Search results for: decision processing
5870 Multimedia Container for Autonomous Car
Authors: Janusz Bobulski, Mariusz Kubanek
Abstract:
The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.Keywords: an autonomous car, image processing, lidar, obstacle detection
Procedia PDF Downloads 2265869 Improving Machine Learning Translation of Hausa Using Named Entity Recognition
Authors: Aishatu Ibrahim Birma, Aminu Tukur, Abdulkarim Abbass Gora
Abstract:
Machine translation plays a vital role in the Field of Natural Language Processing (NLP), breaking down language barriers and enabling communication across diverse communities. In the context of Hausa, a widely spoken language in West Africa, mainly in Nigeria, effective translation systems are essential for enabling seamless communication and promoting cultural exchange. However, due to the unique linguistic characteristics of Hausa, accurate translation remains a challenging task. The research proposes an approach to improving the machine learning translation of Hausa by integrating Named Entity Recognition (NER) techniques. Named entities, such as person names, locations, organizations, and dates, are critical components of a language's structure and meaning. Incorporating NER into the translation process can enhance the quality and accuracy of translations by preserving the integrity of named entities and also maintaining consistency in translating entities (e.g., proper names), and addressing the cultural references specific to Hausa. The NER will be incorporated into Neural Machine Translation (NMT) for the Hausa to English Translation.Keywords: machine translation, natural language processing (NLP), named entity recognition (NER), neural machine translation (NMT)
Procedia PDF Downloads 445868 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4055867 Foresight in Food Supply System in Bogota
Authors: Suarez-Puello Alejandro, Baquero-Ruiz Andrés F, Suarez-Puello Rodrigo
Abstract:
This paper discusses the results of a foresight exercise which analyzes Bogota’s fruit, vegetable and tuber supply chain strategy- described at the Food Supply and Security Master Plan (FSSMP)-to provide the inhabitants of Bogotá, Colombia, with basic food products at a fair price. The methodology consisted of using quantitative and qualitative foresight tools such as system dynamics and variable selection methods to better represent interactions among stakeholders and obtain more integral results that could shed light on this complex situation. At first, the Master Plan is an input to establish the objectives and scope of the exercise. Then, stakeholders and their relationships are identified. Later, system dynamics is used to model product, information and money flow along the fruit, vegetable and tuber supply chain. Two scenarios are presented, discussing actions by the public sector and the reactions that could be expected from the whole food supply system. Finally, these impacts are compared to the Food Supply and Security Master Plan’s objectives suggesting recommendations that could improve its execution. This foresight exercise performed at a governmental level is intended to promote the widen the use of foresight as an anticipatory, decision-making tool that offers solutions to complex problems.Keywords: decision making, foresight, public policies, supply chain, system dynamics
Procedia PDF Downloads 4395866 Method for Requirements Analysis and Decision Making for Restructuring Projects in Factories
Authors: Rene Hellmuth
Abstract:
The requirements for the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Restrictions regarding new areas, shorter life cycles of product and production technology as well as a VUCA (volatility, uncertainty, complexity and ambiguity) world cause more frequently occurring rebuilding measures within a factory. Restructuring of factories is the most common planning case today. Restructuring is more common than new construction, revitalization and dismantling of factories. The increasing importance of restructuring processes shows that the ability to change was and is a promising concept for the reaction of companies to permanently changing conditions. The factory building is the basis for most changes within a factory. If an adaptation of a construction project (factory) is necessary, the inventory documents must be checked and often time-consuming planning of the adaptation must take place to define the relevant components to be adapted, in order to be able to finally evaluate them. The different requirements of the planning participants from the disciplines of factory planning (production planner, logistics planner, automation planner) and industrial construction planning (architect, civil engineer) come together during reconstruction and must be structured. This raises the research question: Which requirements do the disciplines involved in the reconstruction planning place on a digital factory model? A subordinate research question is: How can model-based decision support be provided for a more efficient design of the conversion within a factory? Because of the high adaptation rate of factories and its building described