Search results for: modeling platform
4230 Optimization of Multi Commodities Consumer Supply Chain: Part 1-Modelling
Authors: Zeinab Haji Abolhasani, Romeo Marian, Lee Luong
Abstract:
This paper and its companions (Part II, Part III) will concentrate on optimizing a class of supply chain problems known as Multi- Commodities Consumer Supply Chain (MCCSC) problem. MCCSC problem belongs to production-distribution (P-D) planning category. It aims to determine facilities location, consumers’ allocation, and facilities configuration to minimize total cost (CT) of the entire network. These facilities can be manufacturer units (MUs), distribution centres (DCs), and retailers/end-users (REs) but not limited to them. To address this problem, three major tasks should be undertaken. At the first place, a mixed integer non-linear programming (MINP) mathematical model is developed. Then, system’s behaviors under different conditions will be observed using a simulation modeling tool. Finally, the most optimum solution (minimum CT) of the system will be obtained using a multi-objective optimization technique. Due to the large size of the problem, and the uncertainties in finding the most optimum solution, integration of modeling and simulation methodologies is proposed followed by developing new approach known as GASG. It is a genetic algorithm on the basis of granular simulation which is the subject of the methodology of this research. In part II, MCCSC is simulated using discrete-event simulation (DES) device within an integrated environment of SimEvents and Simulink of MATLAB® software package followed by a comprehensive case study to examine the given strategy. Also, the effect of genetic operators on the obtained optimal/near optimal solution by the simulation model will be discussed in part III.Keywords: supply chain, genetic algorithm, optimization, simulation, discrete event system
Procedia PDF Downloads 3204229 Dynamic Characterization of Shallow Aquifer Groundwater: A Lab-Scale Approach
Authors: Anthony Credoz, Nathalie Nief, Remy Hedacq, Salvador Jordana, Laurent Cazes
Abstract:
Groundwater monitoring is classically performed in a network of piezometers in industrial sites. Groundwater flow parameters, such as direction, sense and velocity, are deduced from indirect measurements between two or more piezometers. Groundwater sampling is generally done on the whole column of water inside each borehole to provide concentration values for each piezometer location. These flow and concentration values give a global ‘static’ image of potential plume of contaminants evolution in the shallow aquifer with huge uncertainties in time and space scales and mass discharge dynamic. TOTAL R&D Subsurface Environmental team is challenging this classical approach with an innovative dynamic way of characterization of shallow aquifer groundwater. The current study aims at optimizing the tools and methodologies for (i) a direct and multilevel measurement of groundwater velocities in each piezometer and, (ii) a calculation of potential flux of dissolved contaminant in the shallow aquifer. Lab-scale experiments have been designed to test commercial and R&D tools in a controlled sandbox. Multiphysics modeling were performed and took into account Darcy equation in porous media and Navier-Stockes equation in the borehole. The first step of the current study focused on groundwater flow at porous media/piezometer interface. Huge uncertainties from direct flow rate measurements in the borehole versus Darcy flow rate in the porous media were characterized during experiments and modeling. The structure and location of the tools in the borehole also impacted the results and uncertainties of velocity measurement. In parallel, direct-push tool was tested and presented more accurate results. The second step of the study focused on mass flux of dissolved contaminant in groundwater. Several active and passive commercial and R&D tools have been tested in sandbox and reactive transport modeling has been performed to validate the experiments at the lab-scale. Some tools will be selected and deployed in field assays to better assess the mass discharge of dissolved contaminants in an industrial site. The long-term subsurface environmental strategy is targeting an in-situ, real-time, remote and cost-effective monitoring of groundwater.Keywords: dynamic characterization, groundwater flow, lab-scale, mass flux
Procedia PDF Downloads 1694228 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.Keywords: crack initiation, fatigue reliability, inspection planning, welded joints
Procedia PDF Downloads 3554227 Optimization of Municipal Solid Waste Management in Peshawar Using Mathematical Modelling and GIS with Focus on Incineration
Authors: Usman Jilani, Ibad Khurram, Irshad Hussain
Abstract:
