Search results for: circuit models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7432

Search results for: circuit models

5692 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 68
5691 Use Cloud-Based Watson Deep Learning Platform to Train Models Faster and More Accurate

Authors: Susan Diamond

Abstract:

Machine Learning workloads have traditionally been run in high-performance computing (HPC) environments, where users log in to dedicated machines and utilize the attached GPUs to run training jobs on huge datasets. Training of large neural network models is very resource intensive, and even after exploiting parallelism and accelerators such as GPUs, a single training job can still take days. Consequently, the cost of hardware is a barrier to entry. Even when upfront cost is not a concern, the lead time to set up such an HPC environment takes months from acquiring hardware to set up the hardware with the right set of firmware, software installed and configured. Furthermore, scalability is hard to achieve in a rigid traditional lab environment. Therefore, it is slow to react to the dynamic change in the artificial intelligent industry. Watson Deep Learning as a service, a cloud-based deep learning platform that mitigates the long lead time and high upfront investment in hardware. It enables robust and scalable sharing of resources among the teams in an organization. It is designed for on-demand cloud environments. Providing a similar user experience in a multi-tenant cloud environment comes with its own unique challenges regarding fault tolerance, performance, and security. Watson Deep Learning as a service tackles these challenges and present a deep learning stack for the cloud environments in a secure, scalable and fault-tolerant manner. It supports a wide range of deep-learning frameworks such as Tensorflow, PyTorch, Caffe, Torch, Theano, and MXNet etc. These frameworks reduce the effort and skillset required to design, train, and use deep learning models. Deep Learning as a service is used at IBM by AI researchers in areas including machine translation, computer vision, and healthcare. 

Keywords: deep learning, machine learning, cognitive computing, model training

Procedia PDF Downloads 209
5690 Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics

Authors: Sedat Yayla, Mehmet Oruc, Shakhwan Yaseen

Abstract:

Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat.

Keywords: cavitation number, computational fluid dynamics, mixture of fluid, two-phase flow, velocity of throat

Procedia PDF Downloads 400
5689 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides

Authors: V. Keim, J. Spachtholz, J. Hammer

Abstract:

The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.

Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation

Procedia PDF Downloads 215
5688 Fast High Voltage Solid State Switch Using Insulated Gate Bipolar Transistor for Discharge-Pumped Lasers

Authors: Nur Syarafina Binti Othman, Tsubasa Jindo, Makato Yamada, Miho Tsuyama, Hitoshi Nakano

Abstract:

A novel method to produce a fast high voltage solid states switch using Insulated Gate Bipolar Transistors (IGBTs) is presented for discharge-pumped gas lasers. The IGBTs are connected in series to achieve a high voltage rating. An avalanche transistor is used as the gate driver. The fast pulse generated by the avalanche transistor quickly charges the large input capacitance of the IGBT, resulting in a switch out of a fast high-voltage pulse. The switching characteristic of fast-high voltage solid state switch has been estimated in the multi-stage series-connected IGBT with the applied voltage of several tens of kV. Electrical circuit diagram and the mythology of fast-high voltage solid state switch as well as experimental results obtained are presented.

Keywords: high voltage, IGBT, solid state switch, bipolar transistor

Procedia PDF Downloads 552
5687 Financial Liberalization, Exchange Rates and Demand for Money in Developing Economies: The Case of Nigeria, Ghana and Gambia

Authors: John Adebayo Oloyhede

Abstract:

