Search results for: metabolic networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3555

Search results for: metabolic networks

2025 Allelopathic Effect of Foliar Extracts of Leucaena leucocephala on Germination and Growth Behavior of Zea mays L.

Authors: Guru Prasad Satsangi, Shiv Shankar Gautam

Abstract:

Allelopathy is a potential area of research for sustainable agriculture. It is environmentally safe, can conserve the available resources, and also may mitigate the problems raised by synthetic chemicals. The allelo-chemicals are secondary metabolites produced by plants, which are the byproducts of the primary metabolic process. These allelo-chemicals may be stimulatory, inhibitory, or may have no effect on the growth of the other plants. It has been observed in the present study that foliar extracts of Leucaena leucocephala showed an inhibitory effect on the germination of the test crop maize. The results revealed that at different concentrations of Leucaena leucocephala foliar extract, caused a significant inhibition in germination and growth behavior of Zea mays L. seedlings. Minimum germination and growth occurred in 100 % concentration, and an increase in extract concentrations result in a decrease in the germination. Bioassay also depicted that this inhibitory effect was proportional to the concentration of the extract as the higher concentration having a lesser stimulatory effect or vice versa. The phytochemical analysis of the secondary metabolites from foliar extracts of Leucaena leucocephala L. showed the presence of tannins, saponins, phenols, alkaloids, and flavanoids. Among various extracts, the presence of methanol extract was found in a significant amount of phytochemicals, followed by the aqueous and ethanol extracts. Leaves showed a significantly higher amount of the allelochemicals.

Keywords: allelopathic effect, germination /growth behavior , foliar extracts, Leucaena leucceophala , Zea mays L.

Procedia PDF Downloads 203
2024 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 68
2023 Comparison of Frequency-Domain Contention Schemes in Wireless LANs

Authors: Li Feng

Abstract:

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Keywords: 802.11, wireless LANs, frequency-domain contention, T2F

Procedia PDF Downloads 462
2022 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System

Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari

Abstract:

Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.

Keywords: toll tax collection, waiting time, wastages, driver fatigue

Procedia PDF Downloads 154
2021 Great Food, No Atmosphere: A Review of Performance Nutrition for Application to Extravehicular Activities in Spaceflight

Authors: Lauren E. Church

Abstract:

Background: Extravehicular activities (EVAs) are a critical aspect of missions aboard the International Space Station (ISS). It has long been noted that the spaceflight environment and the physical demands of EVA cause physiological and metabolic changes in humans; this review aims to combine these findings with nutritional studies in analogues of the spaceflight and EVA environments to make nutritional recommendations for astronauts scheduled for and immediately returning from EVAs. Results: Energy demands increase during orbital spaceflight and see further increases during EVA. Another critical element of EVA nutrition is adequate hydration. Orbital EVA appears to provide adequate hydration under current protocol, but during lunar surface EVA (LEVA) and in a 10km lunar walk-back test astronauts have stated that up to 20% more water was needed. Previous attempts for in-suit edible sustenance have not been adequately taken up by astronauts to be economically viable. In elite endurance athletes, a mixture of glucose and fructose is used in gels, improving performance. Discussion: A combination of non-caffeinated energy drink and simple water should be available for astronauts during EVA, allowing more autonomy. There should also be provision of gels or a similar product containing appropriate sodium levels to maintain hydration, but not so much as to hyperhydrate through renal water reabsorption. It is also suggested that short breaks be built into the schedule of EVAs for these gels to be consumed, as it is speculated that reason for low uptake of in-suit sustenance is the lack of time available in which to consume it.

Keywords: astronaut, nutrition, space, sport

Procedia PDF Downloads 130
2020 Transnational Initiatives, Local Perspectives: The Potential of Australia-Asia BRIDGE School Partnerships Project to Support Teacher Professional Development in India

Authors: Atiya Khan

Abstract:

