Search results for: web processing service (WPS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7190

Search results for: web processing service (WPS)

5540 Exploring the Intersection Between the General Data Protection Regulation and the Artificial Intelligence Act

Authors: Maria Jędrzejczak, Patryk Pieniążek

Abstract:

The European legal reality is on the eve of significant change. In European Union law, there is talk of a “fourth industrial revolution”, which is driven by massive data resources linked to powerful algorithms and powerful computing capacity. The above is closely linked to technological developments in the area of artificial intelligence, which has prompted an analysis covering both the legal environment as well as the economic and social impact, also from an ethical perspective. The discussion on the regulation of artificial intelligence is one of the most serious yet widely held at both European Union and Member State level. The literature expects legal solutions to guarantee security for fundamental rights, including privacy, in artificial intelligence systems. There is no doubt that personal data have been increasingly processed in recent years. It would be impossible for artificial intelligence to function without processing large amounts of data (both personal and non-personal). The main driving force behind the current development of artificial intelligence is advances in computing, but also the increasing availability of data. High-quality data are crucial to the effectiveness of many artificial intelligence systems, particularly when using techniques involving model training. The use of computers and artificial intelligence technology allows for an increase in the speed and efficiency of the actions taken, but also creates security risks for the data processed of an unprecedented magnitude. The proposed regulation in the field of artificial intelligence requires analysis in terms of its impact on the regulation on personal data protection. It is necessary to determine what the mutual relationship between these regulations is and what areas are particularly important in the personal data protection regulation for processing personal data in artificial intelligence systems. The adopted axis of considerations is a preliminary assessment of two issues: 1) what principles of data protection should be applied in particular during processing personal data in artificial intelligence systems, 2) what regulation on liability for personal data breaches is in such systems. The need to change the regulations regarding the rights and obligations of data subjects and entities processing personal data cannot be excluded. It is possible that changes will be required in the provisions regarding the assignment of liability for a breach of personal data protection processed in artificial intelligence systems. The research process in this case concerns the identification of areas in the field of personal data protection that are particularly important (and may require re-regulation) due to the introduction of the proposed legal regulation regarding artificial intelligence. The main question that the authors want to answer is how the European Union regulation against data protection breaches in artificial intelligence systems is shaping up. The answer to this question will include examples to illustrate the practical implications of these legal regulations.

Keywords: data protection law, personal data, AI law, personal data breach

Procedia PDF Downloads 65
5539 An Overbooking Model for Car Rental Service with Different Types of Cars

Authors: Naragain Phumchusri, Kittitach Pongpairoj

Abstract:

Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.

Keywords: overbooking, car rental industry, revenue management, stochastic model

Procedia PDF Downloads 172
5538 Barriers to Entry: The Pitfall of Charter School Accountability

Authors: Ian Kingsbury

Abstract:

The rapid expansion of charter schools (public schools that receive government but do not face the same regulations as traditional public schools) over the preceding two decades has raised concerns over the potential for graft and fraud. These concerns are largely justified: Incidents of financial crime and mismanagement are not unheard of, and the charter sector has become a darling of hedge fund managers. In response, several states have strengthened their charter school regulatory regimes. Imposing regulations and attempting to increase accountability seem like sensible measures, and perhaps they are necessary. However, increased regulation may come at the cost of imposing barriers to entry. Specifically, increased regulation often entails evidence for a high likelihood of fiscal solvency. That should theoretically entail access to capital in the short-term, which may systematically preclude Black or Hispanic applicants from opening charter schools. Moreover, increased regulation necessarily entails more red tape. The institutional wherewithal and the number of hours required to complete an application to open a charter school might favor those who have partnered with an education service provider, specifically a charter management organization (CMO) or education management organization (EMO). These potential barriers to entry pose a significant policy concern. Just as policymakers hope to increase the share of minority teachers and principals, they should sensibly care whether individuals who open charter schools look like the students in that school. Moreover, they might be concerned if successful applications in states with stringent regulations are overwhelmingly affiliated with education service providers. One of the original missions of charter schools was to serve as a laboratory of innovation. Approving only those applications affiliated with education service providers (and in effect establishing a parallel network of schools rather than a diverse marketplace of schools) undermines that mission. Data and methods: The analysis examines more than 2,000 charter school applications from 15 states. It compares the outcomes of applications from states with a strong regulatory environment (those with high scores) from NACSA-the National Association of Charter School Authorizers- to applications from states with a weak regulatory environment (those with a low NACSA score). If the hypothesis is correct, applicants not affiliated with an ESP are more likely to be rejected in high-regulation states compared to those affiliated with an ESP, and minority candidates not affiliated with an education service provider (ESP) are particularly likely to be rejected. Initial returns indicate that the hypothesis holds. More applications in low NASCA-scoring Arizona come from individuals not associated with an ESP, and those individuals are as likely to be accepted as those affiliated with an ESP. On the other hand, applicants in high-NACSA scoring Indiana and Ohio are more than 20 percentage points more likely to be accepted if they are affiliated with an ESP, and the effect is particularly pronounced for minority candidates. These findings should spur policymakers to consider the drawbacks of charter school accountability and consider accountability regimes that do not impose barriers to entry.

