Search results for: digital image watermarking
3642 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops
Authors: Brandtner Patrick, Staberhofer Franz
Abstract:
Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.Keywords: digital supply chain, digital transformation, supply chain management, value networks
Procedia PDF Downloads 1773641 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers, new model
Procedia PDF Downloads 4653640 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes
Authors: Hassan A. Alshahrani, Mehdi H. Hojjati
Abstract:
In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.Keywords: Bending stiffness, out-of-autoclave prepreg, forming process, numerical simulation.
Procedia PDF Downloads 3023639 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour
Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling
Abstract:
Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model
Procedia PDF Downloads 993638 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method
Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer
Abstract:
This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper
Procedia PDF Downloads 3443637 From the Classroom to Digital Learning Environments: An Action Research on Pedagogical Practices in Higher Education
Authors: Marie Alexandre, Jean Bernatchez
Abstract:
This paper focuses on the complexity of the face-to-face-to-distance learning transition process. Our research action aims to support the process of transition from classroom to distance learning for teachers in higher education with regard to pedagogical practices that can meet the various needs of students using digital learning environments. In Quebec and elsewhere in the world, the advent of digital education is helping to transform teaching, which is significantly changing the role of teachers. While distance education implies a dissociation of teaching and learning to a variable degree in space and time, distance education (DE) is becoming more and increasingly becoming a preferred option for maintaining the delivery of certain programs and providing access to programs and to provide access to quality activities throughout Quebec. Given the impact of teaching practices on educational success, this paper reports on the results of three research objectives: 1) To document teachers' knowledge of teaching in distance education through the design, experimentation and production of a repertoire of the determinants of pedagogical practices in response to students' needs. 2) Explain, according to a gendered logic, the adequacy between the pedagogical practices implemented in distance learning and the response to the profiles and needs expressed by students using digital learning environments; 3) Produce a model of a support approach during the process of transition from classroom to distance learning at the college level. A mixed methodology, i.e., a quantitative component (questionnaire survey) and a qualitative component (explanatory interviews and living lab) was used in cycles that were part of an ongoing validation process. The intervention includes the establishment of a professional collaboration group, webinars training webinars for the participating teachers on the didactic issue of knowledge-teaching in FAD, the didactic use of technologies, and the differentiated socialization models of educational success in college education. All of the tools developed will be used by partners in the target environment as well as by all teacher educators, students in initial teacher training, practicing teachers, and the general public. The results show that access to training leading to qualifications and commitment to educational success reflects the existing links between the people in the educational community. The relational stakes of being present in distance education take on multiple configurations and different dimensions of learning testify to needs and realities that are sometimes distinct depending on the life cycle. This project will be of interest to partners in the targeted field as well as to all teacher trainers, students in initial teacher training, practicing college teachers, and to university professors. The entire educational community will benefit from digital resources in education. The scientific knowledge resulting from this action research will benefit researchers in the fields of pedagogy, didactics, teacher training and pedagogy in higher education in a digital context.Keywords: action research, didactics, digital learning environment, distance learning, higher education, pedagogy technological, pedagogical content knowledge
Procedia PDF Downloads 873636 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications
Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo
Abstract:
Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer
Procedia PDF Downloads 233635 A Sustainable Society and Its Order Principles: Implications of Common Grace and the Man as the Image of God
Authors: Wenfu Zheng, Guanghe Zheng
Abstract:
The discussion on the social sustainability in existing literature is limited to two-dimension epistemology space with only two elements: the human and nature. Using the revelation of the Bible God, the paper adds a moral component to the two-dimension space. With the new variable being introduced, the authors formulate a to three-dimension epistemology space and discuss its implications. Based on the space, the authors explore the hierarchical structure of order principles for a sustainable society. The social order principle system hierarchically consists of three principles: moral, relational, and rational. The justification of every principle is analyzed briefly. The paper concluded that all these order principles are necessary assurance of building a sustainable society.Keywords: common grace, saving grace, sustainable society, the image of God
