Search results for: low input farming
1026 Comparison of Automated Zone Design Census Output Areas with Existing Output Areas in South Africa
Authors: T. Mokhele, O. Mutanga, F. Ahmed
Abstract:
South Africa is one of the few countries that have stopped using the same Enumeration Areas (EAs) for census enumeration and dissemination. The advantage of this change is that confidentiality issue could be addressed for census dissemination as the design of geographic unit for collection is mainly to ensure that this unit is covered by one enumerator. The objective of this paper was to evaluate the performance of automated zone design output areas against non-zone design developed geographies using the 2001 census data, and 2011 census to some extent, as the main input. The comparison of the Automated Zone-design Tool (AZTool) census output areas with the Small Area Layers (SALs) and SubPlaces based on confidentiality limit, population distribution, and degree of homogeneity, as well as shape compactness, was undertaken. Further, SPSS was employed for validation of the AZTool output results. The results showed that AZTool developed output areas out-perform the existing official SAL and SubPlaces with regard to minimum population threshold, population distribution and to some extent to homogeneity. Therefore, it was concluded that AZTool program provides a new alternative to the creation of optimised census output areas for dissemination of population census data in South Africa.Keywords: AZTool, enumeration areas, small areal layers, South Africa
Procedia PDF Downloads 1841025 Optoelectronic Hardware Architecture for Recurrent Learning Algorithm in Image Processing
Authors: Abdullah Bal, Sevdenur Bal
Abstract:
This paper purposes a new type of hardware application for training of cellular neural networks (CNN) using optical joint transform correlation (JTC) architecture for image feature extraction. CNNs require much more computation during the training stage compare to test process. Since optoelectronic hardware applications offer possibility of parallel high speed processing capability for 2D data processing applications, CNN training algorithm can be realized using Fourier optics technique. JTC employs lens and CCD cameras with laser beam that realize 2D matrix multiplication and summation in the light speed. Therefore, in the each iteration of training, JTC carries more computation burden inherently and the rest of mathematical computation realized digitally. The bipolar data is encoded by phase and summation of correlation operations is realized using multi-object input joint images. Overlapping properties of JTC are then utilized for summation of two cross-correlations which provide less computation possibility for training stage. Phase-only JTC does not require data rearrangement, electronic pre-calculation and strict system alignment. The proposed system can be incorporated simultaneously with various optical image processing or optical pattern recognition techniques just in the same optical system.Keywords: CNN training, image processing, joint transform correlation, optoelectronic hardware
Procedia PDF Downloads 5061024 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 4051023 Public Environmental Investment Analysis of Japan
Authors: K. Y. Chen, H. Chua, C. W. Kan
Abstract:
Japan is a well-developed country but the environmental issues are still a hot issue. In this study, we will analyse how the environmental investment affects the sustainable development in Japan. This paper will first describe the environmental policy of Japan and the effort input by the Japan government. Then, we will collect the yearly environmental data and also information about the environmental investment. Based on the data collected, we try to figure out the relationship between environmental investment and sustainable development in Japan. In addition, we will analyse the SWOT of environmental investment in Japan. Based on the economic information collected, Japan established a sound material-cycle society through changes in business and life styles. A comprehensive legal system for this kind of society was established in Japan. In addition, other supporting measures, such as financial measures, utilization of economic instruments, implementation of research and promotion of education and science and technology, help Japan to cope with the recent environmental challenges. Japan’s excellent environmental technologies changed its socioeconomic system. They are at the highest global standards. This can be reflected by the number of patents registered in Japan which has been on the steady growth. Country by country comparison in the application for patents on environmental technologies also indicates that Japan ranks high in such areas as atmospheric pollution and water quality management, solid waste management and renewable energy. This is a result of the large expenditure invested on research and development.Keywords: Japan, environmental investment, sustainable development, analysis
Procedia PDF Downloads 2681022 A Stochastic Model to Predict Earthquake Ground Motion Duration Recorded in Soft Soils Based on Nonlinear Regression
Authors: Issam Aouari, Abdelmalek Abdelhamid
Abstract:
For seismologists, the characterization of seismic demand should include the amplitude and duration of strong shaking in the system. The duration of ground shaking is one of the key parameters in earthquake resistant design of structures. This paper proposes a nonlinear statistical model to estimate earthquake ground motion duration in soft soils using multiple seismicity indicators. Three definitions of ground motion duration proposed by literature have been applied. With a comparative study, we select the most significant definition to use for predict the duration. A stochastic model is presented for the McCann and Shah Method using nonlinear regression analysis based on a data set for moment magnitude, source to site distance and site conditions. The data set applied is taken from PEER strong motion databank and contains shallow earthquakes from different regions in the world; America, Turkey, London, China, Italy, Chili, Mexico...etc. Main emphasis is placed on soft site condition. The predictive relationship has been developed based on 600 records and three input indicators. Results have been compared with others published models. It has been found that the proposed model can predict earthquake ground motion duration in soft soils for different regions and sites conditions.Keywords: duration, earthquake, prediction, regression, soft soil
Procedia PDF Downloads 1531021 Lamellodiscus spp. (Monogenoidea: Diplectanidae) Infecting the Gill Lamellae of Porgies (Spariformes: Sparidae) in Dakar Coast
Authors: Sikhou Drame, Arfang Diamanka
Abstract:
In Senegal, the fishing sector plays an important role in socio-economic development. However, he is going through enormous difficulties, caused by the scarcity of fish on the Senegalese coast, the overexploitation of fishery resources. Based on this observation, the authorities are betting on the development of aquaculture. It is in this context that the exploration of fish from the highly consumed Sparidae family remains a good solution. Indeed, the Sparidae family has good characteristics for farming at sea. However, parasites can proliferate and destroy the efforts made to cultivate fish in confined areas. the knowledge of these parasites in particular the monogeneans, very specific to the sparidae fishes will allow to better know the bio-ecology of the fishes. Better know the main parasitic monogeneans of the genus Lamellodiscus of sparidae fish of the genus Pagrus harvested in Senegal. It will first be a question of identifying from the observation of the morpho-anatomical characters, Monogeneans of the genus Lamellodiscus, branchial parasites collected from three species of host: Pagrus caeruleostictus , Pagrus auriga and Pagrus africanus. Then to evaluate the spatial and temporary distribution of parasitic indices on two Dakar landing sites (Soumbédioune and Yarakh) and finally to determine their specificity. The fish examined were purchased directly from the landing sites in Dakar and then transported to the laboratory where they were identified, then dissected. The gills were examined under a magnifying glass and the monogeneans were harvested, fixed in 70% ethanol and then mounted between slide and coverslip. The identification of the parasites is based on the observation of the morpho-anatomical characters and on the measurements of the sclerified organs of the haptor and the male copulatory organ. In total out of the 90 individuals examined: Pagrus auriga (30), Pagrus africanus (30) and Pagrus caeruleostictus (30), 6 species of monogeneans of the genus Lamellodiscus (Monogenea, Diplectanidae) are obtained: L. sarculus, L. sigillatus, L.vicinus, L. rastellus, L. africanus n.sp and L. yarakhensis n.sp. Our results show that specimens of small sizes [15-20[cm are the most infested. The values of infestation intensity and abundance are higher in fish from Yarakh and also during the cold season. it is the species Pagrus caeruleostictus which records the highest parasitic loads in the two localities. the majority of the parasites identified have a strict or oioxene specificity. It appears from this study that fish of the genus Pagrus are highly parasitized by monogeneans of the genus Lamellodiscus with a general prevalence of 87.78%. Each infested fish has an average of 30 monogeneans of the genus Lamellodiscus.Keywords: monogeneans, Lamellodiscus, Dakar coast, genus Pagrus
Procedia PDF Downloads 801020 Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software
Authors: Tokirhusen Iqbalbhai Shaikh, M. V. Shah
Abstract:
With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study.Keywords: soil structure interaction, high speed rail, numerical modelling, PLAXIS3D
Procedia PDF Downloads 1101019 Long Waves Inundating through and around an Array of Circular Cylinders
Authors: Christian Klettner, Ian Eames, Tristan Robinson
Abstract:
Tsunami is characterised by their very long time periods and can have devastating consequences when these inundate through built-up coastal regions as in the 2004 Indian Ocean and 2011 Tohoku Tsunami. This work aims to investigate the effect of these long waves on the flow through and around a group of buildings, which are abstracted to circular cylinders. The research approach used in this study was using experiments and numerical simulations. Large-scale experiments were carried out at HR Wallingford. The novelty of these experiments is (I) the number of bodies present (up to 64), (II) the long wavelength of the input waves (80 seconds) and (III) the width of the tank (4m) which gives the unique opportunity to investigate three length scales, namely the diameter of the building, the diameter of the array and the width of the tank. To complement the experiments, dam break flow past the same arrays is investigated using three-dimensional numerical simulations in OpenFOAM. Dam break flow was chosen as it is often used as a surrogate for the tsunami in previous research and is used here as there are well defined initial conditions and high quality previous experimental data for the case of a single cylinder is available. The focus of this work is to better understand the effect of the solid void fraction on the force and flow through and around the array. New qualitative and quantitative diagnostics are developed and tested to analyse the complex coupled interaction between the cylinders.Keywords: computational fluid dynamics, tsunami, forces, complex geometry