Keywords: accountability, barriers to entry, charter schools, choice

Procedia PDF Downloads 159
5537 On the End-of-Life Inventory Problem

Authors: Hans Frenk, Sonya Javadi, Semih Onur Sezer

Abstract:

We consider the so-called end of life inventory problem for the supplier of a product in its final phase of the service life cycle. This phase starts when the production of the items stops and continues until the warranty of the last sold item expires. At the beginning of this phase, the supplier places a final order for spare parts to serve customers coming with defective items. At any time during the final phase, the supplier may also decide to switch to an alternative and more cost-effective policy. This alternative policy may be in the form of replacing a defective item with a substitutable product or offering discounts / rebates on new generation products. In this setup, the objective is to find a final order quantity and also a switching time which will minimize the total expected discounted cost. We study this problem under a general cost structure in a continuous-time framework where arrivals of defective items are given by a non-homogeneous Poisson process. We consider four formulations which differ by the nature of the switching time. These formulations are studied in detail and properties of the objective function are derived in each case. Using these properties, we provide exact algorithms for efficient numerical implementations. Numerical examples are provided illustrating the application of these algorithms. In these examples, we also compare the costs associated with these different formulations.

Keywords: End-of-life inventory control, martingales, optimization, service parts

Procedia PDF Downloads 335
5536 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
5535 Federal Bureau of Investigation Opposition to German Nationalist Organizations in the United States (1941-45)

Authors: Yaroslav Alexandrovich Levin

Abstract:

In modern research on the history of the United States in World War II, it is quite popular to study the opposition of the American special services and, in particular, the Federal Bureau of Investigation (FBI) to various organizations of the German diasporas in new historical conditions. The appeal to traditional methods of historical research, comparative studies, and the principles of historicism will make it possible to more accurately trace the process of tightening the counterintelligence work of the Bureau and the close connection of concerns about the involvement of public organizations in the intelligence activities of the enemy. The broadcast of nationalist ideas by various communities of Germans under the auspices of their governments quickly attracted the attention of the FBI, which is in the process of consolidating its powers as the main US counterintelligence service. At the same time, the investigations and trials conducted by the John Edgar Hoover Department following these investigations often had an openly political color and increasingly consolidated the beginning of a political investigation in this service. This practice and its implementation ran into a tough contradiction between the legal norms of America, which proclaimed "democratic values," the right to freedom of speech, and the need to strengthen the internal security of the state and society in wartime. All these processes and the associated nuances and complexities are considered in specific examples of the work of federal agents against various pro-German organizations in the period 1941-45.

Keywords: World War II, internal security, countering extremism, counterintelligence, political investigation, FBI

Procedia PDF Downloads 86
5534 Influence of Telkom Membership Card Customer Perceived Value on Retaining PT. Telkom Indonesia's Customer in 2013-2014

Authors: Eka Yuliana, Siska Shabrina Julyan

Abstract:

The competitive environment and high customer’s churn rate in telecommunication industries lead Indonesian telecommunication companies become strive to offer products with more value. Offering product with more value can encourage customers to keep using the companies product. One of way to retain customer is give a membership card to the customers as practiced by PT. Telkom by giving Telkom Membership Card to PT. Telkom loyal customer. This study aims to determine the influence of Telkom Membership Card customer perceived value on retaining PT. Telkom Indonesia’s customer in 2013-2014 by using quantitative method with causal study. Analythical technique used in this study is Structural Equation Modelling (SEM) to test the causal relationship with 216 owner of Telkom Membership Card in Indonesia. This study conclude that: (i) Customer perceived value on Telkom Membership Card is located in fair value zone, (ii) PT. Telkom efforts in order to retain the customers is classified as good, (iii) Customer perceived value is influencing the effort to retain the customer with the probability value less than 0.05 and level of influence 69%. Based on result of this study, PT. Telkom should (i) Improve Telkom Membership Card’s promotion because not all customer of PT. Telkom have the membership card. (iia) Adding Telkom Membership Card’s benefit such as discount at various merchant (iib) Making call center for member of Telkom Membership Card (iii) PT. Telkom should be ensure availability of their service. (iv) PT. Telkom should make a priority to customer who have telkom membership card and offers a better service.For future research should be use different variables.

