Search results for: discrete feature vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3144

Search results for: discrete feature vector

1494 Double Beta Decay Experiments in Novi Sad

Authors: Nataša Todorović, Jovana Nikolov

Abstract:

Despite the great interest in β⁻β⁻ decay, β⁺β⁺ decays are rarely investigated due to the low probability of detecting these processes with available low-level equipment. If β⁺β⁺, β⁺EC, or ECEC decay occurs in a thin sample of a material, the positrons will be stopped and annihilated inside the material, leading to the emission of two or four coincidence gamma photons energy of 511 keV. The paper presents the results of measurements of double beta decay of ⁶⁴Zn, ⁵⁰Cr, and ⁵⁴Fe isotopes. In the first experiment, 511-keV gamma rays originating from the annihilation of positrons in natural zinc were measured by a coincidence technique to obtain a non-zero value for the (0ν+2ν) half-life. In the second experiment, the result of measuring double beta decay of ⁵⁰Cr is presented, which suggests a result other than zero at 95% CL and gives the lowest limit for the half-life of this process. In the third experiment, neutrino-less ECEC decay of ⁵⁴Fe was examined. Under the decay theory, gamma rays are emitted whose energy does not coincide with the energies of gamma rays emitted by nuclei from known discrete excited states. Iron shield of an internal volume of 1 m³ and thickness of 25 cm served as a source for measuring the (0ν+2ν) process in ⁵⁴Fe, whose yield in natural iron is 5.4%. We obtain the lower limit for the half-life for ⁵⁴Fe: T(0ν, K, K)>4.4x10²⁰ yr, T(0ν, K, L)>4.1x10²⁰ yr, and T(0ν, L, L)>5.0x10²⁰ yr. For ⁵⁰Cr limit for the half-life is T(0ν+2ν)>1.3(6)x10¹⁸ yr, and for ⁶⁴Zn T(0ν+2ν, ECβ+)=1.1(0.9)x10⁹ years.

Keywords: neutrinoless double beta decay, half-life, ⁶⁴Zn, ⁵⁰Cr, and, ⁵⁴Fe

Procedia PDF Downloads 109
1493 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 123
1492 Temperature Dependence of Relative Permittivity: A Measurement Technique Using Split Ring Resonators

Authors: Sreedevi P. Chakyar, Jolly Andrews, V. P. Joseph

Abstract:

A compact method for measuring the relative permittivity of a dielectric material at different temperatures using a single circular Split Ring Resonator (SRR) metamaterial unit working as a test probe is presented in this paper. The dielectric constant of a material is dependent upon its temperature and the LC resonance of the SRR depends on its dielectric environment. Hence, the temperature of the dielectric material in contact with the resonator influences its resonant frequency. A single SRR placed between transmitting and receiving probes connected to a Vector Network Analyser (VNA) is used as a test probe. The dependence of temperature between 30 oC and 60 oC on resonant frequency of SRR is analysed. Relative permittivities ‘ε’ of test samples for different temperatures are extracted from a calibration graph drawn between the relative permittivity of samples of known dielectric constant and their corresponding resonant frequencies. This method is found to be an easy and efficient technique for analysing the temperature dependent permittivity of different materials.

Keywords: metamaterials, negative permeability, permittivity measurement techniques, split ring resonators, temperature dependent dielectric constant

Procedia PDF Downloads 415
1491 Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)

Authors: Asadollah Bahrami

Abstract:

In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality.

Keywords: spectral radiative entropy generation, non-gray medium, correlated k(CK) model, heat source

Procedia PDF Downloads 108
1490 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 245
1489 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 300
1488 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms

Authors: Divya Agarwal, Pushpendra S. Bharti

Abstract:

Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.

Keywords: path planning, obstacle avoidance, autonomous mobile robots, algorithms

Procedia PDF Downloads 233
1487 Stability Characteristics of Angle Ply Bi-Stable Laminates by Considering the Effect of Resin Layers

Authors: Masih Moore, Saeed Ziaei-Rad

Abstract:

In this study, the stability characteristics of a bi-stable composite plate with different asymmetric composition are considered. The interest in bi-stable structures comes from their ability that these structures can have two different stable equilibrium configurations to define a discrete set of stable shapes. The structures can easily change the first stable shape to the second one by a simple snap action. The main purpose of the current research is to consider the effect of including resin layers on the stability characteristics of bi-stable laminates. To this end and In order to determine the magnitude of the loads that are responsible for snap through and snap back phenomena between two stable shapes of the laminate, a non-linear finite element method (FEM) is utilized. An experimental investigation was also carried out to study the critical loads that caused snapping between two different stable shapes. Several specimens were manufactured from T300/5208 graphite-epoxy with [0/90]T, [-30/60]T, [-20/70]T asymmetric stacking sequence. In order to create an accurate finite element model, different thickness of resin layers created during the manufacturing process of the laminate was measured and taken into account. The geometry of each lamina and the resin layers was characterized by optical microscopy from different locations of the laminates thickness. The exact thickness of each lamina and the resin layer in all specimens with [0/90]T,[-30/60]T, [-20/70]T stacking sequence were determined by using image processing technique.

Keywords: bi-stable laminates, finite element method, graphite-epoxy plate, snap behavior

Procedia PDF Downloads 244
1486 A Framework for Review Spam Detection Research

Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim

Abstract:

With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a high-quality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.