This paper examines effect of financial liberalization on the stability of the demand for money function and its implication for exchange rate behaviour of three African countries. As the demand for money function is regarded as one of the two main building blocks of most exchange rate determination models, the other being purchasing power parity, its stability is required for the monetary models of exchange rate determination to hold. To what extent has the liberalisation policy of these countries, for instance liberalised interest rate, affected the demand for money function and what has been the consequence on the validity and relevance of floating exchange rate models? The study adopts the Autoregressive Instrumental Package (AIV) of multiple regression technique and followed the Almon Polynomial procedure with zero-end constraint. Data for the period 1986 to 2011 were drawn from three developing countries of Africa, namely: Gambia, Ghana and Nigeria, which did not only start the liberalization and floating system almost at the same period but share similar and diverse economic and financial structures. Its findings show that the demand for money was a stable function of income and interest rate at home and abroad. Other factors such as exchange rate and foreign interest rate exerted some significant effect on domestic money demand. The short-run and long-run elasticity with respect to income, interest rates, expected inflation rate and exchange rate expectation are not greater than zero. This evidence conforms to some extent to the expected behaviour of the domestic money function and underscores its ability to serve as good building block or assumption of the monetary model of exchange rate determination. This will, therefore, assist appropriate monetary authorities in the design and implementation of further financial liberalization policy packages in developing countries.

Keywords: financial liberalisation, exchange rates, demand for money, developing economies

Procedia PDF Downloads 372
5686 Multi-Faceted Growth in Creative Industries

Authors: Sanja Pfeifer, Nataša Šarlija, Marina Jeger, Ana Bilandžić

Abstract:

The purpose of this study is to explore the different facets of growth among micro, small and medium-sized firms in Croatia and to analyze the differences between models designed for all micro, small and medium-sized firms and those in creative industries. Three growth prediction models were designed and tested using the growth of sales, employment and assets of the company as dependent variables. The key drivers of sales growth are: prudent use of cash, industry affiliation and higher share of intangible assets. Growth of assets depends on retained profits, internal and external sources of financing, as well as industry affiliation. Growth in employment is closely related to sources of financing, in particular, debt and it occurs less frequently than growth in sales and assets. The findings confirm the assumption that growth strategies of small and medium-sized enterprises (SMEs) in creative industries have specific differences in comparison to SMEs in general. Interestingly, only 2.2% of growing enterprises achieve growth in employment, assets and sales simultaneously.

Keywords: creative industries, growth prediction model, growth determinants, growth measures

Procedia PDF Downloads 332
5685 Development of Anterior Lumbar Interbody Fusion (ALIF) Peek Cage Based on the Korean Lumbar Anatomical Information

Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim

Abstract:

The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIF PEEK Cage prototype was compared with the Fidji Cage (Zimmer.Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.

Keywords: inter-body anterior fusion, ALIF cage, PEEK, Korean lumbar, CT image, animal test

Procedia PDF Downloads 523
5684 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
5683 Conduction Transfer Functions for the Calculation of Heat Demands in Heavyweight Facade Systems

Authors: Mergim Gasia, Bojan Milovanovica, Sanjin Gumbarevic

Abstract:

Better energy performance of the building envelope is one of the most important aspects of energy savings if the goals set by the European Union are to be achieved in the future. Dynamic heat transfer simulations are being used for the calculation of building energy consumption because they give more realistic energy demands compared to the stationary calculations that do not take the building’s thermal mass into account. Software used for these dynamic simulation use methods that are based on the analytical models since numerical models are insufficient for longer periods. The analytical models used in this research fall in the category of the conduction transfer functions (CTFs). Two methods for calculating the CTFs covered by this research are the Laplace method and the State-Space method. The literature review showed that the main disadvantage of these methods is that they are inadequate for heavyweight façade elements and shorter time periods used for the calculation. The algorithms for both the Laplace and State-Space methods are implemented in Mathematica, and the results are compared to the results from EnergyPlus and TRNSYS since these software use similar algorithms for the calculation of the building’s energy demand. This research aims to check the efficiency of the Laplace and the State-Space method for calculating the building’s energy demand for heavyweight building elements and shorter sampling time, and it also gives the means for the improvement of the algorithms used by these methods. As the reference point for the boundary heat flux density, the finite difference method (FDM) is used. Even though the dynamic heat transfer simulations are superior to the calculation based on the stationary boundary conditions, they have their limitations and will give unsatisfactory results if not properly used.