Keywords: customer perceived value, customer retention, marketing, relationship marketing

Procedia PDF Downloads 321
5533 An ERP Study of Chinese Pseudo-Object Structures

Authors: Changyin Zhou

Abstract:

Verb-argument relation is a very important aspect of syntax-semantics interaction in sentence processing. Previous ERP (event related potentials) studies in this field mainly concentrated on the relation between the verb and its core arguments. The present study aims to reveal the ERP pattern of Chinese pseudo-object structures (SOSs), in which a peripheral argument is promoted to occupy the position of the patient object, as compared with the patient object structures (POSs). The ERP data were collected when participants were asked to perform acceptability judgments about Chinese phrases. Our result shows that, similar to the previous studies of number-of-argument violations, Chinese SOSs show a bilaterally distributed N400 effect. But different from all the previous studies of verb-argument relations, Chinese SOSs demonstrate a sustained anterior positivity (SAP). This SAP, which is the first report related to complexity of argument structure operation, reflects the integration difficulty of the newly promoted arguments and the progressive nature of well-formedness checking in the processing of Chinese SOSs.

Keywords: Chinese pseudo-object structures, ERP, sustained anterior positivity, verb-argument relation

Procedia PDF Downloads 434
5532 Thermo-Mechanical Processing Scheme to Obtain Micro-Duplex Structure Favoring Superplasticity in an As-Cast and Homogenized Medium Alloyed Nickel Base Superalloy

Authors: K. Sahithya, I. Balasundar, Pritapant, T. Raghua

Abstract:

Ni-based superalloy with a nominal composition Ni-14% Cr-11% Co-5.8% Mo-2.4% Ti-2.4% Nb-2.8% Al-0.26 % Fe-0.032% Si-0.069% C (all in wt %) is used as turbine discs in a variety of aero engines. Like any other superalloy, the primary processing of the as-cast superalloy poses a major challenge due to its complex alloy chemistry. The challenge was circumvented by characterizing the different phases present in the material, optimizing the homogenization treatment, identifying a suitable thermomechanical processing window using dynamic materials modeling. The as-cast material was subjected to homogenization at 1200°C for a soaking period of 8 hours and quenched using different media. Water quenching (WQ) after homogenization resulted in very fine spherical γꞌ precipitates of sizes 30-50 nm, whereas furnace cooling (FC) after homogenization resulted in bimodal distribution of precipitates (primary gamma prime of size 300nm and secondary gamma prime of size 5-10 nm). MC type primary carbides that are stable till the melting point of the material were found in both WQ and FC samples. Deformation behaviour of both the materials below (1000-1100°C) and above gamma prime solvus (1100-1175°C) was evaluated by subjecting the material to series of compression tests at different constant true strain rates (0.0001/sec-1/sec). An in-detail examination of the precipitate dislocation interaction mechanisms carried out using TEM revealed precipitate shearing and Orowan looping as the mechanisms governing deformation in WQ and FC, respectively. Incoherent/semi coherent gamma prime precipitates in the case of FC material facilitates better workability of the material, whereas the coherent precipitates in WQ material contributed to higher resistance to deformation of the material. Both the materials exhibited discontinuous dynamic recrystallization (DDRX) above gamma prime solvus temperature. The recrystallization kinetics was slower in the case of WQ material. Very fine grain boundary carbides ( ≤ 300 nm) retarded the recrystallisation kinetics in WQ. Coarse carbides (1-5 µm) facilitate particle stimulated nucleation in FC material. The FC material was cogged (primary hot working) 1120˚C, 0.03/sec resulting in significant grain refinement, i.e., from 3000 μm to 100 μm. The primary processed material was subjected to intensive thermomechanical deformation subsequently by reducing the temperature by 50˚C in each processing step with intermittent heterogenization treatment at selected temperatures aimed at simultaneous coarsening of the gamma prime precipitates and refinement of the gamma matrix grains. The heterogeneous annealing treatment carried out, resulted in gamma grains of 10 μm and gamma prime precipitates of 1-2 μm. Further thermo mechanical processing of the material was carried out at 1025˚C to increase the homogeneity of the obtained micro-duplex structure.

Keywords: superalloys, dynamic material modeling, nickel alloys, dynamic recrystallization, superplasticity

Procedia PDF Downloads 121
5531 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability

Authors: Chin-Chia Jane

Abstract:

In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.