above, a methodology for rescheduling factories based on the requirements engineering method from software development is conceived and designed for practical application in factory restructuring projects. The explorative research procedure according to Kubicek is applied. Explorative research is suitable if the practical usability of the research results has priority. Furthermore, it will be shown how to best use a digital factory model in practice. The focus will be on mobile applications to meet the needs of factory planners on site. An augmented reality (AR) application will be designed and created to provide decision support for planning variants. The aim is to contribute to a shortening of the planning process and model-based decision support for more efficient change management. This requires the application of a methodology that reduces the deficits of the existing approaches. The time and cost expenditure are represented in the AR tablet solution based on a building information model (BIM). Overall, the requirements of those involved in the planning process for a digital factory model in the case of restructuring within a factory are thus first determined in a structured manner. The results are then applied and transferred to a construction site solution based on augmented reality.Keywords: augmented reality, digital factory model, factory planning, restructuring
Procedia PDF Downloads 1345865 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 455864 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues
Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid
Abstract:
New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.Keywords: information visualization, visual analytics, text mining, visual text analytics tools, big data visualization
Procedia PDF Downloads 3995863 Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies
Authors: Siti N. I. Mat Kamal, Othman Ibrahim, Mehrbakhsh Nilashi, Jafalizan M. Jali
Abstract:
The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies.Keywords: digital forensics, digital forensics adoption, digital information, law enforcement agency
Procedia PDF Downloads 1515862 The Impact of Cognition and Communication on the Defense of Capital Murder Cases
Authors: Shameka Stanford
Abstract:
This presentation will discuss how cognitive and communication disorders in the areas of executive functioning, receptive and expressive language can impact the problem-solving and decision making of individuals with such impairments. More specifically, this presentation will discuss approaches the legal defense team of capital case lawyers can add to their experience when servicing individuals who have a history of educational decline, special education, and limited intervention and treatment. The objective of the research is to explore and identify the correlations between impaired executive function skills and decision making and competency for individuals facing death penalty charges. To conduct this research, experimental design, randomized sampling, qualitative analysis was employed. This research contributes to the legal and criminal justice system related to how they view, defend, and characterize, and judge individuals with documented cognitive and communication disorders who are eligible for capital case charges. More importantly, this research contributes to the increased ability of death penalty lawyers to successfully defend clients with a history of academic difficulty, special education, and documented disorders that impact educational progress and academic success.Keywords: communication disorders, cognitive disorders, capital murder, death penalty, executive function
Procedia PDF Downloads 1565861 Architecture for Multi-Unmanned Aerial Vehicles Based Autonomous Precision Agriculture Systems
Authors: Ebasa Girma, Nathnael Minyelshowa, Lebsework Negash
Abstract:
The use of unmanned aerial vehicles (UAVs) in precision agriculture has seen a huge increase recently. As such, systems that aim to apply various algorithms on the field need a structured framework of abstractions. This paper defines the various tasks of the UAVs in precision agriculture and models them into an architectural framework. The presented architecture is built on the context that there will be minimal physical intervention to do the tasks defined with multiple coordinated and cooperative UAVs. Various tasks such as image processing, path planning, communication, data acquisition, and field mapping are employed in the architecture to provide an efficient system. Besides, different limitation for applying Multi-UAVs in precision agriculture has been considered in designing the architecture. The architecture provides an autonomous end-to-end solution, starting from mission planning, data acquisition, and image processing framework that is highly efficient and can enable farmers to comprehensively deploy UAVs onto their lands. Simulation and field tests show that the architecture offers a number of advantages that include fault-tolerance, robustness, developer, and user-friendliness.Keywords: deep learning, multi-UAVs, precision agriculture, UAVs architecture