Keywords: Laplace method, state-space method, conduction transfer functions, finite difference method

Procedia PDF Downloads 132
5682 The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace

Authors: Nawaporn Srisarankullawong

Abstract:

This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration.

Keywords: patterns design, Suan Sunandha Palace, pattern of the flowers, visual arts and design

Procedia PDF Downloads 374
5681 Modelling Operational Risk Using Extreme Value Theory and Skew t-Copulas via Bayesian Inference

Authors: Betty Johanna Garzon Rozo, Jonathan Crook, Fernando Moreira

Abstract:

Operational risk losses are heavy tailed and are likely to be asymmetric and extremely dependent among business lines/event types. We propose a new methodology to assess, in a multivariate way, the asymmetry and extreme dependence between severity distributions, and to calculate the capital for Operational Risk. This methodology simultaneously uses (i) several parametric distributions and an alternative mix distribution (the Lognormal for the body of losses and the Generalized Pareto Distribution for the tail) via extreme value theory using SAS®, (ii) the multivariate skew t-copula applied for the first time for operational losses and (iii) Bayesian theory to estimate new n-dimensional skew t-copula models via Markov chain Monte Carlo (MCMC) simulation. This paper analyses a newly operational loss data set, SAS Global Operational Risk Data [SAS OpRisk], to model operational risk at international financial institutions. All the severity models are constructed in SAS® 9.2. We implement the procedure PROC SEVERITY and PROC NLMIXED. This paper focuses in describing this implementation.

Keywords: operational risk, loss distribution approach, extreme value theory, copulas

Procedia PDF Downloads 603
5680 Explaining the Impact of Poverty Risk on Frailty Trajectories in Old Age Using Growth Curve Models

Authors: Erwin Stolz, Hannes Mayerl, Anja Waxenegger, Wolfgang Freidl

Abstract:

Research has often found poverty associated with adverse health outcomes, but it is unclear which (interplay of) mechanisms actually translate low economic resources into poor physical health. The goal of this study was to assess the impact of educational, material, psychosocial and behavioural factors in explaining the poverty-health association in old age. We analysed 28,360 observations from 11,390 community-dwelling respondents (65+) from the Survey of Health, Ageing and Retirement in Europe (SHARE, 2004-2013, 10 countries). We used multilevel growth curve models to assess the impact of combined income- and asset poverty risk on old age frailty index levels and trajectories. In total, 61.8% of the variation of poverty risk on frailty levels could be explained by direct and indirect effects, thereby highlighting the role of material and particularly psychosocial factors, such as perceived control and social isolation. We suggest strengthening social policy and public health efforts in order to fight poverty and its deleterious effects from early age on and to broaden the scope of interventions with regard to psychosocial factors.

Keywords: frailty, health inequality, old age, poverty

Procedia PDF Downloads 333
5679 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 473
5678 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach

Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann

Abstract:

Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.

Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech

Procedia PDF Downloads 102
5677 Design and Construction of an Impulse Current Generator for Lightning Strike Experiments

Authors: Kamran Yousefpour, Mojtaba Rostaghi-Chalaki, Jason Warden, Chanyeop Park

Abstract:

There has been a rising trend in using impulse current generators to investigate the lightning strike protection of materials including aluminum and composites in structures such as wind turbine blade and aircraft body. The focus of this research is to present a new impulse current generator built in the High Voltage Lab at Mississippi State University. The generator is capable of producing component A and D of the natural lightning discharges in accordance with the Society of Automotive Engineers (SAE) standard, which is widely used in the aerospace industry. The generator can supply lightning impulse energy up to 400 kJ with the capability of producing impulse currents with magnitudes greater than 200 kA. The electrical circuit and physical components of an improved impulse current generator are described and several lightning strike waveforms with different amplitudes is presented for comparing with the standard waveform. The results of this study contribute to the fundamental understanding the functionality of the impulse current generators and present a new impulse current generator developed at the High Voltage Lab of Mississippi State University.