Keywords: quality of service, reliability, transportation network, travel time

Procedia PDF Downloads 221
5530 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 125
5529 Factors Affecting Customer Loyalty in the Independent Surveyor Service Industry in Indonesia

Authors: Sufrin Hannan, Budi Suharjo, Rita Nurmalina, Kirbrandoko

Abstract:

The challenge for independent surveyor service companies now is growing with increasing uncertainty in business. Protection from the government for domestic independent surveyor industry from competitor attack, such as entering the global surveyors to Indonesia also no longer exists. Therefore, building customer loyalty becomes very important to create a long-term relationship between an independent surveyor with its customers. This study aims to develop a model that can be used to build customer loyalty by looking at various factors that determine customer loyalty, especially on independent surveyors for coal inspection in Indonesia. The development of this model uses the relationship marketing approach. Testing of the hypothesis is done by testing the variables that determine customer loyalty, either directly or indirectly, which amounted to 10 variables. The data were collected from 200 questionnaires filled by independent surveyor company decision makers from 51 exporting companies and coal trading companies in Indonesia and analyzed using Structural Equation Model (SEM). The results show that customer loyalty of independent surveyors is influenced by customer satisfaction, trust, switching-barrier, and relationship-bond. Research on customer satisfaction shows that customer satisfaction is influenced by the perceived quality and perceived value, while perceived quality is influenced by reliability, assurance, responsiveness, and empathy.

Keywords: relationship marketing, customer loyalty, customer satisfaction, switching barriers, relationship bonds

Procedia PDF Downloads 169
5528 An Event-Related Potential Investigation of Speech-in-Noise Recognition in Native and Nonnative Speakers of English

Authors: Zahra Fotovatnia, Jeffery A. Jones, Alexandra Gottardo

Abstract:

Speech communication often occurs in environments where noise conceals part of a message. Listeners should compensate for the lack of auditory information by picking up distinct acoustic cues and using semantic and sentential context to recreate the speaker’s intended message. This situation seems to be more challenging in a nonnative than native language. On the other hand, early bilinguals are expected to show an advantage over the late bilingual and monolingual speakers of a language due to their better executive functioning components. In this study, English monolingual speakers were compared with early and late nonnative speakers of English to understand speech in noise processing (SIN) and the underlying neurobiological features of this phenomenon. Auditory mismatch negativities (MMNs) were recorded using a double-oddball paradigm in response to a minimal pair that differed in their middle vowel (beat/bit) at Wilfrid Laurier University in Ontario, Canada. The results did not show any significant structural and electroneural differences across groups. However, vocabulary knowledge correlated positively with performance on tests that measured SIN processing in participants who learned English after age 6. Moreover, their performance on the test negatively correlated with the integral area amplitudes in the left superior temporal gyrus (STG). In addition, the STG was engaged before the inferior frontal gyrus (IFG) in noise-free and low-noise test conditions in all groups. We infer that the pre-attentive processing of words engages temporal lobes earlier than the fronto-central areas and that vocabulary knowledge helps the nonnative perception of degraded speech.

Keywords: degraded speech perception, event-related brain potentials, mismatch negativities, brain regions

Procedia PDF Downloads 107
5527 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program

Authors: Ming Wen, Nasim Nezamoddini

Abstract:

Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.

Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM

Procedia PDF Downloads 112
5526 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 213
5525 Living Lab as a Service: Developing Context Induced, Co-creational Innovation Routines as a Process Tool for Nature Based Solutions

Authors: Immanuel Darkwa

Abstract:

Climate change and environmental degradation are existential threats requiring urgent transnational action. The SDGs, as well as regional initiatives the like European Green Deal, as ambitious as they are, put an emphasis on innovatively tackling threats posed by climate change regionally. While co-creational approaches are being propagated, there is no reference blueprint for how potential solutions, particularly nature-based solutions, may be developed and implemented within urban-settings. Using a single case study in Zagreb, Croatia, this paper proposes a workshop-tool for a Living Lab as a Service model for sustainable Nature-Based-Thinking, Nature–Centred-Design and Nature based solutions. The approach is based on a co-creational methodology developed through literature synthesis, expert interviews, focus group discussions, surveys and synthesized through rigorous research analysis and participatory observation. The ensuing tool involves workshop-processes, tested with through-the-process identified stakeholders with distinctive roles and functions. The resulting framework proposes a Nature-Based-Centred-Thinking process tool involving ‘green’ routines supported by a focal unit and a collaborative network, and that allows for the development of nature-based solutions.