Recent research on the condition of school education in India has reaffirmed the importance of quality teacher professional development, especially in light of the rapid changes in teaching methods, learning theories, curriculum, and major shifts in information and technology that education systems are experiencing around the world. However, the quality of programs of teacher professional development in India is often uneven, in some cases non-existing. The educational authorities in India have long recognized this and have developed a range of programs to assist in-service teacher education. But, these programs have been mostly inadequate at improving the quality of teachers in India. Policy literature and reports indicate that the unevenness of these programs and more generally the lack of quality teacher professional development in India are due to factors such as a large number of teachers, budgetary constraints, top-down decision making, teacher overload, lack of infrastructure, and little or no follow-up. The disparity between the government stated goals for quality teacher professional development in India and its inability to meet the learning needs of teachers suggests that new interventions are needed. The realization that globalization has brought about an increase in the social, cultural, political and economic interconnectedness between countries has also given rise to transnational opportunities for education systems, such as India’s, aiming to build their capacity to support teacher professional development. Moreover, new developments in communication technologies seem to present a plausible means of achieving high-quality professional development for teachers through the creation of social learning spaces, such as transnational learning networks. This case study investigates the potential of one such transnational learning network to support the quality of teacher professional development in India, namely the Australia-Asia BRIDGE School Partnerships Project. It explores the participation of some fifteen teachers and their principals from BRIDGE participating schools in Delhi region of India; focusing on their professional development expectations from the BRIDGE program and account for their experiences in the program, in order to determine the program’s potential for the professional development of teachers in this study.

Keywords: case study, Australia-Asia BRIDGE Project, teacher professional development, transnational learning networks

Procedia PDF Downloads 267
2019 Lipidomic Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Salvador Sanchez Vinces, Caroline F. A. Gatinoni, Vitor P. Iordanu, Carlos A. R. Martinez

Abstract:

Lipidomics methods are widely used in the identification and validation of disease-specific biomarkers and therapy response evaluation. The present study aimed to identify a panel of potential lipid biomarkers to evaluate response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma (RAC). Liquid chromatography–mass spectrometry (LC-MS)-based untargeted lipidomic was used to profile human serum samples from patients with clinical stage T2 or T3 resectable RAC, after and before chemoradiotherapy treatment. A total of 28 blood plasma samples were collected from 14 patients with RAC who recruited at the São Francisco University Hospital (HUSF/USF). The study was approved by the ethics committee (CAAE 14958819.8.0000.5514). Univariate and multivariate statistical analyses were applied to explore dysregulated metabolic pathways using untargeted lipidic profiling and data mining approaches. A total of 36 statistically significant altered lipids were identified and the subsequent partial least-squares discriminant analysis model was both cross validated (R2, Q2) and permutated. Lisophosphatidyl-choline (LPC) plasmalogens containing palmitoleic and oleic acids, with high variable importance in projection score, showed a tendency to be lower after completion of chemoradiotherapy. Chemoradiotherapy seems to change plasmanyl-phospholipids levels, indicating that these lipids play an important role in the RAC pathogenesis.

Keywords: lipidomics, neoadjuvant chemoradiotherapy, plasmalogens, rectal adenocarcinoma

Procedia PDF Downloads 132
2018 Dehalogenation of Aromatic Compounds in Wastewater by Bacterial Cultures

Authors: Anne Elain, Magali Le Fellic

Abstract:

Halogenated Aromatic Compounds (HAC) are major organic pollutants that are detected in several environmental compartments as a result of their widespread use as solvents, pesticides and other industrial chemicals. The degradation of HAC simultaneously at low temperature and under saline conditions would be useful for remediation of polluted sites. Hence, microbial processes based on the metabolic activities of anaerobic bacteria are especially attractive from an economic and environmental point of view. Metabolites are generally less toxic, less likely to bioaccumulate and more susceptible for further degradation. Studies on biological reductive dehalogenation have largely been restricted to chlorinated compounds while relatively few have focussed on other HAC i.e., fluorinated, brominated or iodinated compounds. The objectives of the present work were to investigate the biodegradation of a mixture of triiodoaromatic molecules in industrial wastewater by an enriched bacterial consortium. Biodegradation of the mixture was studied during batch experiments in an anaerobic reactor. The degree of mineralization and recovery of halogen were monitored by HPLC-UV, TOC analysis and potentiometric titration. Providing ethanol as an electron donor was found to stimulate anaerobic reductive dehalogenation of HAC with a deiodination rate up to 12.4 mg.L-1 per day. Sodium chloride even at high concentration (10 mM) was found to have no influence on the degradation rates nor on the microbial viability. An analysis of the 16S rDNA (MicroSeq®) revealed that at least 6 bacteria were predominant in the enrichment, including Pseudomonas aeruginosa, Pseudomonas monteilii, Kocuria rhizophila, Ochrobacterium anthropi, Ralstonia pickettii and Rhizobium rhizogenes.

Keywords: halogenated aromatics, anaerobic biodegradation, deiodination, bacterial consortium

Procedia PDF Downloads 178
2017 The Role of Oral and Intestinal Microbiota in European Badgers

Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald

Abstract:

This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.

Keywords: communication, energetics, fitness, free-ranging animals, immunology

Procedia PDF Downloads 191
2016 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Jia Zhang, Fengmei Yao, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain

Procedia PDF Downloads 379
2015 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array

Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling

Abstract:

DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.

Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array

Procedia PDF Downloads 370
2014 Functional Expression and Characterization of a Novel Indigenous Endo-Beta 1,4- Glucanase from Apis mellifera

Authors: Amtul Jamil Sami

Abstract:

Apis mellifera is an insect of immense economic importance lives on rich carbohydrate diet including cellulose, nectar, honey and pollen. The carbohydrate metabolism in A mellifera has not been understood fully, as there are no data available, on the functional expression of cellulase gene. The cellulose hydrolyzing enzyme is required for the digestion of pollen cellulose wall, to release the important nutrients (amino acids, minerals, vitamins etc.) from the pollen. A dissection of Apis genome had revealed that there is one gene present for the expression of endo-beta-1,4-glucanase, for cellulose hydrolysis. In the presented work, functional expression of endo-beta-1,4 glucanase gene is reported. Total soluble proteins of the honey bee were isolated and were tested cellulose hydrolyzing enzyme activity, using carboxy-methyl cellulose, as a substrate. A mellifera proteins were able to hydrolyze carboxy-methyl cellulose, confirming its endo- type mode of action. Endo beta-1,4 glucanase enzyme was only present in the gut tissues, no activity was detected in the salivary glands. The pH optima of the enzyme were in the acidic pH range of 4-5-5-0, indicating its metabolic role in the acidic stomach of A mellifera. The reported enzyme is unique, as endo-beta- 1,4 glucanase was able to generate non reducing sugar, as an end product. The results presented, are supportive to the information that the honey bee is capable of producing its novel endo-beta-1,4 glucanase. Further it could be helpful, in understanding, the carbohydrate metabolism in A mellifera.

Keywords: honey bees, Endo-beta 1, 4- glucanase, Apis mellifera, functional expression

Procedia PDF Downloads 406
2013 Building a Blockchain-based Internet of Things

Authors: Rob van den Dam

Abstract:

Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.

Keywords: IoT, internet, wired, wireless

Procedia PDF Downloads 339
2012 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index

Authors: Kamakshaiah Kolli, R. Seshadri

Abstract:

Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.

Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification

Procedia PDF Downloads 433
2011 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction

Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach

Abstract:

X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.

Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast

Procedia PDF Downloads 260
2010 Management of Diabetics on Hemodialysis

Authors: Souheila Zemmouchi

Abstract:

Introduction: Diabetes is currently the leading cause of end-stage chronic kidney disease and dialysis, so it adds additional complexity to the management of chronic hemodialysis patients. These patients are extremely fragile because of their multiple cardiovascular and metabolic comorbidities. Clear and complete description of the experience: the management of a diabetic on hemodialysis is particularly difficult due to frequent hypoglycaemia and significant inter and perdialyticglycemic variability that is difficult to predict. The aim of our study is to describe the clinical-biological profile and to assess the cardiovascular risk of diabetics undergoing chronic hemodialysis, and compare them with non-diabetic hemodialysis patients. Methods: This cross-sectional, descriptive, and analytical study was carried out between January 01 and December 31, 2018, involving 309 hemodialysis patients spread over 4 centersThe data were collected prospectively then compiled and analyzed by the SPSS Version 10 software The FRAMINGHAM RISK SCORE has been used to assess cardiovascular risk in all hemodialysis patients Results: The survey involved 309 hemodialysis patients, including 83 diabetics, for a prevalence of 27% The average age 53 ± 10.2 years. The sex ratio is 1.5. 50% of diabetic hemodialysis patients retained residual diuresis against 32% in non-diabetics. In the group of diabetics, we noted more hypertension (70% versus 38% non-diabetics P 0.004), more intradialytichypoglycemia (15% versus 3% non-diabetics P 0.007), initially, vascular exhaustion was found in 4 diabetics versus 2 non-diabetics. 70% of diabetics with anuria had postdialytichyperglycemia. The study found a statistically significant difference between the different levels of cardiovascular risk according to the diabetic status. Conclusion: There are many challenges in the management of diabetics on hemodialysis, both to optimize glycemic control according to an individualized target and to coordinate comprehensive and effective care.

Keywords: hemodialysis, diabetes, chronic renal failure, glycemic control

Procedia PDF Downloads 161
2009 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks

Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal

Abstract:

Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.

Keywords: GIS, smart water, sustainability, urban water management

Procedia PDF Downloads 219
2008 A Semantic E-Learning and E-Assessment System of Learners

Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji

Abstract:

The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.

Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning

Procedia PDF Downloads 338
2007 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions

Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres

Abstract:

Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.

Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature

Procedia PDF Downloads 77
2006 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 116
2005 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment

Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen

Abstract:

Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.

Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram

Procedia PDF Downloads 512
2004 Examining Social Connectivity through Email Network Analysis: Study of Librarians' Emailing Groups in Pakistan

Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq

Abstract:

Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network.

Keywords: emailing networks, network graph theory, online social platforms, yahoo mailing groups

Procedia PDF Downloads 243
2003 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 417
2002 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro

Authors: Safwan Mawlood Hussien

Abstract:

Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.

Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro

Procedia PDF Downloads 120
2001 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they su ffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: ad-hoc network, MANET, ant colony routing, position based routing

Procedia PDF Downloads 427
2000 Evaluation of Rhus lancea and Celtis africana as Browse for Mixed-Feeders in Captivity

Authors: France Phiri, Arnold Kanengoni, Dawood Hattas, Khanyisile Mbatha

Abstract:

A study was carried out to determine seasonal changes in fiber composition and condensed tannin (CT) concentrations in Rhus lancea and Celtis africana and their effects on feed intake and blood metabolites in mixed-feeders. Rhus lancea and C. africana were analysed for dry matter (DM), acid detergent lignin (ADL), acid detergent fiber (ADF), neutral detergent fiber (NDF) and CT concentrations over four seasons; early wet (EWS), late wet (LWS), early dry (EDS) and late dry (LDS). Twelve indigenous male goats were kept in metabolic crates for periods of 21 days per season and fed one of two diet combinations; the test diet comprised R. lancea and C. africana (denoted as BROWSE) and the lucerne diet comprised lucerne (Medicago sativa and concentrates (CON). Feed intake, body weight and blood metabolites were determined in all goats over each study period. Goats fed BROWSE in the EDS, LDS and LWS lost weight while goats fed CON gained weight (P < 0.05). Goats fed CON had higher urea, alkaline phosphatase and gamma-glutamyl transferase concentrations than those fed BROWSE (P < 0.05). Creatinine and cholesterol concentrations in all goats across LWS, EDS and LDS were lower than the normal range, while total protein and globulin concentrations were higher. The goats fed BROWSE had higher creatinine concentrations (P < 0.05) than those fed CON. Cholesterol concentrations were higher (P < 0.05) in goats fed BROWSE than in those on CON fed. It was concluded that goats fed BROWSE lost weight, indicating insufficient nutrients for maintenance requirements.

Keywords: fiber, maintenance, condense tannins, blood metabolites

Procedia PDF Downloads 195
1999 IT System in the Food Supply Chain Safety, Application in SMEs Sector

Authors: Mohsen Shirani, Micaela Demichela

Abstract:

Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.

Keywords: food supply chain, IT system, safety, SME

Procedia PDF Downloads 480
1998 Effect of 10 Weeks of Aerobic Exercise Training on Serum Concentrations of Surfactant Protein D and Insulin Resistance in Women with Type 2 Diabetes

Authors: Sajjad Rezaei, Mahdieh Molanouri Shamsi, Azadeh Jamali

Abstract:

Background and purpose: Surfactant protein D (SP-D) is a lung-specific protein that is detectable in human plasma. Effect of exercise training on SP-D levels as well as its relation to metabolic indices is not known. The present study then aimed to investigate the effects of 10 weeks of aerobic training on serum levels of SP-D and insulin resistance in women with type 2 diabetes. Materials and methods: Twenty-two overweight women with type 2 diabetes mellitus were recruited through deliberate sampling and randomly assigned to intervention and control groups (11 in each group). The intervention group underwent a progressive aerobic training program for 10 weeks, 3 days per week, 30-55 min/day at 50-75% heart rate reserve (HRR). Control group continued with its everyday routine. Blood samples were obtained before and after training for biochemical analysis. Within-group and between-group differences were analyzed with paired and independent t-tests in spss software, respectively, and the relation between variables was analyzed with Pearson’s correlation coefficient (all at P = 0.05). Results: Significant differences were observed between groups in leptin, glucose, waist circumference and VO2 max after training. SP-D was decreased and VO2 max was increased significantly in intervention group. However, no significant correlation was observed between SP-D and other variables. Conclusion: Since there was no corresponding decrease in insulin resistance with decreased levels of SP-D, it seems unlikely for SP-D to mediate the association between obesity and insulin resistance in type 2 diabetics.

Keywords: exercise training, SP-D, insulin resistance, type 2 diabetes

Procedia PDF Downloads 421
1997 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 179
1996 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75