Environmentally sustainable waste management is a challenging task as it involves multiple and diverse economic, environmental, technical and regulatory issues. Municipal Solid Waste Management (MSWM) is more challenging in developing countries like Pakistan due to lack of awareness, technology and human resources, insufficient funding, inefficient collection and transport mechanism resulting in the lack of a comprehensive waste management system. This work presents an overview of current MSWM practices in Peshawar, the provincial capital of Khyber Pakhtunkhwa, Pakistan and proposes a better and sustainable integrated solid waste management system with incineration (Waste to Energy) option. The diverted waste would otherwise generate revenue; minimize land fill requirement and negative impact on the environment. The proposed optimized solution utilizing scientific techniques (like mathematical modeling, optimization algorithms and GIS) as decision support tools enhances the technical & institutional efficiency leading towards a more sustainable waste management system through incorporating: - Improved collection mechanisms through optimized transportation / routing and, - Resource recovery through incineration and selection of most feasible sites for transfer stations, landfills and incineration plant. These proposed methods shift the linear waste management system towards a cyclic system and can also be used as a decision support tool by the WSSP (Water and Sanitation Services Peshawar), agency responsible for the MSWM in Peshawar.Keywords: municipal solid waste management, incineration, mathematical modeling, optimization, GIS, Peshawar
Procedia PDF Downloads 3794226 Evaluation of the Dry Compressive Strength of Refractory Bricks Developed from Local Kaolin
Authors: Olanrewaju Rotimi Bodede, Akinlabi Oyetunji
Abstract:
Modeling the dry compressive strength of sodium silicate bonded kaolin refractory bricks was studied. The materials used for this research work included refractory clay obtained from Ijero-Ekiti kaolin deposit on coordinates 7º 49´N and 5º 5´E, sodium silicate obtained from the open market in Lagos on coordinates 6°27′11″N 3°23′45″E all in the South Western part of Nigeria. The mineralogical composition of the kaolin clay was determined using the Energy Dispersive X-Ray Fluorescence Spectrometer (ED-XRF). The clay samples were crushed and sieved using the laboratory pulveriser, ball mill and sieve shaker respectively to obtain 100 μm diameter particles. Manual pipe extruder of dimension 30 mm diameter by 43.30 mm height was used to prepare the samples with varying percentage volume of sodium silicate 5 %, 7.5 % 10 %, 12.5 %, 15 %, 17.5 %, 20% and 22.5 % while kaolin and water were kept at 50 % and 5 % respectively for the comprehensive test. The samples were left to dry in the open laboratory atmosphere for 24 hours to remove moisture. The samples were then were fired in an electrically powered muffle furnace. Firing was done at the following temperatures; 700ºC, 750ºC, 800ºC, 850ºC, 900ºC, 950ºC, 1000ºC and 1100ºC. Compressive strength test was carried out on the dried samples using a Testometric Universal Testing Machine (TUTM) equipped with a computer and printer, optimum compression of 4.41 kN/mm2 was obtained at 12.5 % sodium silicate; the experimental results were modeled with MATLAB and Origin packages using polynomial regression equations that predicted the estimated values for dry compressive strength and later validated with Pearson’s rank correlation coefficient, thereby obtaining a very high positive correlation value of 0.97.Keywords: dry compressive strength, kaolin, modeling, sodium silicate
Procedia PDF Downloads 4584225 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis
Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski
Abstract:
The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.Keywords: cloud service, geodata cube, multiresolution, raster geodata
Procedia PDF Downloads 1444224 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI
Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso
Abstract:
The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI
Procedia PDF Downloads 1054223 Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis
Authors: Ahmed M. Gamal, Adel M. Belal, S. A. Elsoud
Abstract:
This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR.Keywords: reinforced soil, geogrid, sand dunes, bearing capacity
Procedia PDF Downloads 4294222 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”
Authors: Lauren B. Birney
Abstract:
The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.Keywords: environmental science, citizen science, STEM, technology
Procedia PDF Downloads 1004221 Corporate Social Media: Understanding the Impact of Service Quality and Social Value on Customer Behavior
Authors: Regina Connolly, Murray Scott, William DeLone
Abstract:
Social media are revolutionary technologies that are transforming the way we communicate, the way we collaborate and the way we influence. Companies are making major investments in platforms such as Facebook and Twitter because they realize that social media are an influential force on customer perceptions and behavior. However, to date there is little guidance on what constitutes an effective deployment of social media and there is no empirical evidence that social medial investments are yielding positive returns. This research develops and validates the components of an effective corporate social media platform in order to examine the impact of effective social media on customer intentions and behavior.Keywords: service quality, social value, social media, IS success, Web 2.0, customer behaviour