Keywords: living labs, nature-based solutions, nature- based design, innovation processes, innovation routines and tools

Procedia PDF Downloads 76
5524 Willingness to Use Mobile Telephone Technology to Improve Pregnancy Outcomes among Women in Lagos, Nigeria

Authors: O. Onigbogi, M. Onigbogi Jr., O. Ojo

Abstract:

Background: The advances in mobile telephone technology has led to a rise in its use globally which has improved service delivery, empowered businesses and changed the way people access information. The practice of many health professionals has also been affected by the information and communications technology (ICT) revolution because they have better access to information. This study was conducted to assess the willingness to participate in mobile technology interventions to improve pregnancy outcomes in Lagos, Nigeria. Materials and Methods: A total of 238 respondents completed self-administered questionnaires. SPSS version 18 data editor was used to analyze data. Univariate odds ratios and 95% confidence intervals (95 % CI) were used to evaluate the correlates of Willingness to Use (WTU) mobile phones to receive health messages during pregnancy. Results: A total of 107 women (45% of the respondents) reported that they will be willing to receive health-related information on their phones during pregnancy. Greater willingness was associated with higher education (OR = 1.25, 95% CI: 1.13–1.53), involvement with community volunteer organizations (OR = 1.25, 95% CI: 1.05–1.52), monetary incentives (OR = 1.37, 95% CI: 1.14–1.45) and nulliparity (OR = 1.39, 95% CI: 1.02–1.42). Decreased willingness was associated with concerns about wrong interpretation of information (OR = 0.42, 95% CI: 0.21–0.54), poor mobile telephone service by providers (OR = 0.61, 95% CI: 0.52–0.78), increase in number of messages (OR = 0.78, 95% CI: 0.53–0.76). Conclusion: The level of WTU recorded indicates that much work still needs to be done before this novel approach could be used adopted in delivering health-related information. Incentives for would-be subjects should also be a part of the planning to encourage greater participation.

Keywords: mobile, outcomes, pregnancy, technology, telephone

Procedia PDF Downloads 224
5523 Design of a Graphical User Interface for Data Preprocessing and Image Segmentation Process in 2D MRI Images

Authors: Enver Kucukkulahli, Pakize Erdogmus, Kemal Polat

Abstract:

The 2D image segmentation is a significant process in finding a suitable region in medical images such as MRI, PET, CT etc. In this study, we have focused on 2D MRI images for image segmentation process. We have designed a GUI (graphical user interface) written in MATLABTM for 2D MRI images. In this program, there are two different interfaces including data pre-processing and image clustering or segmentation. In the data pre-processing section, there are median filter, average filter, unsharp mask filter, Wiener filter, and custom filter (a filter that is designed by user in MATLAB). As for the image clustering, there are seven different image segmentations for 2D MR images. These image segmentation algorithms are as follows: PSO (particle swarm optimization), GA (genetic algorithm), Lloyds algorithm, k-means, the combination of Lloyds and k-means, mean shift clustering, and finally BBO (Biogeography Based Optimization). To find the suitable cluster number in 2D MRI, we have designed the histogram based cluster estimation method and then applied to these numbers to image segmentation algorithms to cluster an image automatically. Also, we have selected the best hybrid method for each 2D MR images thanks to this GUI software.

Keywords: image segmentation, clustering, GUI, 2D MRI

Procedia PDF Downloads 377
5522 A Comparative Analysis of Asymmetric Encryption Schemes on Android Messaging Service

Authors: Mabrouka Algherinai, Fatma Karkouri

Abstract:

Today, Short Message Service (SMS) is an important means of communication. SMS is not only used in informal environment for communication and transaction, but it is also used in formal environments such as institutions, organizations, companies, and business world as a tool for communication and transactions. Therefore, there is a need to secure the information that is being transmitted through this medium to ensure security of information both in transit and at rest. But, encryption has been identified as a means to provide security to SMS messages in transit and at rest. Several past researches have proposed and developed several encryption algorithms for SMS and Information Security. This research aims at comparing the performance of common Asymmetric encryption algorithms on SMS security. The research employs the use of three algorithms, namely RSA, McEliece, and RABIN. Several experiments were performed on SMS of various sizes on android mobile device. The experimental results show that each of the three techniques has different key generation, encryption, and decryption times. The efficiency of an algorithm is determined by the time that it takes for encryption, decryption, and key generation. The best algorithm can be chosen based on the least time required for encryption. The obtained results show the least time when McEliece size 4096 is used. RABIN size 4096 gives most time for encryption and so it is the least effective algorithm when considering encryption. Also, the research shows that McEliece size 2048 has the least time for key generation, and hence, it is the best algorithm as relating to key generation. The result of the algorithms also shows that RSA size 1024 is the most preferable algorithm in terms of decryption as it gives the least time for decryption.