Keywords: fake reviews, feature collection, opinion spam, spam detection

Procedia PDF Downloads 413
1485 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 148
1484 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 564
1483 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 335
1482 Mean-Field Type Modeling of Non-Local Congestion in Pedestrian Crowd Dynamics

Authors: Alexander Aurell

Abstract:

One of the latest trends in the modeling of human crowds is the mean-field game approach. In the mean-field game approach, the motion of a human crowd is described by a nonstandard stochastic optimal control problem. It is nonstandard since congestion is considered, introduced through a dependence in the performance functional on the distribution of the crowd. This study extends the class of mean-field pedestrian crowd models to allow for non-local congestion and arbitrary, but finitely, many interacting crowds. The new congestion feature grants pedestrians a 'personal space' where crowding is undesirable. The model is treated as a mean-field type game which is derived from a particle picture. This, in contrast to a mean-field game, better describes a situation where the crowd can be controlled by a central planner. The latter is suitable for decentralized situations. Solutions to the mean-field type game are characterized via a Pontryagin-type Maximum Principle.

Keywords: congestion, crowd dynamics, interacting populations, mean-field approximation, optimal control

Procedia PDF Downloads 446
1481 Removal of Trimethoprim and Sulfamethoxazole in Solid Waste Leachate by Two-Stage Membrane Bioreactor under High Mixed Liquor Suspended Solids Concentration

Authors: Nilubon Thongtan, Wilai Chiemchaisri, Chart Chiemchaisri

Abstract:

Purpose of study is to investigate performance of two-stage membrane bioreactor (2S-MBR) to treat trimethoprim and sulfamethoxazole in solid waste leachate. This system consists of 2 tanks, anoxic tank with incline plates and MBR tank. The system was operated at 12 h-HRT each, of which the MBR MLSS concentration was operated at 25,000-35,000 mg/L. The average sCOD concentration of the fed leachate was 6,310±3,595 mg/L. It shows that high organic removals in terms of sCOD and sBOD were achieved as of 97-99% and 99%, respectively. The TKN and NH3-N removals were 76-98% and 91-99%, respectively. Concurrently, trimethoprim and sulfamethoxazole were detected in the leachate with concentrations of 113-0 μg/L and 74-2 μg/L, respectively. High removals of trimethoprim and sulfamethoxazole were also found as of 95-99% and 85-95%, respectively. In sum, this MBR feature and operation gave achievement in treatment of macro-pollutants including trimethoprim and sulfamethoxazole existing in low levels in the solid waste leachate.

Keywords: membrane bioreactor, solid waste leachate, sulfamethoxazole, trimethoprim

Procedia PDF Downloads 146
1480 Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus

Authors: Soad Abokhamis Mousavi

Abstract:

The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings.

Keywords: trombe wall, societal acceptance, building, energy efficacy

Procedia PDF Downloads 82
1479 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 645
1478 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang

Abstract:

The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 210
1477 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 58
1476 A New Resonance Solution to Suppress the Voltage Stresses in the Forward Topology Used in a Switch Mode Power Supply

Authors: Maamar Latroch, Mohamed Bourahla

Abstract:

Forward topology used in switch mode power supply (SMPS) is one of the most famous configuration feeding DC systems such as telecommunication systems and other specific applications where the galvanic isolation is required. This configuration benefits of the high frequency feature of the transformer to provide a small size and light weight of the over all system. However, the stresses existing on the power switch during an ON/OFF commutation limit the transmitted power to the DC load. This paper investigates the main causes of the stresses in voltage existing during a commutation cycle and suggest a low cost solution that eliminates the overvoltage. As a result, this configuration will yield the possibility of the use of this configuration in higher power applications. Simulation results will show the efficiency of the presented method.

Keywords: switch mode power supply, forward topology, resonance topology, high frequency commutation

Procedia PDF Downloads 437
1475 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
1474 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data

Authors: Elyta Widyaningrum

Abstract:

The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.

Keywords: automation, GIS environment, LiDAR processing, map quality

Procedia PDF Downloads 369
1473 Destination Port Detection For Vessels: An Analytic Tool For Optimizing Port Authorities Resources

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/ unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages AIS messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring Automatic Identification System (AIS) messages. Our RRoT method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measure to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Fr´echet Distance (DFD), Dynamic Time Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an fmeasure of 99.08% using Dynamic Time Warping (DTW) similarity measure.

Keywords: spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization

Procedia PDF Downloads 122
1472 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 470
1471 Xiao Qian’s Chinese-To-English Self-Translation in the 1940s

Authors: Xiangyu Yang

Abstract:

Xiao Qian (1910-1999) was a prolific literary translator between Chinese and English in both directions and an influential commentator on Chinese translation practices for nearly 70 years (1931-1998). During his stay in Britain from 1939 to 1946, Xiao self-translated and published a series of short stories, essays, and feature articles. With Pedersen's theoretical framework, the paper finds that Xiao flexibly adopted seven translation strategies (i.e. phonemic retention, specification, direct translation, generalization, substitution, omission, and official equivalent) to deal with the expressions specific to Chinese culture, struggling to seek a balance between adequate translation and acceptable translation in a historical condition of the huge gap between China and the west in the early twentieth century. Besides, the study also discovers that Xiao's translation strategies were greatly influenced by his own translational purpose as well as the literary systems, ideologies, and patronage in China and Britain in the 1940s.

Keywords: self-translation, extralinguistic cultural reference, Xiao Qian, Pedersen

Procedia PDF Downloads 134
1470 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 91
1469 Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structure-process-property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: biosensor, DNA, biomarker, molecular dynamics simulation

Procedia PDF Downloads 466
1468 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: fuzzy object, fuzzy image segmentation, motion descriptors, MRI imaging, object-based image retrieval

Procedia PDF Downloads 378
1467 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering

Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad

Abstract:

The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.

Keywords: scaffolds, porosity, diffusion, transient analysis

Procedia PDF Downloads 543
1466 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akin, Ibrahim Aydogdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teaching-learning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame

Procedia PDF Downloads 546
1465 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 94