Procedia PDF Downloads 1951018 Probiotics as an Alternative to Antibiotic Use in Pig Production
Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro
Abstract:
The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics
Procedia PDF Downloads 3011017 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 1941016 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment
Authors: Michael Radwan Omary
Abstract:
Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.Keywords: catalysis, bio electro interactions, water desalination, weak-interactions
Procedia PDF Downloads 671015 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy
Authors: Hyunki Kang, Hi Won Jeong
Abstract:
The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair
Procedia PDF Downloads 401014 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier
Authors: Maninder Kaur Gill, Alpana Agarwal
Abstract:
It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.Keywords: Device Under Test (DUT), open loop voltage gain, operational amplifier, test circuit
Procedia PDF Downloads 4471013 Automation of AAA Game Development Using AI
Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga
Abstract:
The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.Keywords: AAA games, AI, automation tools, game development
Procedia PDF Downloads 261012 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya
Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse
Abstract:
Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data
Procedia PDF Downloads 1391011 Seismic Response Control of 20-Storey Benchmark Building Using True Negative Stiffness Device
Authors: Asim Qureshi, R. S. Jangid
Abstract:
Seismic response control of structures is generally achieved by using control devices which either dissipate the input energy or modify the dynamic properties of structure.In this paper, the response of a 20-storey benchmark building supplemented by viscous dampers and Negative Stiffness Device (NSD) is assessed by numerical simulations using the Newmark-beta method. True negative stiffness is an adaptive passive device which assists the motion unlike positive stiffness. The structure used in this study is subjected to four standard ground motions varying from moderate to severe, near fault to far-field earthquakes. The objective of the present study is to show the effectiveness of the adaptive negative stiffness device (NSD and passive dampers together) relative to passive dampers alone. This is done by comparing the responses of the above uncontrolled structure (i.e., without any device) with the structure having passive dampers only and also with the structure supplemented with adaptive negative stiffness device. Various performance indices, top floor displacement, top floor acceleration and inter-storey drifts are used as comparison parameters. It is found that NSD together with passive dampers is quite effective in reducing the response of aforementioned structure relative to structure without any device or passive dampers only. Base shear and acceleration is reduced significantly by incorporating NSD at the cost of increased inter-storey drifts which can be compensated using the passive dampers.Keywords: adaptive negative stiffness device, apparent yielding, NSD, passive dampers
Procedia PDF Downloads 4311010 Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber
Authors: P. Lestinsky, D. Jecha, V. Brummer, P. Stehlik
Abstract:
Scrubbing by a liquid spraying is one of the most effective processes used for removal of fine particles and soluble gas pollutants (such as SO2, HCl, HF) from the flue gas. There are many configurations of scrubbers designed to provide contact between the liquid and gas stream for effectively capturing particles or soluble gas pollutants, such as spray plates, packed bed towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The primary function of venturi scrubber is the capture of fine particles as well as HCl, HF or SO2 removal with effect of the flue gas temperature decrease before input to the absorption column. In this paper, sulfur dioxide (SO2) from flue gas was captured using new design replacing venturi scrubber (1st degree of wet scrubbing). The flue gas was prepared by the combustion of the carbon disulfide solution in toluene (1:1 vol.) in the flame in the reactor. Such prepared flue gas with temperature around 150 °C was processed in designed laboratory O-element scrubber. Water was used as absorbent liquid. The efficiency of SO2 removal, pressure drop and temperature drop were measured on our experimental device. The dependence of these variables on liquid-gas ratio was observed. The average temperature drop was in the range from 150 °C to 40 °C. The pressure drop was increased with increasing of a liquid-gas ratio, but not as much as for the common venturi scrubber designs. The efficiency of SO2 removal was up to 70 %. The pressure drop of our new designed wet scrubber is similar to commonly used venturi scrubbers; nevertheless the influence of amount of the liquid on pressure drop is not so significant.Keywords: desulphurization, absorption, flue gas, modeling