Procedia PDF Downloads 1145860 Analysis of Complex Business Negotiations: Contributions from Agency-Theory
Authors: Jan Van Uden
Abstract:
The paper reviews classical agency-theory and its contributions to the analysis of complex business negotiations and gives an approach for the modification of the basic agency-model in order to examine the negotiation specific dimensions of agency-problems. By illustrating fundamental potentials for the modification of agency-theory in context of business negotiations the paper highlights recent empirical research that investigates agent-based negotiations and inter-team constellations. A general theoretical analysis of complex negotiation would be based on a two-level approach. First, the modification of the basic agency-model in order to illustrate the organizational context of business negotiations (i.e., multi-agent issues, common-agencies, multi-period models and the concept of bounded rationality). Second, the application of the modified agency-model on complex business negotiations to identify agency-problems and relating areas of risk in the negotiation process. The paper is placed on the first level of analysis – the modification. The method builds on the one hand on insights from behavior decision research (BRD) and on the other hand on findings from agency-theory as normative directives to the modification of the basic model. Through neoclassical assumptions concerning the fundamental aspects of agency-relationships in business negotiations (i.e., asymmetric information, self-interest, risk preferences and conflict of interests), agency-theory helps to draw solutions on stated worst-case-scenarios taken from the daily negotiation routine. As agency-theory is the only universal approach able to identify trade-offs between certain aspects of economic cooperation, insights obtained provide a deeper understanding of the forces that shape business negotiation complexity. The need for a modification of the basic model is illustrated by highlighting selected issues of business negotiations from agency-theory perspective: Negotiation Teams require a multi-agent approach under the condition that often decision-makers as superior-agents are part of the team. The diversity of competences and decision-making authority is a phenomenon that overrides the assumptions of classical agency-theory and varies greatly in context of certain forms of business negotiations. Further, the basic model is bound to dyadic relationships preceded by the delegation of decision-making authority and builds on a contractual created (vertical) hierarchy. As a result, horizontal dynamics within the negotiation team playing an important role for negotiation success are therefore not considered in the investigation of agency-problems. Also, the trade-off between short-term relationships within the negotiation sphere and the long-term relationships of the corporate sphere calls for a multi-period perspective taking into account the sphere-specific governance-mechanisms already established (i.e., reward and monitoring systems). Within the analysis, the implementation of bounded rationality is closely related to findings from BRD to assess the impact of negotiation behavior on underlying principal-agent-relationships. As empirical findings show, the disclosure and reservation of information to the agent affect his negotiation behavior as well as final negotiation outcomes. Last, in context of business negotiations, asymmetric information is often intended by decision-makers acting as superior-agents or principals which calls for a bilateral risk-approach to agency-relations.Keywords: business negotiations, agency-theory, negotiation analysis, interteam negotiations
Procedia PDF Downloads 1395859 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 1285858 Impact of Gold Mining on Crop Production, Livelihood and Environmental Sustainability in West Africa in the Context of Water-Energy-Food Nexus
Authors: Yusif Habib
Abstract:
The Volta River Basin (VRB) is a transboundary resource shared by Six (6) the West African States. It’s utilization spans across irrigation, hydropower generation, domestic/household water use, transportation, industrial processing, among others. Simultaneously, mineral resources such as gold are mined within the VRB catchment. Typically, the extraction/mining operation is earth-surface excavation; known as Artisanal and Small-scale mining. We developed a conceptual framework in the context of Water-Energy-Food (WEF) Nexus to delineate the trade-offs and synergies between the mineral extractive operation’s impact on Agricultural systems, specifically, cereal crops (e.g. Maize, Millet, and Rice) and the environment (water and soil quality, deforestation, etc.) on the VRB. Thus, the study examined the trade-offs and synergies through the WEF nexus lens to explore the extent of an eventual overarching mining preference for gold exploration with high economic returns as opposed to the presumably low yearly harvest and household income from food crops production to inform intervention prioritization. Field survey (household, expert, and stakeholder consultation), bibliometric analysis/literature review, scenario, and simulation models, including land-use land cover (LULC) analyses, were conducted. The selected study area(s) in Ghana was the location where the mineral extractive operation’s presence and impact are widespread co-exist with the Agricultural systems. Overall, the study proposes mechanisms of the virtuous cycle through FEW Nexus instead of the presumably existing vicious cycle to inform decision making and policy implementation.Keywords: agriculture, environmental sustainability, gold Mining, synergies, trade-off, water-energy-food nexus