Procedia PDF Downloads 5644220 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model
Authors: K. G. R. M. Jayathilake, S. Rudra
Abstract:
Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood
Procedia PDF Downloads 1284219 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 2784218 Genome Sequencing, Assembly and Annotation of Gelidium Pristoides from Kenton-on-Sea, South Africa
Authors: Sandisiwe Mangali, Graeme Bradley
Abstract:
Genome is complete set of the organism's hereditary information encoded as either deoxyribonucleic acid or ribonucleic acid in most viruses. The three different types of genomes are nuclear, mitochondrial and the plastid genome and their sequences which are uncovered by genome sequencing are known as an archive for all genetic information and enable researchers to understand the composition of a genome, regulation of gene expression and also provide information on how the whole genome works. These sequences enable researchers to explore the population structure, genetic variations, and recent demographic events in threatened species. Particularly, genome sequencing refers to a process of figuring out the exact arrangement of the basic nucleotide bases of a genome and the process through which all the afore-mentioned genomes are sequenced is referred to as whole or complete genome sequencing. Gelidium pristoides is South African endemic Rhodophyta species which has been harvested in the Eastern Cape since the 1950s for its high economic value which is one motivation for its sequencing. Its endemism further motivates its sequencing for conservation biology as endemic species are more vulnerable to anthropogenic activities endangering a species. As sequencing, mapping and annotating the Gelidium pristoides genome is the aim of this study. To accomplish this aim, the genomic DNA was extracted and quantified using the Nucleospin Plank Kit, Qubit 2.0 and Nanodrop. Thereafter, the Ion Plus Fragment Library was used for preparation of a 600bp library which was then sequenced through the Ion S5 sequencing platform for two runs. The produced reads were then quality-controlled and assembled through the SPAdes assembler with default parameters and the genome assembly was quality assessed through the QUAST software. From this assembly, the plastid and the mitochondrial genomes were then sampled out using Gelidiales organellar genomes as search queries and ordered according to them using the Geneious software. The Qubit and the Nanodrop instruments revealed an A260/A280 and A230/A260 values of 1.81 and 1.52 respectively. A total of 30792074 reads were obtained and produced a total of 94140 contigs with resulted into a sequence length of 217.06 Mbp with N50 value of 3072 bp and GC content of 41.72%. A total length of 179281bp and 25734 bp was obtained for plastid and mitochondrial respectively. Genomic data allows a clear understanding of the genomic constituent of an organism and is valuable as foundation information for studies of individual genes and resolving the evolutionary relationships between organisms including Rhodophytes and other seaweeds.Keywords: Gelidium pristoides, genome, genome sequencing and assembly, Ion S5 sequencing platform
Procedia PDF Downloads 1534217 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6
Authors: Levent Dumenci, Laura A. Siminoff
Abstract:
Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement
Procedia PDF Downloads 1824216 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1274215 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).Keywords: DoA estimation, Adaptive antenna array, Deep Neural Network, LS-SVM optimization model, Radial basis function, and MSE
Procedia PDF Downloads 1044214 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation
Authors: H. Khanfari, M. Johari Fard
Abstract:
Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.Keywords: carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L)
Procedia PDF Downloads 2244213 Analysis of Key Factors Influencing Muslim Women’s Buying Intentions of Clothes: A Study of UK’s Ethnic Minorities and Modest Fashion Industry
Authors: Nargis Ali
Abstract:
Since the modest fashion market is growing in the UK, there is still little understanding and more concerns found among researchers and marketers about Muslim consumers. Therefore, the present study is designed to explore critical factors influencing Muslim women’s intention to purchase clothing and to identify the differences in the purchase intention of ethnic minority groups in the UK. The conceptual framework is designed using the theory of planned behavior and social identity theory. In order to satisfy the research objectives, a structured online questionnaire was published on Facebook from 20 November to 21 March. As a result, 1087 usable questionnaires were received and used to assess the proposed model fit through structural equation modeling. Results revealed that social media does influence the purchase intention of Muslim women. Muslim women search for stylish clothes that provide comfort during summer while they prefer soft and subdued colors. Furthermore, religious knowledge and religious practice, and fashion uniqueness strongly influence their purchase intention, while hybrid identity is negatively related to the purchase intention of Muslim women. This research contributes to the literature linked to Muslim consumers at a time when the UK's large retailers were seeking to attract Muslim consumers through modestly designed outfits. Besides, it will be helpful to formulate or revise product and marketing strategies according to UK’s Muslim women’s tastes and needs.Keywords: fashion uniqueness, hybrid identity, religiosity, social media, social identity theory, structural equation modeling, theory of planned behavior
Procedia PDF Downloads 2304212 Presenting an Integrated Framework for the Introduction and Evaluation of Social Media in Enterprises
Authors: Gerhard Peter
Abstract:
In this paper, we present an integrated framework that governs the introduction of social media into enterprises and its evaluation. It is argued that the framework should address the following issues: (1) the contribution of social media for increasing efficiency and improving the quality of working life; (2) the level on which this contribution happens (i.e., individual, team, or organisation); (3) a description of the processes for implementing and evaluating social media; and the role of (4) organisational culture and (5) management. We also report the results of a case study where the framework has been employed to introduce a social networking platform at a German enterprise. This paper only considers the internal use of social media.Keywords: case study, enterprise 2.0, framework, introducing and evaluating social media, social media
Procedia PDF Downloads 3714211 Numerical Investigation of Pressure Drop in Core Annular Horizontal Pipe Flow
Authors: John Abish, Bibin John
Abstract:
Liquid-liquid flow in horizontal pipe is investigated in order to reveal the flow patterns arising from the co-existed flow of oil and water. The main focus of the study is to identify the feasibility of reducing the pumping power requirements of petroleum transportation lines by having an annular flow of water around the thick oil core. This idea makes oil transportation cheaper and easier. The present study uses computational fluid dynamics techniques to model oil-water flows with liquids of similar density and varying viscosity. The simulation of the flow is conducted using commercial package Ansys Fluent. Flow domain modeling and grid generation accomplished through ICEM CFD. The horizontal pipe is modeled with two different inlets and meshed with O-Grid mesh. The standard k-ε turbulence scheme along with the volume of fluid (VOF) multiphase modeling method is used to simulate the oil-water flow. Transient flow simulations carried out for a total period of 30s showed significant reduction in pressure drop while employing core annular flow concept. This study also reveals the effect of viscosity ratio, mass flow rates of individual fluids and ration of superficial velocities on the pressure drop across the pipe length. Contours of velocity and volume fractions are employed along with pressure predictions to assess the effectiveness of this proposed concept quantitatively as well as qualitatively. The outcome of the present study is found to be very relevant for the petrochemical industries.Keywords: computational fluid dynamics, core-annular flows, frictional flow resistance, oil transportation, pressure drop
Procedia PDF Downloads 4114210 Celebrating Community Heritage through the People’s Collection Wales: A Case Study in the Development of Collecting Traditions and Engagement
Authors: Gruffydd E. Jones
Abstract:
The world’s largest collection of historical, cultural, and heritage material is unarchived and undocumented in the hands of the public. Not only does this material represent the missing collections in heritage sector archives today, but it is also the key to providing a diverse range of communities with the means to express their history in their own words and to celebrate their unique, personal heritage. The People’s Collection Wales (PCW) acts as a platform on which the heritage of Wales and her people can be collated and shared, at the heart of which is a thriving community engagement programme across a network of museums, archives, and libraries. By providing communities with the archival skillset commonly employed throughout the heritage sector, PCW enables local projects, societies, and individuals to express their understanding of local heritage with their own voices, empowering communities to embrace their diverse and complex identities around Wales. Drawing on key examples from the project’s history, this paper