Procedia PDF Downloads 1923634 The Image of Egypt in CNN, BBC and Al Jazeera News Channels in Terms of Democracy, Economic Status and Stability
Authors: Sarah El Mokadem
Abstract:
Egypt has been the focus of international media since 2011 revolution and its repercussions. By the end of 2017, President Abdel Fattah El Sisi will have finished his first term of presidency. With an upcoming presidential election, all eyes are returning back to Egypt as there are speculations about whether the current regime will uphold or change points in the constitution determining the years of presidency term and the allowed number or reelections. In this paper, the researcher examines the reports related to Egypt in three international news channels with different ideologies. The research aims to identify the frames used to portray major issues in Egypt like the economic struggle, democracy levels and stability and safety of the country. All available reports from these three channels in 2017 on YouTube were analyzed which is the year before the presidential elections.Keywords: content analysis, Egypt, image building, news channel ideology
Procedia PDF Downloads 2173633 Towards Addressing the Cultural Snapshot Phenomenon in Cultural Mapping Libraries
Authors: Mousouris Spiridon, Kavakli Evangelia
Abstract:
This paper focuses on Digital Libraries (DLs) that contain and geovisualise cultural data, highlighting the need to define them as a separate category termed Cultural Mapping Libraries, based on their inherent connection of culture with geographic location and their design requirements in support of visual representation of cultural data on the map. An exploratory analysis of DLs that conform to the above definition brought forward the observation that existing Cultural Mapping Libraries fail to geovisualise the entirety of cultural data per point of interest thus resulting in a Cultural Snapshot phenomenon. The existence of this phenomenon was reinforced by the results of a systematic bibliographic research. In order to address the Cultural Snapshot, this paper proposes the use of the Semantic Web principles to efficiently interconnect spatial cultural data through time, per geographic location. In this way points of interest are transformed into scenery where culture evolves over time. This evolution is expressed as occurrences taking place chronologically, in an event oriented approach, a conceptualization also endorsed by the CIDOC Conceptual Reference Model (CIDOC CRM). In particular, we posit the use of CIDOC CRM as the baseline for defining the logic of Cultural Mapping Libraries as part of the Culture Domain in accordance with the Digital Library Reference Model, in order to define the rules of cultural data management by the system. Our future goal is to transform this conceptual definition in to inferencing rules that resolve the Cultural Snapshot and lead to a more complete geovisualisation of cultural data.Keywords: digital libraries, semantic web, geovisualization, CIDOC-CRM
Procedia PDF Downloads 1093632 Component Lifecycle and Concurrency Model in Usage Control (UCON) System
Authors: P. Ghann, J. Shiguang, C. Zhou
Abstract:
Access control is one of the most challenging issues facing information security. Access control is defined as, the ability to permit or deny access to a particular computational resource or digital information by an unauthorized user or subject. The concept of usage control (UCON) has been introduced as a unified approach to capture a number of extensions for access control models and systems. In UCON, an access decision is determined by three factors: Authorizations, obligations and conditions. Attribute mutability and decision continuity are two distinct characteristics introduced by UCON for the first time. An observation of UCON components indicates that, the components are predefined and static. In this paper, we propose a new and flexible model of usage control for the creation and elimination of some of these components; for example new objects, subjects, attributes and integrate these with the original UCON model. We also propose a model for concurrent usage scenarios in UCON.Keywords: access control, concurrency, digital container, usage control
Procedia PDF Downloads 3203631 DBN-Based Face Recognition System Using Light Field
Authors: Bing Gu
Abstract:
Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.Keywords: DBN, face recognition, light field, Lytro
Procedia PDF Downloads 4643630 Determinants of Customer Satisfaction: The case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality service risk, banks
Procedia PDF Downloads 1233629 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5133628 Calculating Ventricle’s Area Based on Clinical Dementia Rating Values on Coronal MRI Image
Authors: Retno Supriyanti, Ays Rahmadian Subhi, Yogi Ramadhani, Haris B. Widodo
Abstract:
Alzheimer is one type of disease in the elderly that may occur in the world. The severity of the Alzheimer can be measured using a scale called Clinical Dementia Rating (CDR) based on a doctor's diagnosis of the patient's condition. Currently, diagnosis of Alzheimer often uses MRI machine, to know the condition of part of the brain called Hippocampus and Ventricle. MRI image itself consists of 3 slices, namely Coronal, Sagittal and Axial. In this paper, we discussed the measurement of the area of the ventricle especially in the Coronal slice based on the severity level referring to the CDR value. We use Active Contour method to segment the ventricle’s region, therefore that ventricle’s area can be calculated automatically. The results show that this method can be used for further development in the automatic diagnosis of Alzheimer.Keywords: Alzheimer, CDR, coronal, ventricle, active contour