Procedia PDF Downloads 1635857 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London
Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz
Abstract:
Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration
Procedia PDF Downloads 1475856 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 855855 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 645854 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company
Authors: Sevde D. Karayel, Ediz Atmaca
Abstract:
Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management
Procedia PDF Downloads 2645853 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance
Authors: Emad Alenany, M. Adel El-Baz
Abstract:
In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.Keywords: queueing network, discrete-event simulation, health applications, SPT
Procedia PDF Downloads 1875852 Optimizing the Public Policy Information System under the Environment of E-Government
Authors: Qian Zaijian
Abstract:
E-government is one of the hot issues in the current academic research of public policy and management. As the organic integration of information and communication technology (ICT) and public administration, e-government is one of the most important areas in contemporary information society. Policy information system is a basic subsystem of public policy system, its operation affects the overall effect of the policy process or even exerts a direct impact on the operation of a public policy and its success or failure. The basic principle of its operation is information collection, processing, analysis and release for a specific purpose. The function of E-government for public policy information system lies in the promotion of public access to the policy information resources, information transmission through e-participation, e-consultation in the process of policy analysis and processing of information and electronic services in policy information stored, to promote the optimization of policy information systems. However, due to many factors, the function of e-government to promote policy information system optimization has its practical limits. In the building of E-government in our country, we should take such path as adhering to the principle of freedom of information, eliminating the information divide (gap), expanding e-consultation, breaking down information silos and other major path, so as to promote the optimization of public policy information systems.Keywords: China, e-consultation, e-democracy, e-government, e-participation, ICTs, public policy information systems
Procedia PDF Downloads 8655851 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems
Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka
Abstract:
Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling
Procedia PDF Downloads 3235850 An Integrated Fuzzy Inference System and Technique for Order of Preference by Similarity to Ideal Solution Approach for Evaluation of Lean Healthcare Systems
Authors: Aydin M. Torkabadi, Ehsan Pourjavad
Abstract:
A decade after the introduction of Lean in Saskatchewan’s public healthcare system, its effectiveness remains a controversial subject among health researchers, workers, managers, and politicians. Therefore, developing a framework to quantitatively assess the Lean achievements is significant. This study investigates the success of initiatives across Saskatchewan health regions by recognizing the Lean healthcare criteria, measuring the success levels, comparing the regions, and identifying the areas for improvements. This study proposes an integrated intelligent computing approach by applying Fuzzy Inference System (FIS) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). FIS is used as an efficient approach to assess the Lean healthcare criteria, and TOPSIS is applied for ranking the values in regards to the level of leanness. Due to the innate uncertainty in decision maker judgments on criteria, principals of the fuzzy theory are applied. Finally, FIS-TOPSIS was established as an efficient technique in determining the lean merit in healthcare systems.Keywords: lean healthcare, intelligent computing, fuzzy inference system, healthcare evaluation, technique for order of preference by similarity to ideal solution, multi-criteria decision making, MCDM
Procedia PDF Downloads 1625849 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm
Abstract:
Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension
Procedia PDF Downloads 1005848 Perceived Procedural Justice and Organizational Citizenship Behavior: Evidence from a Security Organization