will demonstrate the successful way in which museums have been developed as hubs for community engagement where the public was at the heart of collection and documentation activities, informing collection and curatorial policies to benefit both the institute and its local community. This paper will also highlight how collections from marginalised, under-represented, and minority communities have been published and celebrated extensively around Wales, including adoption by the education system in classrooms today. Any activity within the heritage sector, whether of collection, preservation, digitisation, or accessibility, should be considerate of community engagement opportunities not only to remain relevant but in order to develop as community hubs, pivots around which local heritage is supported and preserved. Attention will be drawn to our digitisation workflow, which, through training and support from museums and libraries, has allowed the public not only to become involved but to actively lead the contemporary evolution of documentation strategies in Wales. This paper will demonstrate how the PCW online access archive is promoting museum collections, encouraging user interaction, and providing an invaluable platform on which a broader community can inform, preserve and celebrate their cultural heritage through their own archival material too. The continuing evolution of heritage engagement depends wholly on placing communities at the heart of the sector, recognising their wealth of cultural knowledge, and developing the archival skillset necessary for them to become archival practitioners of their own.Keywords: social history, cultural heritage, community heritage, museums, archives, libraries, community engagement, oral history, community archives
Procedia PDF Downloads 1014209 Predicting Student Performance Based on Coding Behavior in STEAMplug
Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov
Abstract:
STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology
Procedia PDF Downloads 1554208 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data
Procedia PDF Downloads 3534207 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery
Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa
Abstract:
In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.Keywords: air quality, modeling pollution, particulate matter, remote sensing
Procedia PDF Downloads 1604206 KBASE Technological Framework - Requirements
Authors: Ivan Stanev, Maria Koleva
Abstract:
Automated software development issues are addressed in this paper. Layers and packages of a Common Platform for Automated Programming (CPAP) are defined based on Service Oriented Architecture, Cloud computing, Knowledge based automated software engineering (KBASE) and Method of automated programming. Tools of seven leading companies (AWS of Amazon, Azure of Microsoft, App Engine of Google, vCloud of VMWare, Bluemix of IBM, Helion of HP, OCPaaS of Oracle) are analyzed in the context of CPAP. Based on the results of the analysis CPAP requirements are formulatedKeywords: automated programming, cloud computing, knowledge based software engineering, service oriented architecture
Procedia PDF Downloads 3064205 Identification of Natural Liver X Receptor Agonists as the Treatments or Supplements for the Management of Alzheimer and Metabolic Diseases
Authors: Hsiang-Ru Lin
Abstract:
Cholesterol plays an essential role in the regulation of the progression of numerous important diseases including atherosclerosis and Alzheimer disease so the generation of suitable cholesterol-lowering reagents is urgent to develop. Liver X receptor (LXR) is a ligand-activated transcription factor whose natural ligands are cholesterols, oxysterols and glucose. Once being activated, LXR can transactivate the transcription action of various genes including CYP7A1, ABCA1, and SREBP1c, involved in the lipid metabolism, glucose metabolism and inflammatory pathway. Essentially, the upregulation of ABCA1 facilitates cholesterol efflux from the cells and attenuates the production of beta-amyloid (ABeta) 42 in brain so LXR is a promising target to develop the cholesterol-lowering reagents and preventative treatment of Alzheimer disease. Engelhardia roxburghiana is a deciduous tree growing in India, China, and Taiwan. However, its chemical composition is only reported to exhibit antitubercular and anti-inflammatory effects. In this study, four compounds, engelheptanoxides A, C, engelhardiol A, and B isolated from the root of Engelhardia roxburghiana were evaluated for their agonistic activity against LXR by the transient transfection reporter assays in the HepG2 cells. Furthermore, their interactive modes with LXR ligand binding pocket were generated by molecular modeling programs. By using the cell-based biological assays, engelheptanoxides A, C, engelhardiol A, and B showing no cytotoxic effect against the proliferation of HepG2 cells, exerted obvious LXR agonistic effects with similar activity as T0901317, a novel synthetic LXR agonist. Further modeling studies including docking and SAR (structure-activity relationship) showed that these compounds can locate in LXR ligand binding pocket in the similar manner as T0901317. Thus, LXR is one of nuclear receptors targeted by pharmaceutical industry for developing treatments of Alzheimer and atherosclerosis diseases. Importantly, the cell-based assays, together with molecular modeling studies suggesting a plausible binding mode, demonstrate that engelheptanoxides A, C, engelhardiol A, and B function as LXR agonists. This is the first report to demonstrate that the extract of Engelhardia roxburghiana contains LXR agonists. As such, these active components of Engelhardia roxburghiana or subsequent analogs may show important therapeutic effects through selective modulation of the LXR pathway.Keywords: Liver X receptor (LXR), Engelhardia roxburghiana, CYP7A1, ABCA1, SREBP1c, HepG2 cells
Procedia PDF Downloads 4224204 On-Road Text Detection Platform for Driver Assistance Systems
Authors: Guezouli Larbi, Belkacem Soundes
Abstract:
The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.Keywords: text detection, CNN, PZM, deep learning
Procedia PDF Downloads 874203 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: dam-break, discontinuous Galerkin scheme, flood modeling, shallow water equations
Procedia PDF Downloads 1754202 Numerical Performance Evaluation of a Savonius Wind Turbines Using Resistive Torque Modeling
Authors: Guermache Ahmed Chafik, Khelfellah Ismail, Ait-Ali Takfarines
Abstract:
The Savonius vertical axis wind turbine is characterized by sufficient starting torque at low wind speeds, simple design and does not require orientation to the wind direction; however, the developed power is lower than other types of wind turbines such as Darrieus. To increase these performances several studies and researches have been developed, such as optimizing blades shape, using passive controls and also minimizing power losses sources like the resisting torque due to friction. This work aims to estimate the performance of a Savonius wind turbine introducing a User Defined Function to the CFD model analyzing resisting torque. This User Defined Function is developed to simulate the action of the wind speed on the rotor; it receives the moment coefficient as an input to compute the rotational velocity that should be imposed on computational domain rotating regions. The rotational velocity depends on the aerodynamic moment applied on the turbine and the resisting torque, which is considered a linear function. Linking the implemented User Defined Function with the CFD solver allows simulating the real functioning of the Savonius turbine exposed to wind. It is noticed that the wind turbine takes a while to reach the stationary regime where the rotational velocity becomes invariable; at that moment, the tip speed ratio, the moment and power coefficients are computed. To validate this approach, the power coefficient versus tip speed ratio curve is compared with the experimental one. The obtained results are in agreement with the available experimental results.Keywords: resistant torque modeling, Savonius wind turbine, user-defined function, vertical axis wind turbine performances
Procedia PDF Downloads 1614201 Modeling Route Selection Using Real-Time Information and GPS Data
Authors: William Albeiro Alvarez, Gloria Patricia Jaramillo, Ivan Reinaldo Sarmiento
Abstract:
Understanding the behavior of individuals and the different human factors that influence the choice when faced with a complex system such as transportation is one of the most complicated aspects of measuring in the components that constitute the modeling of route choice due to that various behaviors and driving mode directly or indirectly affect the choice. During the last two decades, with the development of information and communications technologies, new data collection techniques have emerged such as GPS, geolocation with mobile phones, apps for choosing the route between origin and destination, individual service transport applications among others, where an interest has been generated to improve discrete choice models when considering the incorporation of these developments as well as psychological factors that affect decision making. This paper implements a discrete choice model that proposes and estimates a hybrid model that integrates route choice models and latent variables based on the observation on the route of a sample of public taxi drivers from the city of Medellín, Colombia in relation to its behavior, personality, socioeconomic characteristics, and driving mode. The set of choice options includes the routes generated by the individual service transport applications versus the driver's choice. The hybrid model consists of measurement equations that relate latent variables with measurement indicators and utilities with choice indicators along with structural equations that link the observable characteristics of drivers with latent variables and explanatory variables with utilities.Keywords: behavior choice model, human factors, hybrid model, real time data
Procedia PDF Downloads 158