Keywords: impulse current generator, lightning, society of automotive engineers, capacitor

Procedia PDF Downloads 166
5676 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 40
5675 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
5674 A Predictive MOC Solver for Water Hammer Waves Distribution in Network

Authors: A. Bayle, F. Plouraboué

Abstract:

Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.

Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer

Procedia PDF Downloads 232
5673 The Musician as the Athlete: Psychological Response to Injury

Authors: Shulamit Sternin

Abstract:

Athletes experience injuries that can have both a physical and psychological impact on the individual. In such instances, athletes are able to rely on the established field of sports psychology to facilitate holistic rehabilitation. Musicians, like athletes rely on their bodies to perform in much the same way athletes do and are also susceptible to injury. Due to the similar performative nature of succeeding as an athletes or a musician, these careers share many of the same primary psychological concerns and therefore it is reasonable that athletes and musicians may require similar rehabilitation post-injury. However, musicians face their own unique psychological challenges and understanding the needs of an injured athlete can serve as a foundation for understanding the injured musician but is not enough to fully rehabilitate an injured musician. The current research surrounding musicians and their injuries is primarily focused on physiological aspects of injury and rehabilitation; the psychological aspects have not yet received adequate attention resulting in poor musician rehabilitation post- injury. This review paper uses current models of psychological response to injury in athletes to draw parallels with the psychological response to injury in musicians. Search engines such as Medline and PsycInfo were systematically searched using specific key words, such as psychological response, injury, athlete, and musician. Studies that focused on post-injury psychology of either the musician or the athlete were included. Within the literature there is evidence to support psychological responses, unique to the musician, that are not accounted for by current models of response in athletes. The models of psychological response to injury in athletes are inadequate tools for application to the musician. Future directions for performance arts research that can fill the gaps in our understanding and modeling of musicians’ response to injury are discussed. A better understanding of the psychological impact of injuries on musicians holds significant implications for health care practitioners working with injured musicians. Understanding the unique barriers musicians face post-injury, and how support for this population must be tailored to properly suit musicians’ needs will aid in more holistic rehabilitation and a higher likelihood of musician’s returning to pre-injury performance levels.

Keywords: athlete, injury, musician, psychological response

Procedia PDF Downloads 205
5672 The Impact and Performances of Controlled Ventilation Strategy on Thermal Comfort and Indoor Atmosphere in Building

Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum

Abstract:

Ventilation in buildings is a key element to provide high indoor air quality. Its efficiency appears as one of the most important factors in maintaining thermal comfort for occupants of buildings. Personal displacement ventilation is a new ventilation concept that combines the positive features of displacement ventilation with those of task conditioning or personalized ventilation. This work aims to study numerically the supply air flow in a room to optimize a comfortable microclimate for an occupant. The room is heated, and a dummy is designed to simulate the occupant. Two types of configurations were studied. The first consist of a room without windows; and the second one is a local equipped with a window. The influence of the blowing speed and the solar radiation coming from the window on the thermal comfort of the occupant is studied. To conduct this study we used the turbulence models, namely the high Reynolds k-e, the RNG and the SST models. The numerical tool used is based on the finite volume method. The numerical simulation of the supply air flow in a room can predict and provide a significant information about indoor comfort.