Authors: Noa Nelson, Orit Appel, Rachel Ben-ari
Abstract:
Organizational Citizenship Behavior (OCB) is voluntary employee behavior that contributes to the organization beyond formal job requirements. It can take different forms, such as helping teammates (OCB toward individuals; hence, OCB-I), or staying after hours to attend a task force (OCB toward the organization; hence, OCB-O). Generally, OCB contributes substantially to organizational climate, goals, productivity, and resilience, so organizations need to understand what encourages it. This is particularly challenging in security organizations. Security work is characterized by high levels of stress and burnout, which is detrimental to OCB, and security organizational design emphasizes formal rules and clear hierarchies, leaving employees with less freedom for voluntary behavior. The current research explored the role of Perceived Procedural Justice (PPJ) in enhancing OCB in a security organization. PPJ refers to how fair decision-making processes are perceived to be. It involves the sense that decision makers are objective, attentive to everyone's interests, respectful in their communications and participatory - allowing individuals a voice in decision processes. Justice perceptions affect motivation, and it was specifically suggested that PPJ creates an attachment to one's organization and personal interest in its success. Accordingly, PPJ had been associated with OCB, but hardly any research tested their association with security organizations. The current research was conducted among prison guards in the Israel Prison Service, to test a correlational and a causal association between PPJ and OCB. It differentiated between perceptions of direct commander procedural justice (CPJ), and perceptions of organization procedural justice (OPJ), hypothesizing that CPJ would relate to OCB-I, while OPJ would relate to OCB-O. In the first study, 336 prison guards (305 male) from 10 different prisons responded to questionnaires measuring their own CPJ, OPJ, OCB-I, and OCB-O. Hierarchical linear regression analyses indicated the significance of commander procedural justice (CPJ): It associated with OCB-I and also associated with OPJ, which, in turn, associated with OCB-O. The second study tested CPJ's causal effects on prison guards' OCB-I and OCB-O; 311 prison guards (275 male) from 14 different prisons read scenarios that described either high or low CPJ, and then evaluated the likelihood of that commander's prison guards performing OCB-I and OCB-O. In this study, CPJ enhanced OCB-O directly. It also contributed to OCB-I, indirectly: CPJ enhanced the motivation for collaboration with the commander, which respondents also evaluated after reading scenarios. Collaboration, in turn, associated with OCB-I. The studies demonstrate that procedural justice, especially commander's PJ, promotes OCB in security work environments. This is important because extraordinary teamwork and motivation are needed to deal with emergency situations and with delicate security challenges. Following the studies, the Israel Prison Service implemented personal procedural justice training for commanders and unit level programs for procedurally just decision processes. From a theoretical perspective, the studies extend the knowledge on PPJ and OCB to security work environments and contribute evidence on PPJ's causal effects. They also call for further research, to understand the mechanisms through which different types of PPJ affect different types of OCB.Keywords: organizational citizenship behavior, perceived procedural justice, prison guards, security organizations
Procedia PDF Downloads 2215847 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 905846 An Approach to Automate the Modeling of Life Cycle Inventory Data: Case Study on Electrical and Electronic Equipment Products
Authors: Axelle Bertrand, Tom Bauer, Carole Charbuillet, Martin Bonte, Marie Voyer, Nicolas Perry
Abstract:
The complexity of Life Cycle Assessment (LCA) can be identified as the ultimate obstacle to massification. Due to these obstacles, the diffusion of eco-design and LCA methods in the manufacturing sectors could be impossible. This article addresses the research question: How to adapt the LCA method to generalize it massively and improve its performance? This paper aims to develop an approach for automating LCA in order to carry out assessments on a massive scale. To answer this, we proceeded in three steps: First, an analysis of the literature to identify existing automation methods. Given the constraints of large-scale manual processing, it was necessary to define a new approach, drawing inspiration from certain methods and combining them with new ideas and improvements. In a second part, our development of automated construction is presented (reconciliation and implementation of data). Finally, the LCA case study of a conduit is presented to demonstrate the feature-based approach offered by the developed tool. A computerized environment supports effective and efficient decision-making related to materials and processes, facilitating the process of data mapping and hence product modeling. This method is also able to complete the LCA process on its own within minutes. Thus, the calculations and the LCA report are automatically generated. The tool developed has shown that automation by code is a viable solution to meet LCA's massification objectives. It has major advantages over the traditional LCA method and overcomes the complexity of LCA. Indeed, the case study demonstrated the time savings associated with this methodology and, therefore, the opportunity to increase the number of LCA reports generated and, therefore, to meet regulatory requirements. Moreover, this approach also presents the potential of the proposed method for a wide range of applications.Keywords: automation, EEE, life cycle assessment, life cycle inventory, massively
