Search results for: structural safety
5773 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams
Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis
Abstract:
This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.Keywords: earth dams, flow, moisture content, slope stability
Procedia PDF Downloads 1895772 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China
Authors: Danying Gu, Xiaoyan Li, Yuanlei He
Abstract:
As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle
Procedia PDF Downloads 2735771 Impact of Gd³⁺ Substitution on Structural, Optical and Magnetic Properties of ZnFe₂O₄ Nanoparticles
Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda
Abstract:
In this report, the impact of Gd³⁺ substitution in ZnFe₂O₄ spinel ferrite nanoparticles on structural, optical and magnetic properties was investigated. ZnFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles were synthesized by honey-mediated sol-gel combustion method. X-ray diffraction, Raman Spectroscopy and Fourier Transform Infrared Spectroscopy confirmed the formation of cubic spinel ferrite crystal structure. The morphology and elemental analysis were studied using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. UV-Visible reflectance spectroscopy revealed band gap variation with concentration of Gd³⁺ substitution in ZnFe₂O₄ nanoparticles. Magnetic property was studied using vibrating sample magnetometer at room temperature. The synthesized spinel ferrite nanoparticles showed ferromagnetic behaviour. The evaluated magnetic parameters such as saturation magnetization, coercivity and remanence showed variation with Gd³⁺ substitution in spinel ferrite nanoparticles. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).Keywords: sol-gel combustion method, nanoparticles, magnetic property, optical property
Procedia PDF Downloads 2945770 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films
Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz
Abstract:
Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification
Procedia PDF Downloads 3625769 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models
Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado
Abstract:
In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.Keywords: numerical models, parametric study, segmental tunnels, structural response
Procedia PDF Downloads 2295768 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers
Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang
Abstract:
Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction
Procedia PDF Downloads 3315767 GGA-PBEsol+TB-MBJ Studies of SrxPb1-xS Ternary Semiconductor Alloys
Authors: Y. Benallou, K. Amara, O. Arbouche
Abstract:
In this paper, we report a density functional study of the structural, electronic and elastic properties of the ordered phases of SrxPb1-xS ternary semiconductor alloys namely rocksalt compounds: PbS and SrS and the rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. These First-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.Keywords: SrxPb1-xS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW
Procedia PDF Downloads 3985766 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior
Authors: N. Manoj
Abstract:
The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake
Procedia PDF Downloads 2845765 Characterization of Structural Elements Concrete Metal Fibre
Authors: Benaouda Hemza
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 4555764 Housing Precarity and Pathways: Lived Experiences Among Bangladeshi Migrants in Dublin
Authors: Mohammad Altaf Hossain
Abstract:
A growing body of literature in urban studies has presented that urban precarity has been a lived experience for low-income groups of people in the cities of the Global South. It does not necessarily mean that cities in the Global North, where advanced capitalist economies exist, avoided the adverse realities of urban precarity. As a multifaceted condition, it creates other associated precariousness in lives -for example, economic deprivation, mental stress, and housing precarity. The interrelations between urbanity and precarity have been ubiquitous regardless of the developed and developing countries. People, mainly manual labourers with low incomes, go through uncertainties in every aspect of life. By analysing qualitative data and embracing structure-agency interaction, this paper intends to present how Bangladeshi migrants experience housing precarity in Dublin. Continued population growth and political economy factors such as labour market inequality, financialisation of the private rental sector, and the impact of cuts to government funding for social housing provision are combined to produce a housing supply crisis, affordability, and access in the city. As a result, low-income people practice informality in securing jobs and housing. The macro-structural components of this analysis include the Irish housing policy, the European labour market, the immigration policy, and the financialised housing market. The micro-structural components of South Asian communities’ experiences include social networks and social class. Access to social networks and practices of informality play a significant role in enabling them to negotiate urban precarity, including housing crises and income insecurity. In some cases, the collective agency of ethnic diaspora communities plays a vital role in negotiating with structural constraints.Keywords: housing precarity, housing pathways, migration, agency, Dublin