Keywords: SMS, RSA, McEliece, RABIN

Procedia PDF Downloads 163
5521 Social Studies Teachers’ Sustained, Collaborative Professional Development Centered Round Innovative Curriculum Materials

Authors: Cory Callahan

Abstract:

Here the author synthesizes findings and implications from two research studies that comprise a continuing line of inquiry into the potential of an innovative professional development program to help in-service teachers understand and implement a complex model of social studies instruction. The paper specifically explores the question: To what degree can a collaborative professional development program centered around innovative curriculum materials help social studies teachers understand and implement a powerful social studies approach? Findings suggest the teachers increasingly incorporated substantive thinking (i.e., second-order historical domain knowledge) into their respective practice and they facilitated students’ use of historical photographs as evidence to begin to answer a compelling question. The teachers also began to effectively support students’ abilities to make claims about the past. Implications include the foregrounding of high-quality questions during planning and the need for explicit guidance in the form of structures and procedures (i.e., scaffolds) to help teachers systematically review students’ work products. The work shared here may contribute to scholarship that posits explanations for why teacher-support is routinely ineffectual and suggests ways to provide substantive collaborative support for in-service social studies teachers.

Keywords: educative curriculum, social studies, professional development, lesson study

Procedia PDF Downloads 64
5520 Application of Natural Language Processing in Education

Authors: Khaled M. Alhawiti

Abstract:

Reading capability is a major segment of language competency. On the other hand, discovering topical writings at a fitting level for outside and second language learners is a test for educators. We address this issue utilizing natural language preparing innovation to survey reading level and streamline content. In the connection of outside and second-language learning, existing measures of reading level are not appropriate to this errand. Related work has demonstrated the profit of utilizing measurable language preparing procedures; we expand these thoughts and incorporate other potential peculiarities to measure intelligibility. In the first piece of this examination, we join characteristics from measurable language models, customary reading level measures and other language preparing apparatuses to deliver a finer technique for recognizing reading level. We examine the execution of human annotators and assess results for our finders concerning human appraisals. A key commitment is that our identifiers are trainable; with preparing and test information from the same space, our finders beat more general reading level instruments (Flesch-Kincaid and Lexile). Trainability will permit execution to be tuned to address the needs of specific gatherings or understudies.

Keywords: natural language processing, trainability, syntactic simplification tools, education

Procedia PDF Downloads 490
5519 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain

Procedia PDF Downloads 409
5518 Making a Difference in a Crisis: How the 24-Hour Surgical Ambulatory Assessment Unit Transformed Emergency Care during COVID-19

Authors: Bindhiya Thomas, Rehana Hafeez

Abstract:

Background: The Surgical Ambulatory Unit (SAU) also known as the Same Day Emergency Care (SDEC) is an established part of many hospitals providing same day emergency care service to surgical patients who would have otherwise required admission through the A&E. Prior to Covid, the SAU was functioning as a 12-hour service, but during the Covid crisis this service was transformed to a 24 hour functioning Surgical Ambulatory Assessment unit (SAAU). We studied the effects that this change brought about in-patient care in our hospital. Objective: The objective of the study was to assess the impact of a 24-hour Surgical Ambulatory Assessment unit on patient care during the time of Covid, in particular its role in freeing A&E capacity and delivering effective patient care. Methods: We collected two sets of data retrospectively. The first set was collected over a 6-week period when the SAU was functioning at the Princess Royal University Hospital. On March 23rd, 2020, the SAU was transformed into a 24-hour SAAU. Following this transformation, a second set of patient data was collected over a period of 6 weeks. A comparison was made between data collected from when the hospital had a 12-hour Surgical Ambulatory unit and later when it was transformed into a 24-hour facility. Its effects on the change in the number of patients breaching the four hour waiting period and the number of emergency surgical admissions. Results: The 24-hour Surgical Ambulatory Assessment unit brought significant reductions in the number of patients breaching the waiting period of 4 hours in A&E from 44% during the period of the 12-hour Surgical Ambulatory care facility to 0% from when the 24-hour Surgical Ambulatory Assessment Unit was established. A 28% reduction was also seen in the number of surgical patients' admissions from A&E. Conclusions: The 24-hour SAAU was found to have a profound positive impact on emergency care of surgical patients. Especially during the Covid crisis, it played a crucial role in providing not only effective and accessible patient care but also in reducing the A&E workload and admissions. It thus proved to be a strategic tool that helped to deal with the immense workload in emergency care during the Covid crisis and helped free much needed headspace at a time of uncertainty for the A&E to better configure their services. If sustained, the 24-hour SAAU could be relied on to augment the NHS emergency services in the future, especially in the event of another crisis.