Procedia PDF Downloads 2663627 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1203626 Leveraging Digital Cyber Technology for Self-Care and Improved Management of DMPA-SC Clients
Authors: Oluwaseun Adeleke, Grace Amarachi Omenife, Jennifer Adebambo, Mopelola Raji, Anthony Nwala, Mogbonjubade Adesulure
Abstract:
Introduction: The incorporation of digital technology in healthcare systems is instrumental in transforming the delivery, management, and overall experience of healthcare and holds the potential to scale up access through over 200 million active mobile phones used in Nigeria. Digital tools enable increased access to care, stronger client engagement, progress in research and data-driven insights, and more effective promotion of self-care and do-it-yourself practices. The Delivering Innovation in Self-Care (DISC) project 2021 has played a pivotal role in granting women greater autonomy over their sexual and reproductive health (SRH) through a variety of approaches, including information and training to self-inject contraception (DMPA-SC). To optimize its outcomes, the project also leverages digital technology platforms like social media: Facebook, Instagram, and Meet Tina (Chatbot) via WhatsApp, Customer Relationship Management (CRM) applications Freshworks, and Viamo. Methodology: The project has been successful at optimizing in-person digital cyberspace interaction to sensitize individuals effectively about self-injection and provide linkages to SI services. This platform employs the Freshworks CRM software application, along with specially trained personnel known as Cyber IPC Agents and DHIS calling centers. Integration of Freshworks CRM software with social media allows a direct connection with clients to address emerging issues, schedule follow-ups, send reminders to improve compliance with self-injection schedules, enhance the overall user experience for self-injection (SI) clients, and generate comprehensive reports and analytics on client interactions. Interaction covers a range of topics, including – How to use SI, learning more about SI, side-effects and its management, accessing services, fertility, ovulation, other family planning methods, inquiries related to Sexual Reproductive Health as well as uses an address log to connect them with nearby facilities or online pharmaceuticals. Results: Between the months of March to September, a total of 5,403 engagements were recorded. Among these, 4,685 were satisfactorily resolved. Since the program's inception, digital advertising has created 233,633,075 impressions, reached 12,715,582 persons, and resulted in 3,394,048 clicks. Conclusion: Leveraging digital technology has proven to be an invaluable tool in client management and improving client experience. The use of Cyber technology has enabled the successful development and maintenance of client relationships, which have been effective at providing support, facilitating delivery and compliance with DMPA-SC self-injection services, and ensuring overall client satisfaction. Concurrently, providing qualitative data, including user experience feedback, has enabled the derivation of crucial insights that inform the decision-making process and guide in normalizing self-care behavior.Keywords: selfcare, DMPA-SC self-injection, digital technology, cyber technology, freshworks CRM software
Procedia PDF Downloads 673625 Determinants of Customer Satisfaction: The Case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality services risk, bank
Procedia PDF Downloads 623624 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings
Authors: Eli Avraham
Abstract:
The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing
Procedia PDF Downloads 2853623 Analyze Long-Term Shoreline Change at Yi-Lan Coast, Taiwan Using Multiple Sources
Authors: Geng-Gui Wang, Chia-Hao Chang, Jee-Cheng Wu
Abstract:
A shoreline is a line where a body of water and the shore meet. It provides economic and social security to coastal habitations. However, shorelines face multiple threats due to both natural processes and man-made effects because of disasters, rapid urbanization, industrialization, and sand deposition and erosion, etc. In this study, we analyzed multi-temporal satellite images of the Yilan coast, Taiwan from 1978 to 2016, using the United States Geological Survey (USGS) Digital Shoreline Analysis System (DSAS), weather information (as rainfall records and typhoon routes), and man-made construction project data to explore the causes of shoreline changes. The results showed that the shoreline at Yilan coast is greatly influenced by typhoons and anthropogenic interventions.Keywords: shoreline change, multi-temporal satellite, digital shoreline analysis system, DSAS, Yi-Lan coast
Procedia PDF Downloads 1633622 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 353621 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2813620 Determinants of Artificial Intelligence Capabilities in Healthcare: The Case of Ethiopia
Authors: Dereje Ferede, Solomon Negash
Abstract:
Artificial Intelligence (AI) is a key enabler and driver to transform and revolutionize the healthcare industries. However, utilizing AI and achieving these benefits is challenging for different sectors in wide-ranging, more difficult for developing economy healthcare. Due to this, real-world clinical execution and implementation of AI have not yet aged. We believe that examining the determinants is key to addressing these challenges. Furthermore, the literature does not yet particularize determinants of AI capabilities and ways of empowering the healthcare ecosystem to develop AI capabilities in a developing economy. Thus, this study aims to position AI as a digital transformation weapon for the healthcare ecosystem by examining AI capability determinants and providing insights on better empowering the healthcare industry to develop AI capabilities. To do so, we base on the technology-organization-environment (TOE) model and will apply a mixed research approach. We will conclude with recommendations based on findings for future practitioners and researchers.Keywords: artificial intelligence, capability, digital transformation, developing economies, healthcare