Procedia PDF Downloads 265763 Structural-Lithological Conditions of Formation of Epithermal Gold Sulphide Satellite Deposits in the North Part of Chovdar Ore Area
Authors: Nabat Gojaeva, Mikayil Naghiyev, Sultan Jafarov, Gular Mikayilova
Abstract:
Chovdar ore area is located in the contact of Dashkesan caldera and Shamkir horst-graben uplift, which comprises the central part of Lok-Karabakh Island arcs of South Caucasus metallogenic province in terms of regional tectonics. One of the main structural features of formation of the Mereh and Aghyokhush group of low sulfidation epithermal gold deposits, locating in the north peripheric part of the ore area, is involving the crossing areas of ore-hosting and ore-forming Pan-Caucasian-direction structurally-compound faults with the meridional, rhombically shaped faults. In addition, another significant feature is the temporally two- or three-stage ore formation. In the first stage -an early phase of Upper Bathonian age, sulfides are the dominant minerals, in the second stage- late ‘productive’ phase of Upper Bathonian age, mainly gold mineralization is formed. Also, in the Upper Jurassic – Lower Cretaceous ages, rarely-encountered Cu-polymetallic ore formations are documented. Finally, in the last stage, the re-dislocation of ore-formation is foreseen in the previously-formed mineralization areas. The faults in the strike and dip directions formed shearing, brecciation, sulfide mineralization aureoles, and hydrothermal alteration zones in the wall rocks along with the local depression blocks. The geological-structural analysis of the area shows that multiple and various morphogenetic volcano-tectonically fault systems have developed in the area. These fault systems have played a trap role for ore-formation in the intersected parts of faults mentioned above. Thus, in the referred parts, mostly predominance of felsic volcanism and metasomatic alteration (silicification, argillitic, etc.) of wall rocks, as well as the products of this volcanism, account for the inclusion of hydrothermal ore-forming fluids along these faults. It is possible to determine temporally and lithological-structural connection between the ore-formation along with local depression blocks and faults as borders for products of felsic volcanism of Upper Cretaceous-Lesser Jurassic ages, in the results of the replacement of hydrothermal alteration zones with relatively low-temperature metasomatic alterations while moving from the felsic parts to the margins, and due to being non-ore bearing intermediate and intermediate-felsic magmatic facies.Keywords: Aghyokhush, fault, gold deposit, Mereh
Procedia PDF Downloads 2165762 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 1345761 Characterization of Structural Elements in Metal Fiber Concrete
Authors: Ammari Abdelhammid
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 4425760 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters
Authors: Badreddine Chemali, Boualem Tiliouine
Abstract:
This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response
Procedia PDF Downloads 2805759 Clove Oil Incorporated Biodegradable Film for Active Food Packaging
Authors: Shubham Sharma, Sandra Barkauskaite, Brendan Duffy, Swarna Jaiswal, Amit K. Jaiswal
Abstract:
Food packaging protects food from temperature, light, and humidity; preserves food and guarantees the safety and the integrity of the food. Advancement in packaging research leads to development of active packaging system with numerous properties such as oxygen scavengers, carbon-dioxide generating systems, antimicrobial active packaging, moisture control packaging, ethylene scavengers etc. In the active packaging, several additives such as essential oils, polyphenols etc. are incorporated into packaging film or within the packaging material to achieve the desired properties. This study investigates the effect on the structural, thermal and functional properties of different poly(lactide) – poly (butylene adipate-co-terephthalate) (PLA-PBAT) blend films incorporated with clove essential oil. The PLA-PBAT films were prepared by a solution casting method and then characterized based on their optical, mechanical properties, surface hydrophobicity, chemical composition, antimicrobial activity against S. aureus and E. coli, and inhibition of biofilm formation of E. coli. Results showed that, the developed packaging film containing clove oil has significant UV-blocking property (80%). However, incorporation of clove oil resulted in reduced transparency and tensile strength of the film as the concentration of clove oil increased. The surface hydrophobicity of packaging film was improved with the increasing concentration of essential oil. Similarly, thickness of the clove oil containing films increased from 36.71 µm to 106.67 µm as the concentration increases. The antimicrobial activity and biofilm inhibition study showed that the clove-incorporated PLA-PBAT composite film was effective against tested bacteria E. coli and S. aureus. This study showed that the PLA-PBAT – Clove oil composite film has significant antimicrobial and UV-blocking properties and can be used as an active food packaging film.Keywords: active packaging, clove oil, poly(butylene adipate-co-terephthalate), poly(lactide)
Procedia PDF Downloads 1515758 An Analytical Study of FRP-Concrete Bridge Superstructures