Procedia PDF Downloads 905845 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray
Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray
Abstract:
Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer
Procedia PDF Downloads 755844 Comparative Efficacy of Gas Phase Sanitizers for Inactivating Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on Intact Lettuce Heads
Authors: Kayla Murray, Andrew Green, Gopi Paliyath, Keith Warriner
Abstract:
Introduction: It is now acknowledged that control of human pathogens associated with fresh produce requires an integrated approach of several interventions as opposed to relying on post-harvest washes to remove field acquired contamination. To this end, current research is directed towards identifying such interventions that can be applied at different points in leafy green processing. Purpose: In the following the efficacy of different gas phase treatments to decontaminate whole lettuce heads during pre-processing storage were evaluated. Methods: Whole Cos lettuce heads were spot inoculated with L. monocytogenes, E. coli O157:H7 or Salmonella spp. The inoculated lettuce heads were then placed in a treatment chamber and exposed to ozone, chlorine dioxide or hydroxyl radicals at different time periods under a range of relative humidity. Survivors of the treatments were enumerated along with sensory analysis performed on the treated lettuce. Results: Ozone gas reduced L. monocytogenes by 2-log10 after ten-minutes of exposure with Salmonella and E. coli O157:H7 being decreased by 0.66 and 0.56-log cfu respectively. Chlorine dioxide gas treatment reduced L. monocytogenes and Salmonella on lettuce heads by 4 log cfu but only supported a 0.8 log cfu reduction in E. coli O157:H7 numbers. In comparison, hydroxyl radicals supported a 2.9 – 4.8 log cfu reduction of model human pathogens inoculated onto lettuce heads but required extended exposure times and relative humidity < 0.8. Significance: From the gas phase sanitizers tested, chlorine dioxide and hydroxyl radicals are the most effective. The latter process holds most promise based on the ease of delivery, worker safety and preservation of lettuce sensory characteristics. Although expose times for hydroxyl radicles was relatively long (24h) this should not be considered a limitation given the intervention is applied in store rooms or in transport containers during transit.Keywords: gas phase sanitizers, iceberg lettuce heads, leafy green processing
Procedia PDF Downloads 4085843 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 2495842 Analysis of Crisis Management Systems of United Kingdom and Turkey
Authors: Recep Sait Arpat, Hakan Güreşci
Abstract:
Emergency, disaster and crisis management terms are generally perceived as the same processes. This conflict effects the approach and delegating policy of the political order. Crisis management starts in the aftermath of the mismanagement of disaster and emergency. In the light of the information stated above in this article Turkey and United Kingdom(UK)’s crisis management systems are analyzed. This article’s main aim is to clarify the main points of the emergency management system of United Kingdom and Turkey’s disaster management system by comparing them. To do this: A prototype model of the political decision making processes of the countries is drawn, decision making mechanisms and the planning functions are compared. As a result it’s found that emergency management policy in Turkey is reactive whereas it’s proactive in UK; as the delegating policy Turkey’s system is similar to UK; levels of emergency situations are similar but not the same; the differences are stemming from the civil order and nongovernmental organizations effectiveness; UK has a detailed government engagement model to emergencies, which shapes the doctrine of the approach to emergencies, and it’s successful in gathering and controlling the whole state’s efforts; crisis management is a sub-phase of UK emergency management whereas it’s accepted as a outmoded management perception and the focal point of crisis management perception in UK is security crisis and natural disasters while in Turkey it is natural disasters. In every anlysis proposals are given to Turkey.Keywords: crisis management, disaster management, emergency management, turkey, united kingdom
Procedia PDF Downloads 3725841 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 93