Procedia PDF Downloads 3991009 A Fuzzy Inference Tool for Assessing Cancer Risk from Radiation Exposure
Authors: Bouharati Lokman, Bouharati Imen, Bouharati Khaoula, Bouharati Oussama, Bouharati Saddek
Abstract:
Ionizing radiation exposure is an established cancer risk factor. Compared to other common environmental carcinogens, it is relatively easy to determine organ-specific radiation dose and, as a result, radiation dose-response relationships tend to be highly quantified. Nevertheless, there can be considerable uncertainty about questions of radiation-related cancer risk as they apply to risk protection and public policy, and the interpretations of interested parties can differ from one person to another. Examples of tools used in the analysis of the risk of developing cancer due to radiation are characterized by uncertainty. These uncertainties are related to the history of exposure and different assumptions involved in the calculation. We believe that the results of statistical calculations are characterized by uncertainty and imprecision. Having regard to the physiological variation from one person to another. In this study, we develop a tool based on fuzzy logic inference. As fuzzy logic deals with imprecise and uncertain, its application in this area is adequate. We propose a fuzzy system with three input variables (age, sex and body attainable cancer). The output variable expresses the risk of infringement rate of each organ. A base rule is established from recorded actual data. After successful simulation, this will instantly predict the risk of infringement rate of each body following chronic exposure to 0.1 Gy.Keywords: radiation exposure, cancer, modeling, fuzzy logic
Procedia PDF Downloads 3111008 Embedded Digital Image System
Authors: Dawei Li, Cheng Liu, Yiteng Liu
Abstract:
This paper introduces an embedded digital image system for Chinese space environment vertical exploration sounding rocket. In order to record the flight status of the sounding rocket as well as the payloads, an onboard embedded image processing system based on ADV212, a JPEG2000 compression chip, is designed in this paper. Since the sounding rocket is not designed to be recovered, all image data should be transmitted to the ground station before the re-entry while the downlink band used for the image transmission is only about 600 kbps. Under the same condition of compression ratio compared with other algorithm, JPEG2000 standard algorithm can achieve better image quality. So JPEG2000 image compression is applied under this condition with a limited downlink data band. This embedded image system supports lossless to 200:1 real time compression, with two cameras to monitor nose ejection and motor separation, and two cameras to monitor boom deployment. The encoder, ADV7182, receives PAL signal from the camera, then output the ITU-R BT.656 signal to ADV212. ADV7182 switches between four input video channels as the program sequence. Two SRAMs are used for Ping-pong operation and one 512 Mb SDRAM for buffering high frame-rate images. The whole image system has the characteristics of low power dissipation, low cost, small size and high reliability, which is rather suitable for this sounding rocket application.Keywords: ADV212, image system, JPEG2000, sounding rocket
Procedia PDF Downloads 4211007 A Study on FWD Deflection Bowl Parameters for Condition Assessment of Flexible Pavement
Authors: Ujjval J. Solanki, Prof.(Dr.) P.J. Gundaliya, Prof.M.D. Barasara
Abstract:
The application of Falling Weight Deflectometer is to evaluate structural performance of the flexible pavement. The exercise of back calculation is required to know the modulus of elasticity of existing in-service pavement. The process of back calculation needs in-depth field experience for the input of range of modulus of elasticity of bituminous, granular and subgrade layer, and its required number of trial to find such matching moduli with the observed FWD deflection on the field. The study carried out at Barnala-Mansa State Highway Punjab-India using FWD before and after overlay; the deflections obtained at 0 on the load cell, 300, 600, 900,1200, 1500 and 1800 mm interval from the load cell these seven deflection results used to calculate Surface Curvature Index (SCI), Base damage Index (BDI), Base curvature index (BCI). This SCI, BCI and BDI indices are useful to predict the structural performance of in-service pavement and also useful to identify homogeneous section for condition assessment. The SCI, BCI and BDI range are determined for before and after overlay the range of SCI 520 to 51 BDI 294 to 63 BCI 83 to 0.27 for old pavement and SCI 272 to 23 BDI 228 to 28, BCI 25.85 to 4.60 for new pavement. It also shows good correlation with back calculated modulus of elasticity of all the three layer.Keywords: back calculation, base damage index, base curvature index, FWD (Falling Weight Deflectometer), surface curvature index
Procedia PDF Downloads 3321006 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 441005 Longitudinal Assessment on the Economic Impacts of Hosting Major Sports Events
Authors: Huei-Fu Lu
Abstract:
Hosting international major sports events (MSEs) has become a globalized strategy for many countries. Most modern countries believe that MSEs can bring the hosting countries with substantial and considerable economic and non-economic benefits; so many cities also input a huge of resources to bid for hosting MSEs. Despite the growing importance of MSEs, limited longitudinal analysis has been carried out to understand and explain the long term economic effects of such events. This paper is to continue the focus of previous literature on the economic effects of hosting MSEs. The study periods are from 1950 to 2014 and the secondary macro-economic data are selected from the countries that have hosted the Asian Games and the Olympic Games (including summer and winter) to precede a longitudinal analysis. A comparison of the real economic growth rate, investment, employment and international trade of hosting countries and the duration of these economic effects are also explored and discussed. Based on the countries’ attributes and locating area, aiming to ascertain whether hosting MSEs is economically worthwhile and whether the economic effects from MSEs are realized as anticipated. The results indicate that hosting MSEs to create positive economic effects like GDP growth or long-term employment may be a myth even for developing countries. However, the empirical findings can provide the sport management or authority with longitudinal and comprehensive elaboration for biding or hosting MSEs in the future.Keywords: Asian Games, economic effects, major sports events (MSEs), olympic games
Procedia PDF Downloads 3271004 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 3701003 English Pronunciation Materials on TikTok
Authors: Sebastian Leal-Arenas
Abstract:
TikTok’s influence on contemporary society is undeniable. The impact of the mobile app transcends entertainment, as shown by the growing presence of specialized accounts dedicated to providing educational content, particularly as it pertains to language learning. However, the prevailing trend on the platform is vocabulary and grammar acquisition, neglecting a critical component: pronunciation. This study examines English pronunciation materials available on TikTok by taking a comprehensive approach that incorporates established assessment tools, such as the Learning Object Review Instrument and the Framework for Language Learning App Evaluation. Furthermore, novel evaluation categories are introduced to provide a more holistic assessment of these educational resources. 60 English pronunciation videos were part of the analysis. The findings reveal that these audio-visual materials present clear audio bolstered by high-quality video content and automatically generated closed captions. These three components enhance the comprehensibility of the input, making these concise videos valuable assets for language learners. Nevertheless, certain deficiencies are observed, such as the lack of emphasis on specific segments and their relationship with articulators. Improvements and refinements are discussed, as well as their potential utility within the language classroom. This study contributes to the ongoing investigation of multimedia materials used for language teaching and emphasizes the need to adapt pronunciation instruction methods to today’s technology.Keywords: pronunciation, segments, teaching materials, technology
Procedia PDF Downloads 861002 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 4231001 The Design and Modeling of Intelligent Learners Assistance System (ILASS)
Authors: Jelili Kunle Adedeji, Toeb Akorede Akinbola
Abstract:
The problem of vehicle mishap as a result of miscalculation, recklessness, or malfunction of some part in a vehicle is acknowledged to be a global issue. In most of the cases, it results into death or life injuries, all over the world; the issue becomes a nightmare to the stakeholders on how to curb mishaps on our roads due to these endemic factors. Hence this research typically examined the design of a device, specifically for learners that can lead to a society of intelligent vehicles (traffic) without withdrawing the driving authority from them, unlike pre-existing systems. Though ILASS shears a lot of principle with existing advance drivers assistance systems, yet there are two fundamental differences between ILASS system and existing systems. Firstly ILASS is meant to accept continuous input from the throttle at all time such that the devices will not constraint the driving process unnecessarily and ensure a change of speed at any point in time. Secondly, it made use of a variable threshold distance between the host vehicle and front vehicle which can be set by the host driver under the constraint of road maintenance agency, who communicates the minimum possible threshold for a different lane to the host vehicle. The results obtained from the simulation of the ILASS system concluded that ILASS is a good solution to road accidents, particularly road accident which occurs as a result of driving at high speed.Keywords: front-vehicle, host-speed, threshold-distance, ILASS
Procedia PDF Downloads 1811000 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis
Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah
Abstract:
3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling
Procedia PDF Downloads 135999 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: circularity, diameter error, drilling canned cycle, pareto ANOVA, surface roughness
Procedia PDF Downloads 284998 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator
Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan
Abstract:
This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG
Procedia PDF Downloads 122997 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel
Authors: Nixon Kuruvila, H. V. Ravindra
Abstract:
Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)
Procedia PDF Downloads 409