Authors: Wael I. Alnahhal
Abstract:
It is a major challenge to build a bridge superstructure that has long-term durability and low maintenance requirements. A solution to this challenge may be to use new materials or to implement new structural systems. Fiber reinforced polymer (FRP) composites have continued to play an important role in solving some of persistent problems in infrastructure applications because of its high specific strength, light weight, and durability. In this study, the concept of the hybrid FRP-concrete structural systems is applied to a bridge superstructure. The hybrid FRP-concrete bridge superstructure is intended to have durable, structurally sound, and cost effective hybrid system that will take full advantage of the inherent properties of both FRP materials and concrete. In this study, two hybrid FRP-concrete bridge systems were investigated. The first system consists of trapezoidal cell units forming a bridge superstructure. The second one is formed by arch cells. The two systems rely on using cellular components to form the core of the bridge superstructure, and an outer shell to warp around those cells to form the integral unit of the bridge. Both systems were investigated analytically by using finite element (FE) analysis. From the rigorous FE studies, it was concluded that first system is more efficient than the second.Keywords: bridge superstructure, hybrid system, fiber reinforced polymer, finite element analysis
Procedia PDF Downloads 3345757 Sodium-glucose Co-transporter-2 Inhibitors in Heart Failure with Mildly Reduced Reduced Ejection Fraction: Future Perspectives in Patients with Neoplasia
Authors: M. A. Munteanu, A. M. Lungu, A. I. Chivescu, V. Teodorescu, E. Tufanoiu, C. Nicolae, T. I. Nanea
Abstract:
Introduction: Sodium-glucose co-transporter 2 inhibitors (SGLT2i), which were first developed as antidiabetic medications, have demonstrated numerous positive benefits on the cardiovascular system, especially in the prevention of heart failure (HF). HF is a challenging, multifaceted disease that needs all-encompassing therapy. It should not be viewed as a limited form of heart illness but rather as a systemic disease that leads to multiple organ failure and death. SGLT2i is an extremely effective tool for treating HF by using its pleiotropic effects. In addition to its use in patients with diabetes mellitus who are at high cardiovascular risk or who have already experienced a cardiovascular event, SGLT2i administration has been shown to have positive effects on a variety of HF manifestations and stages, regardless of the patient's presence of diabetes mellitus. Material and Methods: According to the guide, 110 patients (83 males and 27 females) with heart failure with mildly reduced ejection fraction (HFmrEF), with T2D and neoplasia, were enrolled in the prospective study. The structural and functional state of the left ventricle myocardium and ejection fraction was assessed through echocardiography. Patients were randomized to receive once-daily dapagliflozin 10 mg. Results: Patients with HFmrEF were divided into 3 subgroups according to age. 7% (8) patients aged < 45 years, 35% (28) patients aged between 46-59 years, and 58% (74) patients aged> 60 years. The most prevalent comorbidities were hypertension (43.1%), coronary heart disease (40%), and obesity (33.2%). Study drug discontinuation and serious adverse events were not frequent in the subgroups, in either men or women, until now. Conclusions: SGLT-2 inhibitors are a novel class of antidiabetic agents that have demonstrated positive efficacy and safety outcomes in the setting of HFmrEF. Until now, in our study, dapagliflozin was safe and well-tolerated irrespective of sex.Keywords: diabetes mellitus type 2, Sodium-glucose co-transporters-2 inhibitors, heart failure, neoplasia
Procedia PDF Downloads 895756 Consumer Over-Indebtedness in Germany: An Investigation of Key Determinants
Authors: Xiaojing Wang, Ann-Marie Ward, Tony Wall
Abstract:
The problem of over-indebtedness has increased since deregulation of the banking industry in the 1980s, and now it has become a major problem for most countries in Europe, including Germany. Consumer debt issues have attracted not only the attention of academics but also government and debt counselling institutions. Overall, this research aims to contribute to the knowledge gap regarding the causes of consumer over-indebtedness in Germany and to develop predictive models for assessing consumer over-indebtedness risk at consumer level. The situation of consumer over-indebtedness is serious in Germany. The relatively high level of social welfare support in Germany suggests that consumer debt problems are caused by other factors, other than just over-spending and income volatility. Prior literature suggests that the overall stability of the economy and level of welfare support for individuals from the structural environment contributes to consumers’ debt problems. In terms of cultural influence, the conspicuous consumption theory in consumer behaviour suggests that consumers would spend more than their means to be seen as similar profiles to consumers in a higher socio-economic class. This results in consumers taking on more debt than they can afford, and eventually becoming over-indebted. Studies have also shown that financial literacy is negatively related to consumer over-indebtedness risk. Whilst