Keywords: local, comfort, thermique, ventilation, internal environment

Procedia PDF Downloads 412
5671 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 156
5670 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
5669 The Relationship between Organizations' Acquired Skills, Knowledge, Abilities and Shareholders (SKAS) Wealth Maximization: The Mediating Role of Training Investment

Authors: Gabriel Dwomoh, Williams Kwasi Boachie, Kofi Kwarteng

Abstract:

The study looked at the relationship between organizations’ acquired knowledge, skills, abilities, and shareholders wealth with training playing the mediating role. The sample of the study consisted of organizations that spent 10% or more of its annual budget on training and those whose training budget is less than 10% of the organization’s annual budget. A total of 620 questionnaires were distributed to employees working in various organizations out of which 580 representing 93.5% were retrieved. The respondents that constitute the sample were drawn using convenience sampling. The researchers used regression models for their analyses with the help of SPSS 16.0. Analyzing multiple models, it was discovered that organizations training investment plays a considerable indirect and direct effect with partial mediation between organizations acquired skills, knowledge, abilities, and shareholders wealth. Shareholders should allow their agents to invest part of their holdings to develop the human capital of the organization but this should be done with caution since shareholders returns do not depend much on how much organizations spend in developing its human resource capital.

Keywords: skills, knowledge, abilities, shareholders wealth, training investment

Procedia PDF Downloads 240
5668 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology

Authors: Mantas Sakalas, Paulius Sakalas

Abstract:

This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.

Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching

Procedia PDF Downloads 216
5667 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 155
5666 Investigations into the in situ Enterococcus faecalis Biofilm Removal Efficacies of Passive and Active Sodium Hypochlorite Irrigant Delivered into Lateral Canal of a Simulated Root Canal Model

Authors: Saifalarab A. Mohmmed, Morgana E. Vianna, Jonathan C. Knowles

Abstract:

The issue of apical periodontitis has received considerable critical attention. Bacteria is integrated into communities, attached to surfaces and consequently form biofilm. The biofilm structure provides bacteria with a series protection skills against, antimicrobial agents and enhances pathogenicity (e.g. apical periodontitis). Sodium hypochlorite (NaOCl) has become the irrigant of choice for elimination of bacteria from the root canal system based on its antimicrobial findings. The aim of the study was to investigate the effect of different agitation techniques on the efficacy of 2.5% NaOCl to eliminate the biofilm from the surface of the lateral canal using the residual biofilm, and removal rate of biofilm as outcome measures. The effect of canal complexity (lateral canal) on the efficacy of the irrigation procedure was also assessed. Forty root canal models (n = 10 per group) were manufactured using 3D printing and resin materials. Each model consisted of two halves of an 18 mm length root canal with apical size 30 and taper 0.06, and a lateral canal of 3 mm length, 0.3 mm diameter located at 3 mm from the apical terminus. E. faecalis biofilms were grown on the apical 3 mm and lateral canal of the models for 10 days in Brain Heart Infusion broth. Biofilms were stained using crystal violet for visualisation. The model halves were reassembled, attached to an apparatus and tested under a fluorescence microscope. Syringe and needle irrigation protocol was performed using 9 mL of 2.5% NaOCl irrigant for 60 seconds. The irrigant was either left stagnant in the canal or activated for 30 seconds using manual (gutta-percha), sonic and ultrasonic methods. Images were then captured every second using an external camera. The percentages of residual biofilm were measured using image analysis software. The data were analysed using generalised linear mixed models. The greatest removal was associated with the ultrasonic group (66.76%) followed by sonic (45.49%), manual (43.97%), and passive irrigation group (control) (38.67%) respectively. No marked reduction in the efficiency of NaOCl to remove biofilm was found between the simple and complex anatomy models (p = 0.098). The removal efficacy of NaOCl on the biofilm was limited to the 1 mm level of the lateral canal. The agitation of NaOCl results in better penetration of the irrigant into the lateral canals. Ultrasonic agitation of NaOCl improved the removal of bacterial biofilm.

Keywords: 3D printing, biofilm, root canal irrigation, sodium hypochlorite

Procedia PDF Downloads 229
5665 A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem

Authors: Ahmed Tarek, Ahmed Alveed

Abstract:

Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success.

Keywords: coordinate-based optimal routing, Hamiltonian Circuit, heuristic algorithm, traveling salesman problem, vehicle routing problem

Procedia PDF Downloads 147
5664 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
5663 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 226