Procedia PDF Downloads 2423619 Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills
Authors: Peter J. Riley
Abstract:
Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp.Keywords: patient dose optimization, radiological physics, simulation, tissue contrast
Procedia PDF Downloads 953618 Patterns of Positive Feedback Formation in the System of Online Action
Authors: D. Gvozdikov
Abstract:
The purpose of this study is an attempt to describe an online action as a system that combines disjointed events and behavioral chains into a whole. The research focuses on patterns of naturally-formed chains of actions united by an orientation towards the online environment. A key characteristic of the system of online action is that it acts as an attractor for separate actions and chains of behavioral repertoire accumulating time and efforts made by users. The article demonstrates how the chains of online-offline actions are combined into a single pattern due to a simple identifiable mechanism, a positive feedback system. Using methods of digital ethnography and analyzing the content of the Instagram application and media blogs, the research reveals how through the positive feedback mechanism the entire system of online action acquires stability and can expand involving new spheres of human activity.Keywords: digital anthropology, internet studies, systems theory, social media
Procedia PDF Downloads 1333617 Intellectual Property in Digital Environment
Authors: Balamurugan L.
Abstract:
Artificial intelligence (AI) and its applications in Intellectual Property Rights (IPR) has been significantly growing in recent years. In last couple of years, AI tools for Patent Research and Patent Analytics have been well-stabilized in terms of accuracy of references and representation of identified patent insights. However, AI tools for Patent Prosecution and Patent Litigation are still in the nascent stage and there may be a significant potential if such market is explored further. Our research is primarily focused on identifying potential whitespaces and schematic algorithms to automate the Patent Prosecution and Patent Litigation Process of the Intellectual Property. The schematic algorithms may assist leading AI tool developers, to explore such opportunities in the field of Intellectual Property. Our research is also focused on identification of pitfalls of the AI. For example, Information Security and its impact in IPR, and Potential remediations to sustain the IPR in the digital environment.Keywords: artificial intelligence, patent analytics, patent drafting, patent litigation, patent prosecution, patent research
Procedia PDF Downloads 673616 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1043615 Non-Fungible Token (NFT) - Used in the Music Industry for Independent Artists without a Music Recording Label
Authors: Bartholomew Badar
Abstract:
An NFT is a digital certificate with rights to own an asset, including various valuable digital goods such as art pieces, music items, collectibles, etc. The market for NFTs started developing in 2017 and has lately seen increased growth as crypto-currencies and the blockchain market continue to gain popularity. This study aims to understand potential uses for NFTs concerning the music industry and record labels. Independent artists struggle to distribute and sell their music without the help of a record label. The NFT marketplace could be a great tool to eliminate this problem. The research objective is to identify possibilities for independent artists to own their music rights and share value with an audience. We see a trend of new-school music artists trying to enter the music NFT market by creating visualizers, beats, cover art, etc. To analyze various existing music NFT assets and determine whether or not independent artists could monetize their music without a record label is the main focus of this scholarly paper.Keywords: blockchain, crypto-currency, music, artist, NFT
Procedia PDF Downloads 1773614 HIS Integration Systems Using Modality Worklist and DICOM
Authors: Kulvinder Singh Mann
Abstract:
The usability and simulation of information systems, known as Hospital Information System (HIS), Radiology Information System (RIS), and Picture Archiving, Communication System, for electronic medical records has shown a good impact for actors in the hospital. The objective is to help and make their work easier; such as for a nurse or administration staff to record the medical records of the patient, and for a patient to check their bill transparently. However, several limitations still exists on such area regarding the type of data being stored in the system, ability for data transfer, storage and protocols to support communication between medical devices and digital images. This paper reports the simulation result of integrating several systems to cope with those limitations by using the Modality Worklist and DICOM standard. It succeeds in documenting the reason of that failure so future research will gain better understanding and be able to integrate those systems.Keywords: HIS, RIS, PACS, modality worklist, DICOM, digital images
Procedia PDF Downloads 3173613 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images
Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai
Abstract:
In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.Keywords: Harris corner, infrared image, feature detection, registration, matching
Procedia PDF Downloads 304