prior literature has examined structural and cultural influences respectively, no study has taken a collective approach. To address this gap, a model is developed to investigate the association between consumer over-indebtedness and proxies for influences from the structural and cultural environment based on the above theories. The model also controls for consumer demographic characteristics identified as being of influence in prior literature, such as gender and age, and adverse shocks, such as divorce or bereavement in the household. Benefiting from SOEP regional data, this study is able to conduct quantitative empirical analysis to test both structural and cultural influences at a localised level. Using German Socio-Economic Panel (SOEP) study data from 2006 to 2016, this study finds that social benefits, financial literacy and the existence of conspicuous consumption all contribute to being over-indebted. Generally speaking, the risk of becoming over-indebted is high when consumers are in a low-welfare community, have little awareness of their own financial situation and always over-spend. In order to tackle the problem of over-indebtedness, countermeasures can be taken, for example, increasing consumers’ financial awareness, and the level of welfare support. By analysing causes of consumer over-indebtedness in Germany, this study also provides new insights on the nature and underlying causes of consumer debt issues in Europe.Keywords: consumer, debt, financial literacy, socio-economic
Procedia PDF Downloads 2125755 Electrical and Structural Properties of Polyaniline-Fullerene Nanocomposite
Authors: M. Nagaraja, H. M. Mahesh, K. Rajanna, M. Z. Kurian, J. Manjanna
Abstract:
In recent years, composites of conjugated polymers with fullerenes (C60) has attracted considerable scientific and technological attention in the field of organic electronics because they possess a novel combination of electrical, optical, ferromagnetic, mechanical and sensor properties. These properties represent major advances in the design of organic electronic devices. With the addition of C60 in the conjugated polymer matrix, the primary photo-excitation of the conjugated polymer undergoes an ultrafast electron transfer, and it has been demonstrated that fullerene molecules may serve as efficient electron acceptors in polymeric solar cells. The present paper includes the systematic studies on the effect of electrical, structural and sensor properties of polyaniline (PANI) matrix by the presence of C60. Polyaniline-fullerene (PANI/C60) composite is prepared by the introduction of fullerene during polymerization of aniline with ammonium persulfate and dodechyl benzene sulfonic acid as oxidant and dopant respectively. FTIR spectroscopy indicated the interaction between PANI and C60. X-ray diffraction proved the formation of a PANI/C60 complex. SEM image shows the highly branched chain structure of the PANI in the presence of C60. The conductivity of the PANI/C60 was found to be more than ten orders of magnitude over the pure PANI.Keywords: conductivity, fullerene, nanocomposite, polyaniline
Procedia PDF Downloads 2175754 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour
Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling
Abstract:
Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model
Procedia PDF Downloads 995753 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System
Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh
Abstract:
A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.Keywords: double perovskite, electrical conductivity, SEM, XRD
Procedia PDF Downloads 1325752 Hydraulics of 3D Aerators with Lateral Enlargements
Authors: Nirmala Lama
Abstract:
The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.Keywords: three-dimension aerator, cavity, water fin, air entrainment
Procedia PDF Downloads 695751 The Influences of Nurses’ Satisfaction on the Patient Satisfaction with and Loyalty to Korean University Hospitals
Authors: Sung Hee Ahn, Ju Rang Han
Abstract:
Background: With increasing importance in healthcare organization on patient satisfaction and nurses’ job satisfaction, many studies have been conducted. But no research has been administered how nurses’ satisfaction with healthcare organization influence patient satisfaction and loyalty. Purpose: This study aims to conceptualize nurses‘ satisfaction, patient satisfaction with and patient loyalty to hospitals using a hypothetical linear structural equation model, and to identify the significance of path coefficients and goodness of fit index of the structural equation model as well. Method: A total of 2,079 nurses and 6,776 patients recruited from 5 university hospitals in South Korea participated in this study. The data on nurses, including ward nurses and outpatient nurses, were collected from June 24th to July 12th, at the 204 departments of the 5 hospitals through an on-line survey. The data on the patients, including both inpatients and outpatients, were collected from September 30th to October 24th, 2013 at the 5 hospitals using a structured questionnaire. The variable of nurses’ satisfaction was measured using a scale evaluating internal client satisfaction, which is used in SSM Health Care System in the US. Patient satisfaction with the hospital and nurses and patient loyalty were measured by assessing the patient’s intention to revisit and to recommending the hospital to others using a visual analogue scale. The data were analyzed using SPSS version 21.0 and AMOS version 21.0. Result: The hypothetical model was fairly good in terms of goodness of fit (χ2= 64.897 (df=24, p <. 