Keywords: Princess Royal University Hospital, surgical ambulatory assessment unit, surgical ambulatory unit, same day emergency care

Procedia PDF Downloads 164
5517 University Students’ Perception on Public Transit in Dhaka City

Authors: Mosabbir Pasha, Ijaj Mahmud Chowdhury, M. A. Afrahim Bhuiyann

Abstract:

With the increasing population and intensive land use, huge traffic demand is generating worldwide both in developing and developed countries. As a developing country, Bangladesh is also facing the same problem in recent years by producing huge numbers of daily trips. As a matter of fact, extensive traffic demand is increasing day by day. Also, transport system in Dhaka is heterogeneous, reflecting the heterogeneity in the socio-economic and land use patterns. As a matter of fact, trips produced here are for different purposes such as work, business, educational etc. Due to the significant concentration of educational institutions a large share of the trips are generated by educational purpose. And one of the major percentages of educational trips is produced by university going students and most of them are travelled by car, bus, train, taxi, rickshaw etc. The aim of the study was to find out the university students’ perception on public transit ridership. A survey was conducted among 330 students from eight different universities. It was found out that 26% of the trips produced by university going students are travelled by public bus service and only 5% are by train. Percentage of car share is 16% and 12% of the trips are travelled by private taxi. From the study, it has been found that more than 42 percent student’s family resides outside of Dhaka, eventually they prefer bus instead of other options. Again those who chose to walk most of the time, of them, over 40 percent students’ family reside outside of Dhaka and of them over 85 percent students have a tendency to live in a mess. They generally choose a neighboring location to their respective university so that they can reach their destination by walk. On the other hand, those who travel by car 80 percent of their family reside inside Dhaka. The study also revealed that the most important reason that restricts students not to use public transit is poor service. Negative attitudes such as discomfort, uneasiness in using public transit also reduces the usage of public transit. The poor waiting area is another major cause of not using public transit. Insufficient security also plays a significant role in not using public transit. On the contrary, the fare is not a problem for students those who use public transit as a mode of transportation. Students also think stations are not far away from their home or institution and they do not need to wait long for the buses or trains. It was also found accessibility to public transit is moderate.

Keywords: traffic demand, fare, poor service, public transit ridership

Procedia PDF Downloads 268
5516 Interpersonal Competence Related to the Practice Learning of Occupational Therapy Students in Hong Kong

Authors: Lik Hang Gary Wong

Abstract:

Background: Practice learning is crucial for preparing the healthcare profession to meet the real challenge upon graduation. Students are required to demonstrate their competence in managing interpersonal challenges, such as teamwork with other professionals and communicating well with the service users, during the placement. Such competence precedes clinical practice, and it may eventually affect students' actual performance in a clinical context. Unfortunately, there were limited studies investigating how such competence affects students' performance in practice learning. Objectives: The aim of this study is to investigate how self-rated interpersonal competence affects students' actual performance during clinical placement. Methods: 40 occupational therapy students from Hong Kong were recruited in this study. Prior to the clinical placement (level two or above), they completed an online survey that included the Interpersonal Communication Competence Scale (ICCS) measuring self-perceived competence in interpersonal communication. Near the end of their placement, the clinical educator rated students’ performance with the Student Practice Evaluation Form - Revised edition (SPEF-R). The SPEF-R measures the eight core competency domains required for an entry-level occupational therapist. This study adopted the cross-sectional observational design. Pearson correlation and multiple regression are conducted to examine the relationship between students' interpersonal communication competence and their actual performance in clinical placement. Results: The ICCS total scores were significantly correlated with all the SPEF-R domains, with correlation coefficient r ranging from 0.39 to 0.51. The strongest association was found with the co-worker communication domain (r = 0.51, p < 0.01), followed by the information gathering domain (r = 0.50, p < 0.01). Regarding the ICCS total scores as the independent variable and the rating in various SPEF-R domains as the dependent variables in the multiple regression analyses, the interpersonal competence measures were identified as a significant predictor of the co-worker communication (R² = 0.33, β = 0.014, SE = 0.006, p = 0.026), information gathering (R² = 0.27, β = 0.018, SE = 0.007, p = 0.011), and service provision (R² = 0.17, β = 0.017, SE = 0.007, p = 0.020). Moreover, some specific communication skills appeared to be especially important to clinical practice. For example, immediacy, which means whether the students were readily approachable on all social occasions, correlated with all the SPEF-R domains, with r-values ranging from 0.45 to 0.33. Other sub-skills, such as empathy, interaction management, and supportiveness, were also found to be significantly correlated to most of the SPEF-R domains. Meanwhile, the ICCS scores correlated differently with the co-worker communication domain (r = 0.51, p < 0.01) and the communication with the service user domain (r = 0.39, p < 0.05). It suggested that different communication skill sets would be required for different interpersonal contexts within the workplace. Conclusion: Students' self-perceived interpersonal communication competence could predict their actual performance during clinical placement. Moreover, some specific communication skills were more important to the co-worker communication but not to the daily interaction with the service users. There were implications on how to better prepare the students to meet the future challenge upon graduation.

