interviews (n= 8) to explore the emerging findings in more detail. The findings point to a number of ways in which the ECOC constitutes a boost for networking and its effects on city’s cultural sector, including organisational learning, aspiration and leadership. The contributions of this study are two-fold: (1) Evaluating the long-term effects on network formation in the cultural sector following major event; (2) conceptualising the impact assessment of organisational social capital for future ECOC or similar events.Keywords: network, social capital, cultural impact, european capital of culture
Procedia PDF Downloads 2094428 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model
Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo
Abstract:
The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development
Procedia PDF Downloads 2274427 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2394426 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3744425 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 423