001), GFI=. 906, AGFI=.823, CFI=.921, NFI=.951, NNFI=.952. RMSEA=.114). The significance of path coefficients includes followings 1)The nurses’ satisfaction has significant influence on the patient satisfaction with nurses. 2)The patient satisfaction with nurses has significant influence on the patient satisfaction with the hospital. 3)The patient satisfaction with the hospital has significant influence on the patients’ revisit intention. 4)The patient satisfaction with the hospital has significant influence on the patients’ intention to the recommendations of the hospital. Conclusion: These results provide several practical implications to hospital administrators, who should incorporate ways of improving nurses' and patients' satisfaction with the hospital into their health care marketing strategies.Keywords: linear structural equation model, loyalty, nurse, patient satisfaction
Procedia PDF Downloads 4415750 Application of Bim Model Data to Estimate ROI for Robots and Automation in Construction Projects
Authors: Brian Romansky
Abstract:
There are many practical, commercially available robots and semi-autonomous systems that are currently available for use in a wide variety of construction tasks. Adoption of these technologies has the potential to reduce the time and cost to deliver a project, reduce variability and risk in delivery time, increase quality, and improve safety on the job site. These benefits come with a cost for equipment rental or contract fees, access to specialists to configure the system, and time needed for set-up and support of the machines while in use. Calculation of the net ROI (Return on Investment) requires detailed information about the geometry of the site, the volume of work to be done, the overall project schedule, as well as data on the capabilities and past performance of available robotic systems. Assembling the required data and comparing the ROI for several options is complex and tedious. Many project managers will only consider the use of a robot in targeted applications where the benefits are obvious, resulting in low levels of adoption of automation in the construction industry. This work demonstrates how data already resident in many BIM (Building Information Model) projects can be used to automate ROI estimation for a sample set of commercially available construction robots. Calculations account for set-up and operating time along with scheduling support tasks required while the automated technology is in use. Configuration parameters allow for prioritization of time, cost, or safety as the primary benefit of the technology. A path toward integration and use of automatic ROI calculation with a database of available robots in a BIM platform is described.Keywords: automation, BIM, robot, ROI.
Procedia PDF Downloads 875749 Principles for the Realistic Determination of the in-situ Concrete Compressive Strength under Consideration of Rearrangement Effects
Authors: Rabea Sefrin, Christian Glock, Juergen Schnell
Abstract:
The preservation of existing structures is of great economic interest because it contributes to higher sustainability and resource conservation. In the case of existing buildings, in addition to repair and maintenance, modernization or reconstruction works often take place in the course of adjustments or changes in use. Since the structural framework and the associated load level are usually changed in the course of the structural measures, the stability of the structure must be verified in accordance with the currently valid regulations. The concrete compressive strength of the existing structures concrete and the derived mechanical parameters are of central importance for the recalculation and verification. However, the compressive strength of the existing concrete is usually set comparatively low and thus underestimated. The reasons for this are too small numbers, and large scatter of material properties of the drill cores, which are used for the experimental determination of the design value of the compressive strength. Within a structural component, the load is usually transferred over the area with higher stiffness and consequently with higher compressive strength. Therefore, existing strength variations within a component only play a subordinate role due to rearrangement effects. This paper deals with the experimental and numerical determination of such rearrangement effects in order to calculate the concrete compressive strength of existing structures more realistic and economical. The influence of individual parameters such as the specimen geometry (prism or cylinder) or the coefficient of variation of the concrete compressive strength is analyzed in experimental small-part tests. The coefficients of variation commonly used in practice are adjusted by dividing the test specimens into several layers consisting of different concretes, which are monolithically connected to each other. From each combination, a sufficient number of the test specimen is produced and tested to enable evaluation on a statistical basis. Based on the experimental tests, FE simulations are carried out to validate the test results. In the frame of a subsequent parameter study, a large number of combinations