Keywords: interpersonal competence, clinical education, healthcare professional education, occupational therapy, occupational therapy students

Procedia PDF Downloads 72
5515 Patients’ Trust in Health Care Systems

Authors: Dilara Usta, Fatos Korkmaz

Abstract:

Background: Individuals who utilise health services maintain relationships with health professionals, insurers and institutions. The nature of these relationships requires service receivers to have trust in the service providers because maintaining health services without reciprocal trust is very difficult. Therefore, individual evaluations of trust within the scope of health services have become increasingly important. Objective: To investigate patients’ trust in the health-care system and their relevant socio-demographical characteristics. Methods: This research was conducted using a descriptive design which included 493 literate patients aged 18-65 years who were hospitalised for a minimum of two days at public university and training&research hospitals in Ankara, Turkey. Patients’ trust in health-care professionals, insurers, and institutions were investigated. Data were collected using a demographic questionnaire and the Multidimensional Trust in Health-Care Systems Scale between September 2015 and April 2016. Results: The participants’ mean age was 47.7±13.1; 70% had a moderate income and 69% had a prior hospitalisation and 63.5% of the patients were satisfied with the health-care services. The mean Multidimensional Trust in Health-Care Systems Scale score for the sample was 61.5±8.3; the provider subscale had a mean of 38.1±5, the insurers subscale had a mean of 12.9±3.7, and institutions subscale had a mean of 10.6±1.9. Conclusion: Patients’ level of trust in the health-care system was above average and the trust level of the patients with higher educational and socio-economic levels was lower compared to the other patients. Health-care professionals should raise awareness about the significance of trust in the health-care system.

Keywords: delivery of health care, health care system, nursing, patients, trust

Procedia PDF Downloads 370
5514 Micro Celebrities in Social Media Instagram and Their Personal Influence in Business Perspective

Authors: Yoga Maulana Putra, Herry Hudrasyah

Abstract:

The Internet has now become an important part of human life; it can be accessed through a computer or even a smartphone almost anywhere and anytime. The Internet has created many social media such as Facebook, Twitter, and Instagram. Instagram has been acquired by Facebook in 2012. Since then, Instagram is growing fast. And now, Instagram is transforming from photo-sharing social media into business tools. As the result, some new behavior has been discovered. Some of Instagram user is becoming popular. These people also being called minor celebrity and they are also being used as marketing tools by many companies to influencing or promoting their product or service. This minor celebrity is existing because of their behavior in using Instagram. The company is using the personal influence of the minor celebrity to promoting and influencing their product or service, and the minor celebrity gets paid as much as their rate card. And their rate card based on their followers and insight. This research is using a qualitative method. An interview is being done to 6 minor celebrities from many different categories such as photographer, travel blogger, lifestyle, food blogger, fashion, and healthcare. Theory of reasoned behavior is being used as the grounded theory to discover the reason for their behavior and personal influence to describe their way to influencing people. The result of the interview is most of the minor celebrities is influenced by their friend’s circle in the process of using Instagram. They also had a different way to use their personal influence to affect their followers when the company employs them.

Keywords: humanities and social sciences, Instagram, minor celebrity, social media

Procedia PDF Downloads 166
5513 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 393
5512 Performance Evaluation of a Prioritized, Limited Multi-Server Processor-Sharing System that Includes Servers with Various Capacities

Authors: Yoshiaki Shikata, Nobutane Hanayama

Abstract:

We present a prioritized, limited multi-server processor sharing (PS) system where each server has various capacities, and N (≥2) priority classes are allowed in each PS server. In each prioritized, limited server, different service ratio is assigned to each class request, and the number of requests to be processed is limited to less than a certain number. Routing strategies of such prioritized, limited multi-server PS systems that take into account the capacity of each server are also presented, and a performance evaluation procedure for these strategies is discussed. Practical performance measures of these strategies, such as loss probability, mean waiting time, and mean sojourn time, are evaluated via simulation. In the PS server, at the arrival (or departure) of a request, the extension (shortening) of the remaining sojourn time of each request receiving service can be calculated by using the number of requests of each class and the priority ratio. Utilising a simulation program which executes these events and calculations, the performance of the proposed prioritized, limited multi-server PS rule can be analyzed. From the evaluation results, most suitable routing strategy for the loss or waiting system is clarified.

Keywords: processor sharing, multi-server, various capacity, N-priority classes, routing strategy, loss probability, mean sojourn time, mean waiting time, simulation

Procedia PDF Downloads 331
5511 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 386