is considered, which had not been investigated in the experimental tests yet. Thus, the influence of individual parameters on the size and characteristic of the rearrangement effect is determined and described more detailed. Based on the parameter study and the experimental results, a calculation model for a more realistic determination of the in situ concrete compressive strength is developed and presented. By considering rearrangement effects in concrete during recalculation, a higher number of existing structures can be maintained without structural measures. The preservation of existing structures is not only decisive from an economic, sustainable, and resource-saving point of view but also represents an added value for cultural and social aspects.Keywords: existing structures, in-situ concrete compressive strength, rearrangement effects, recalculation
Procedia PDF Downloads 1185748 Analyzing the Effectiveness of Elderly Design and the Impact on Sustainable Built Environment
Authors: Tristance Kee
Abstract:
With an unprecedented increase in elderly population around the world, the severe lack of quality housing and health-and-safety provisions to serve this cohort cannot be ignored any longer. Many elderly citizens, especially singletons, live in unsafe housing conditions with poorly executed planning and design. Some suffer from deteriorating mobility, sight and general alertness and their sub-standard living conditions further hinder their daily existence. This research explains how concepts such as Universal Design and Co-Design operate in a high density city such as Hong Kong, China where innovative design can become an alternative solution where government and the private sector fail to provide quality elderly friendly facilities to promote a sustainable urban development. Unlike other elderly research which focuses more on housing policies, nursing care and theories, this research takes a more progressive approach by providing an in-depth impact assessment on how innovative design can be practical solutions for creating a more sustainable built environment. The research objectives are to: 1) explain the relationship between innovative design for elderly and a healthier and sustainable environment; 2) evaluate the impact of human ergonomics with the use of universal design; and 3) explain how innovation can enhance the sustainability of a city in improving citizen’s sight, sound, walkability and safety within the ageing population. The research adopts both qualitative and quantitative methodologies to examine ways to improve elderly population’s relationship to our built environment. In particular, the research utilizes collected data from questionnaire survey and focus group discussions to obtain inputs from various stakeholders, including designers, operators and managers related to public housing, community facilities and overall urban development. In addition to feedbacks from end-users and stakeholders, a thorough analysis on existing elderly housing facilities and Universal Design provisions are examined to evaluate their adequacy. To echo the theme of this conference on Innovation and Sustainable Development, this research examines the effectiveness of innovative design in a risk-benefit factor assessment. To test the hypothesis that innovation can cater for a sustainable development, the research evaluated the health improvement of a sample size of 150 elderly in a period of eight months. Their health performances, including mobility, speech and memory are monitored and recorded on a regular basis to assess if the use of innovation does trigger impact on improving health and home safety for an elderly cohort. This study was supported by district community centers under the auspices of Home Affairs Bureau to provide respondents for questionnaire survey, a standardized evaluation mechanism, and professional health care staff for evaluating the performance impact. The research findings will be integrated to formulate design solutions such as innovative home products to improve elderly daily experience and safety with a particular focus on the enhancement on sight, sound and mobility safety. Some policy recommendations and architectural planning recommendations related to Universal Design will also be incorporated into the research output for future planning of elderly housing and amenity provisions.Keywords: elderly population, innovative design, sustainable built environment, universal design
Procedia PDF Downloads 2285747 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks
Authors: Riyadh Alsultani, Ali Majdi
Abstract:
It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design
Procedia PDF Downloads 945746 Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes
Authors: Marcial Blondet, Malena Serrano, Álvaro Rubiños, Elin Mattsson
Abstract:
In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development.Keywords: adobe, Peruvian Andes, safe housing, technological transference
Procedia PDF Downloads 2935745 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method
Authors: Rabah Bensaha, Badreeddine Toubal
Abstract:
Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity
Procedia PDF Downloads 4425744 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations
Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak
Abstract:
The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis
Procedia PDF Downloads 309